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Abstract. We suggest several automaton groups as platforms for Anshel-
Anshel-Goldfeld key agreement metascheme. They include Grigorchuk and

universal Grigorchuk groups, Hanoi 3-Towers group, the Basilica group and a

subgroup of the affine group Aff4(Z).

Introduction

Typically abelian groups are involved in cryptography, say in RSA and Diffie-
Hellman schemes (see e. g. [21], [22] and the references there). But they are
vulnerable with respect to quantum machines. Thus, for post-quantum cryptogra-
phy one tries to use non-abelian groups (some attempts one can find in e. g. [16],
[17], [18] and in the references there). In this paper we suggest several groups G
as candidates for platforms for Anshel-Anshel-Goldfeld key agreement metascheme
[1] (section 1).

To break Anshel-Anshel-Goldfeld scheme over a group G an adversary needs to
solve a system of simultaneous conjugacies of the form xuix

−1 = vi, 1 ≤ i ≤ m for
given ui, vi ∈ G, 1 ≤ i ≤ m, a1, . . . , an ∈ G and unknown x ∈ 〈a1, . . . , an〉. On
the other hand, to perform a communication between Alice and Bob via a public
channel, the word problem in G should have a small (say, polynomial) complexity.
We suggest some automaton groups [9], [2], [10] (see section 2) as G for which the
word problem is known to have the polynomial complexity The conjugacy problem
for automaton groups was studied in [27], [6], [13]. Observe that automaton groups
are convenient for algorithmic representation.

In section 2.1 we consider Grigorchuk group [9]. Note that in [19], [25] algorithms
(without complexity analysis) for the conjugacy problem in Grigorchuk group were
proposed, later in [20] a polynomial complexity algorithm for the conjugacy problem
in Grigorchuk group was exhibited. But the problem of simultaneous conjugacies
seems difficult in Grigorchuk group. Also mention that there was an attempt to use
Grigorchuk group in cryptography in a different way [7] which was later broken [24].
In section 2.2 we discuss the Basilica group [14] which is defined by an automaton
with 3 states. In section 2.3 we consider the universal Grigorchuk group [9], [3].
In section 2.4 we discuss the group of Hanoi Towers on 3 pegs [12]. Finally, in
section 2.5 we consider a subgroup of the affine group Aff4(Z) with unsolvable
conjugacy problem.

1. Anshel-Anshel-Goldfeld key agreement metascheme

We recall the key agreement scheme from [1] (cf. [16] where its extension
to multiparty communications is exhibited, also [23] ). Let G be a group and
a1, . . . , an, b1, . . . , bm ∈ G be some publicly given elements. Alice chooses her pri-
vate element a = a±1p1

· · · a±1ps
∈ 〈a1, . . . , an〉, while Bob chooses his private element
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b = b±1q1 · · · b
±1
qt ∈ 〈b1, . . . , bm〉. Alice transmits (via a public channel) elements

a−1bia, 1 ≤ i ≤ m, while Bob transmits bajb
−1, 1 ≤ j ≤ n. After that Alice

computes
bab−1 = ba±1p1

b−1 · · · ba±1ps
b−1,

while Bob computes
a−1ba = a−1b±1q1 a · · · a

−1b±1qt a.

Finally, the commutator a−1(bab−1) = (a−1ba)b−1 computed by both Alice and
Bob, is treated as their common secret key.

So, an adversary has to find A ∈ 〈a1, . . . , an〉, B ∈ 〈b1, . . . , bm〉 such that
A−1biA = a−1bia, 1 ≤ i ≤ m and BajB

−1 = bajb
−1, 1 ≤ j ≤ n (note that

the right-hand sides of the latter equalities are known). Then one can verify that
a−1bab−1 = A−1BAB−1. We emphasize that an adversary has to search a solution
A of the problem A−1biA = a−1bia, 1 ≤ i ≤ m in the subgroup 〈a1, . . . , an〉 which
makes the task even harder than the customary simultaneous conjugacy problem.
Thus, our goal is to exhibit groups with the polynomial complexity of the word
problem and difficult problem of solving systems of conjugacies.

We produce several candidates for such groups among automaton groups (see
e. g. [2], [9], [10]).

2. Automaton groups

Denote by X = {0, . . . , k−1} an alphabet and by S a finite set that we will call a
set of the states. An automaton of Mealy type on X with a set S of states is defined
by a transition function τ : S ×X → S and an output function π : S ×X → X. If
for each s ∈ S the function π(s, ·)is a permutation in Sym(k) then the automaton
is called invertible.

