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Introduction.

We study depth 3 arithmetic circuits computing a function over a finite field
(see (1) in section 1 below). Basically, a depth 3 arithmetic circuit can be
viewed as a sum of products of linear functions. Despite this clear structure,
it appears to be quite difficult to obtain for them complexity lower bounds.
Let us mention that the boolean theory of depth 3 (and even bounded-depth)
circuits is much more developed (see e.g., [6], [7], [11], [12], [13], [14], [16]).
On the other hand, there were also considered arithmetic bounded-depth
circuits over the field GF (2) (see [1] and the further literature there).

It is somewhat easier to obtain exponential complexity lower bounds for
depth 3 arithmetic circuits under the assumption that they involve just (ho-
mogeneous) linear forms, rather than arbitrary linear functions, by the same
token, if products in a circuit contain a bounded number of linear functions
(see [3], [10]). A breakthrough for arbitrary depth 3 arithmetic circuits was
made in [5] where an exponential complexity lower bound was proved for a
circuit computing the determinant in the algebra of polynomials over a finite
field.

First, in this paper an exponential complexity lower bound is proved for
circuits computing symmetric functions over finite fields (theorem 1 in section
1), in particular, the symmetric functions MODp1 over the field GF (p) for
distinct primes p, p1. Thus, a depth 3 arithmetic circuit in section 1 is treated
in the algebra of functions over a finite field.

Afterwards in the next sections we study depth 3 arithmetic circuits which
compute “quasi-boolean” functions f : Dn → F where D ⊂ F . This setting
extends the approach of [14] where the boolean case D = {0, 1} was consid-
ered. In section 2 we give some basic properties of the algebra of all functions
f : Dn → F .

In section 3 we introduce a m-communication rank and m-rigid rank of
a matrix and relate them (lemma 3).

In section 4 we state that a product of linear functions has only few
nonzeroes on Dn, provided that this product has a large communication (or
thereby, rigid as well) rank (lemma 4). This allows to approximate products
of linear functions with large communication ranks from a depth 3 arithmetic
circuit by a zero function, and in the sequel to deal only with the products
having small communication ranks.

In section 5 we provide an approximation of a function f : Dn → F with
a small depth 3 arithmetic circuit complexity by means of a function having
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some special form (theorem 2). This allows in a particular case D = F ∗ (or
more generally when |D| = |F |−1) to provide an approximation by means of
a sparse polynomial (lemma 5). Moreover, the support (the set of monomials)
of this polynomial lies in a union of few balls (w.r.t. the Hamming metric)
each of a small radius.

Continuing this topic in section 6, we prove that if the support of a
function f : (F ∗)n → F has a large coding distance then a lower bound of
the complexity of computing f by a depth 3 arithmetic circuit is exponential
(theorem 3). As a consequence, we obtain exponential complexity lower
bounds for computing the determinant or the permanent of a matrix, treating
them as the functions f : (F ∗)n

2 → F . Thereby, it gives, in particular, the
exponential lower bound for the determinant or the permanent in the algebra
of functions f : F n2 → F , which strengthens the result of [5].

1 Exponential lower bound for depth 3 arith-

metic circuits for symmetric functions over

a finite field.

We study depth 3 arithmetic circuits, so representations of a function in the
following form:

f =
∑

1≤i≤N

∏

j

Lij (1)

where Lij =
∑

1≤ℓ≤n

α
(ℓ)
ij Xℓ+α

(0)
ij are linear functions. We fix a prime p, denote

by F = GF (p) a finite field and in this section we consider the identity (1)
for functions f : F n → F over the field F . The purpose of this section is
to obtain exponential lower bounds on the complexity (in fact, on N) in the
representations (1) for quite natural symmetric functions f .

Viewing each element x ∈ F as an integer 0 ≤ x (mod p) ≤ p − 1, one
can define for any prime q (similar to [14]) a function MODq : F n → F as
follows:

MODq(x1, . . . , xn) =





1 if
∑

1≤i≤n

xi (mod p) ≡ 0 (mod q)

0 else
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Theorem 1 For the complexity of depth 3 arithmetic circuit (1) representing
MODq (provided q 6= p) the lower bound N ≥ exp(Ω(

√
n/ log n)) holds (in

case p = 2 one has a stronger bound N ≥ exp(Ω(n))).

Proof. Suppose the contrary. By the rank rk(
∏

j

Lij) we mean the rank of

the matrix of coefficients (α
(ℓ)
ij )j,ℓ of the linear functions {Lij}j without their

free terms. Take some threshold r being a real number (for the time being

it varies, we’ll specify it later). We treat separately the products
∏

j

Lij with

the rank greater or less than r, respectively.

1.1 Products with the large rank.

Let rk

(
∏

j

Lij

)
≥ r. Then the probability Pr

[
x ∈ F n :

∏

j

Lij(x) 6= 0

]
≤

(
p−1
p

)r
.

1.2 Products with the small rank.

Now let rk

(
∏

j

Lij

)
< r. Then the degree deg

(
∏

j

Lij

)
≤ r(p− 1).

Indeed, express each Lij as a linear combination of (less than r) elements
of a basis, thereupon open the parenthesis in the product and use the relation
Lp = L for any (linear) function L.

Denote by g the sum of all the products
∏

j

Lij (from (1)) of (small) ranks

less than r.
Then Pr[x ∈ F n : (MODq − g)(x) 6= 0] ≤

(
p−1
p

)r
N . In case p = 2

one can take r = n/2−√
n (see [11])and complete the proof of the theorem.

From now on we assume that p ≥ 3.
Consider the boolean cube Bn = {0, 1}n ⊂ F n. For any vector c =

(c1, . . . , cn) ∈ F n consider a (shifted) function MOD
(c)
q : Bn → F defined by

the formula MOD
(c)
q (x1, . . . , xn) = MODq(x1 + c1, . . . , xn + cn). We call c

nondegenerated if at least n/2 of its coordinates c1, . . . , cn are distinct from
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p− 1. The number of degenerated vectors c does not exceed

(
n
n

)
(p− 1)0 +

(
n

n− 1

)
(p− 1)1 + · · ·+

(
n

[n/2]

)
(p− 1)[n/2]

< 2n−1(p− 1)n/2 ≤ 1

2
pn, hence Pr[c ∈ F n is nondegenerated] >

1

2
.

Since any point from F n belongs to the same number 2n of the shifted
boolean cubes Bn + c (for both degenerated and nondegenerated vectors c),
we conclude that the expectation over all nondegenerated vectors c ∈ F n

E(Pr[x ∈ Bn : (MOD(c)
q − g(c))(x) 6= 0]) ≤ 2

(
p− 1

p

)r

N

where the function g(c)(x) = g(x+c) : Bn → F is represented by a polynomial
of the degree less than r(p− 1). Pick out a nondegenerated c ∈ F n for which

Pr[x ∈ Bn : (MOD(c)
q − g(c))(x) 6= 0] ≤ 2

(
p− 1

p

)r

N. (2)

Let 1 ≤ j1 < · · · < js ≤ n be such that 0 ≤ cji (mod p) ≤ p − 2, 1 ≤
i ≤ s, s ≥ n/2. Substituting zeroes for all ℓ with ℓ /∈ {j1, . . . js} into the

function MOD
(c)
q (X1, . . . , Xn), one obtains a function MODq,t : Bs → F

for a certain 0 ≤ t < q (recall [14] that MODq,t(y1, . . . , ys) = 1 if the
number of ones among y1, . . . , ys ∈ {0, 1} has a residue t (mod q), otherwise
MODq,t(y1, . . . , ys) = 0). Specifying r =

√
n/ log n we get a contradiction

of (2) with the corollary and lemmas 4,5 from [14], that proves theorem 1.
One can introduce a symmetric function MAJF : F n → F similar to

the customary MAJ : Bn → {0, 1} and being universal for all symmetric
functions. Namely, MAJF (x1, . . . , xn) = 1 if γ0 ≤ γ1 ≤ · · · ≤ γp−1 where γi
equals to the number of i (mod p) among x1, . . . , xn for 0 ≤ i ≤ p− 1, oth-
erwise MAJF (x1, . . . , xn) = 0. One can show (similar to theorem 4 [11]) that
any symmetric function f(x1, . . . , xn) : F

n → F could be represented as a F -
linear combination of the functions of the formMAJF (X1, . . . , Xn, η1, . . . , ηn(p−1))
for suitable ηi ∈ F , 1 ≤ i ≤ n(p− 1). This entails the following corollary.

Corollary 1 For the complexity of depth 3 arithmetic circuit (1) represent-
ing MAJF the lower bound N ≥ exp(Ω(

√
n/ log n)) holds.
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2 Quasi-boolean functions over finite fields.

In the rest of the paper we deal with the following setting. Let q = pλ,
F = GF (q), fix a subsetD ⊂ F , for nondegenerality we suppose that |D| ≥ 2.
The case D = F was studied in section 1, that is why we shall assume that
D 6= F . A function f : Dn → F we call quasi-boolean extending the concept
from [14] where D was just {0, 1} (actually one could extend this concept
further considering functions, say f : D1×· · ·×Dn → F for D1, . . . , Dn ⊂ F ,
but we restrict overselves with the case D1 = · · · = Dn = D for the sake of
simplicity of notations). One could also view f as a partial function on the
entire space F n.

Let g ∈ F [X] be the minimal polynomial with the set of roots equal to D
(evidently, deg g = |D|). Then the F -algebra of all functions f : Dn → F is
isomorphic to the quotient algebra A = F [X1, . . . , Xn]/(g(X1), . . . , g(Xn)).

The main purpose in the next sections is to obtain lower bounds on the
complexity of depth 3 arithmetic circuits (1) for certain functions f ∈ A,
thereby equality (1) is viewed in the algebra A.

Let us mention some easy properties of A which we use below (cf. [14],
also [4]).

Lemma 1 a) A is an algebra of principal ideals;
b) for any f ∈ A the number of nonzeroes |{x ∈ Dn : f(x) 6= 0}|

coincides with the dimension of the principal ideal (f) ⊂ A.