Denote by T a rooted k-regular tree and by T0, . . . , Tk−1, respectively, the rooted
subtrees of T with their roots at the children of the root of T . The paths (without
back tracking) in T starting at its root correspond to the words in the alphabet X.
Denote by X l the set of the words of the length l over X, by X∗ the set of all the
words, and by X∞ the set of all the right-infinite words over X. Each state s ∈ S
provides an action on T being its automorphism: s acts by a permutation π(s, ·)
on the roots of subtrees T0, . . . , Tk−1, and in its turn s acts recursively as τ(s, i) on
the subtree Ti, 0 ≤ i < k.

Thus, for an invertible automaton A = (S,X, τ, π), this defines a group G(A)
of automatically defined automorphisms of T with the operation of composition.
The group G(A) (see e. g, [2], [9], [10]) is generated by the words over S ∪ S−1
where for the state corresponding to s−1 the permutation π(s−1, ·) = (π(s, ·))−1
and τ(s−1, i) = (τ(s, i))−1. We refer to the length |g| of an element g ∈ G(A) as its
length in the generators S∪S−1 (clearly, the length depends on a representation in
the generators, we’ll be interested in upper bounds on the length, so no misunder-
standing would emerge). For an element g ∈ G(A) we define its portait (see e. g.
[2], [9]) of a depth d as the collection of the following data:

(i) a permutation of the action of g on Xd and
(ii)for every word x = x1 · · ·xd ∈ Xd the action gx ∈ G(A) of g on the subtree

Tx of T with the root x.
In all the examples of automaton groups G(A) considered below (except for

the last one) two elements g1, g2 ∈ G(A) are equal iff their portraits of depth
log(|g1| + |g2|) coincide. Moreover, the sections of all the words of this length
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over X have constant size O(1) (we’ll refer to it as the portrait property). This is
due to the contracting property established for the groups G(A) considered below
(except for the last one): there exist λ < 1, c, l such that |gx| < λ|g| + c for all
g ∈ G(A), x ∈ X l. The contracting property immediately allows one to solve the
word problem in G(A) within the polynomial complexity. On the other hand, it
seems that the problem of solving a system of simultaneous conjugacies is difficult
in all the automaton groups under consideration, the key agreement scheme from
section 1 based on any of these groups seems hard to be broken.

Thus, one can compute the portrait within the polynomial complexity, and the
portrait (or its binary encoding) will be used as a common secret key by Alice and
Bob.

2.1. Grigorchuk group. Grigorchuk group G (see e. g. [9]) can be defined by an
automaton with 5 states a, b, c, d, e acting on X∗ = {0, 1}∗ as follows:

π(a, 0) = 1, π(a, 1) = 0, π(b, x) = π(c, x) = π(d, x) = x; τ(a, x) = τ(e, x) = e,

τ(b, 0) = τ(c, 0) = a, τ(d, 0) = e, τ(b, 1) = c, τ(c, 1) = d, τ(d, 1) = b

for any x ∈ X. In particular, a2 = b2 = c2 = d2 = bcd = e (where e denotes the
identity). Note that G is not finitely presented. Observe that the complexity upper
bound for the word problem for G is O(n log n) [9]. It is known (see e. g. [9]) that
the portrait property (see section 2) holds for G.

In [20] an algorithm is designed to test whether for given u, v ∈ G there exists
x ∈ G such that xux−1 = v. In fact, one can extend this algorithm to produce such
x, provided it does exist. On the other hand, it seems to be a difficult problem
to test whether there exists x ∈ G such that xuix

−1 = vi, 1 ≤ i ≤ m for given
ui, vi ∈ G, 1 ≤ i ≤ m (and even more, to find such x).

One could also use the generalizations Gω [8], [9] of G where ω ∈ {0, 1, 2}∞.
Observe that the word problem in Gω has a complexity upper bound polynomial
in the complexity of computing a prefix of ω of a logarithmic length, while for a
generic ω already the single conjugacy equation problem is more difficult than the
similar problem in G [8], [9].

2.2. Basilica group. Consider an automaton group B (sometimes called the Basil-
ica group) defined by the following automaton with 3 states a, b, e (again, e is the
identity of B) over the alphabet X = {0, 1} [14], [15]:

π(e, x) = π(a, x) = x, π(b, 0) = 1, π(b, 1) = 0;

τ(e, x) = τ(a, 0) = τ(b, 0) = e, τ(a, 1) = b, τ(b, 1) = a

for any x ∈ X.
It is proved in [14] that the group B also satisfies the portrait property. Note

that for B only an exponential complexity algorithm is known for the problem of a
single conjugacy equation.

2.3. Universal Grigorchuk group. One can represent each group Gω as F4/Nω

where Nω is a normal subgroup of 4-free group F4 (with the generators a, b, c, d).
Denote N =

⋂
ω Nω where the intersection ranges over all the infinite words

ω ∈ {0, 1, 2}∞. The universal group is defined U = F4/N [3]. Similar to G (see
section 2.1) a2 = b2 = c2 = d2 = bcd = e (and again, U is not finitely presented).
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One can represent U as an automaton group [3] defined by an automaton with 5
states a, b, c, d, e (again, e is the identity of U) over an alphabet X = {0, 1}×{0, 1, 2}
of size 6 as follows:

π(e, (x, y)) = π(b, (x, y)) = π(c, (x, y)) = π(d, (x, y)) = (x, y),

π(a, (0, y)) = (1, y), π(a, (1, y)) = (0, y);

τ(e, (x, y)) = τ(a, (x, y)) = τ(b, (0, 2)) = τ(c, (0, 1)) = τ(d, (0, 0)) = e,

τ(b, (0, 0)) = τ(b, (0, 1)) = τ(c, (0, 2)) = τ(d, (0, 1)) = τ(d, (0, 2)) = a,

τ(b, (1, y)) = b, τ(c, (1, y)) = c, τ(d, (1, y)) = d

for any x ∈ {0, 1}, y ∈ {0, 1, 2}.
Similar to the group G (cf. section 2.1) the group U also satisfies the portait

property [9], [3].
Apparently, the simultaneous conjugacy problem for U (cf. section 1) is not

easier than the same problem for G, for Gω and for B.

2.4. Hanoi 3-Towers group. We describe Hanoi Towers group H(3) on 3 pegs as
an automaton group [11], [12], [5]. The alphabet X = {0, 1, 2} consists of 3 letters
which corresponds to the pegs. Actually, one can generalize to the group H(k) of
Hanoi Towers on k ≥ 3 pegs, then |X| = k [12], [5]. A word x1 · · ·xn ∈ Xn has a
meaning that the disc i is placed on xi-th peg. According to the rules of the game
in each peg the discs of sizes 1, 2, . . . are placed in the decreasing order of their
sizes from the bottom to the top.

The automaton of H(3) contains 3 states: a01, a02, a12. For any word w ∈ Xn

we have

aij(iw) = jw, aij(jw) = iw, aij(xw) = xaij(w), x 6∈ {i, j}.
This means that aij takes the disc from the top of either peg i or j being minimal
among these two and puts it on the other peg among i and j. Clearly, a201 = a202 =
a212 = e (again, H(k) is not finitely presented).

In [5] the portrait property is proved for H(3). Note that the complexity bound

exp(O(logk−2 n)) [5] for the word problem in the group H(k) is not polynomial for
k ≥ 4.

2.5. A group with unsolvable problem of conjugacy. In Proposition 7.5 [4]
a group F ′ ⊂ GL4(Z) is constructed with generators M1, . . . ,Ms ∈ GL4(Z) having
unsolvable orbit problem, i. e. whether for a pair of vectors u, v ∈ Z4 there exists
f ∈ F ′ such that fu = v. In [26] it is proved that the semidirect product G′ =
Z4 o F ′ ⊂ Aff4(Z) has unsolvable conjugacy problem. Moreover, in Proposition
1.5 [26] this construction is modified to make a group F ⊂ GL6(Z) free, also having
unsolvable orbit problem and G = Z6 oF ⊂ Aff6(Z) having unsolvable conjugacy
problem.

On the other hand, the word problem in G′ (as well as in G) can be solved
within the polynomial complexity. Indeed, an element of G′ one can represent as a
composition of affine transformations in Aff4(Z) of Z4 of the form v → u+Miv, 1 ≤
i ≤ s for vectors u ∈ Z4. One can explicitly compute such a composition.

Note that in [26] G is represented as an automaton group. Mention that unlike
the groups from the previous sections G does not fulfil the portrait property. It
looks reasonable to use both G and G′ as platforms for Anshel-Anshel-Goldfeld
scheme (see section 1).
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