Clearly, monomials of the form X i1
1 · · ·X in

n , 0 ≤ i1, . . . , in < |D|, consti-
tute a basis of A, for an element f ∈ A we refer to its degree w.r.t. this
basis. In abuse of notations we identify sometimes f with the corresponding
polynomial in this basis.

Below it will be sometimes convenient to imagine a metric geometry in
the space of monomials M = {X i1

1 · · ·X in
n }0≤i1,...,in<|D| endowed with the

Hamming distance ρ (being equal to the number of distinct coordinates). If
the minimal polynomial g ∈ F [X] of D is a binomial q = xℓ − a (obviously,
g|(Xq−1 − 1)) then M satisfies the following property.

Definition 1 We say that the algebra A has a multiplicative basis of the
monomials M if

1) for any two monomials m1,m2 ∈ M there is a monomial m ∈ M
which equals to their product m = m1m2 (in A);
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2) the Hamming distance is invariant under multiplication: ρ(m1,m2) =
ρ(m′m1,m

′m2).

We note that the algebra of functions on F (see section 1), in other words
D = F , g = Xq −X, satisfies the condition 1), whereas, fails to satisfy 2), it
satisfies just the inequality ρ(m1,m2) ≥ ρ(m′m1,m

′m2).

Definition 2 For any integer 2 ≤ d < q a linear d-sweep ℓs(d) (w.r.t. the
field F = GF (q)) is the minimal ℓ (provided that it does exist) such that for
any ℓ subsets D1, . . . , Dℓ ⊂ F , |D1| = · · · = |Dℓ| = d any linear function
L(X1, . . . , Xℓ) = a1X1 + · · · + aℓXℓ + a with nonvanishing coefficients a1 6=
0, . . . , aℓ 6= 0, sweeps L(D1 × · · · ×Dℓ) = F the entire F .

Lemma 2 a) ℓs(d) is defined if and only if d > pλ−1, in this case ℓs(d) ≤
q − d+ 1;

b) for d > q/2 we have ℓs(d) = 2.

3 Rigid rank and communication rank of a

matrix.

In this section we consider matrices over arbitrary (not necessary finite) fields.
Let A = (aij) be k × n matrix and m ≥ 0 be an integer. For subsets

I ⊂ {1, . . . , k}, J ⊂ {1, . . . , n} we denote by AI,J the submatrix of A formed
by its rows from I and the columns from J .

Definition 3 m-rigid rank rrkm(A) of A is defined as the minimal possible
rank of matrices which differ from A by at most of m entries in each row.

Definition 4 m-communication rank crkm(A) of A is defined as the max-
imal possible number r of its rows I ⊂ {1, . . . , k}, |I| = r such that there
exists a partition {1, . . . , n} = J0 ∪ · · · ∪ Jm of the set of its columns into
(m+ 1) subsets with the property that every submatrix AI,Jℓ, 0 ≤ ℓ ≤ m has
the rank r.

Notice that both rrkm and crkm are not invariant in general with respect
to transposing the matrix A. Obviously, rrk0 and crk0 coincide with the
usual rank.

The next lemma relates the rigid and communication ranks.

Lemma 3 rrkm(A) ≤ (m+ 2) crkm(A) ≤ (m+ 2)(m+ 1)rrkm(A).
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4 Upper bound on the number of nonzeroes

of a product of linear functions via the com-

munication rank.

Throughout this section we fix a product of linear functions Π =
∏

jLj (cf.
(1)) and a subset D ⊂ F , denote d = |D|, viewing Π : Dn → F as a quasi-

boolean function (see section 2). Let Lj =
∑

1≤i≤n

a
(i)
j Xi+aj where a

(i)
j , aj ∈ F .

By the ℓ1-communication rank of Π we mean the ℓ1-communication rank (see

section 3) of the matrix A = (a
(i)
j ) of its coefficients, Lj being treated as the

rows of A (excluding the free coefficients of Lj). Denote ℓ = ℓs(d) (we assume
that ℓ is defined, i.e. d > pλ−1, then lemma 2a) entails that ℓ ≤ q − 1, see
section 2).

The purpose of this section is to bound from above the number of nonze-
roes of Π on Dn via the (ℓ− 1)-communication rank of Π.

Lemma 4 Let the (ℓ − 1)-communication rank of Π equal to r. Then the
probability

Pr[x ∈ Dn : Π(x) 6= 0] ≤ exp(−Ω(r)).

5 Approximating depth 3 arithmetic circuits

by sparse polynomials

In this section we show that if a quasi-boolean function f : Dn → F , |D| =
d > pλ−1 can be computed by a depth 3 arithmetic circuit (1) with a small
complexity N then f can be approximated by a polynomial of a special
type (see theorem 2 below), in case D = F − {0} this polynomial is sparse
(see lemma 5 below). For this purpose it suffices to approximate a product
Π =

∏
Lj of linear functions.

Let ℓ = ℓs(d), recall that ℓ ≤ q − 1 due to lemma 2 (cf. also section 4).
Again (cf. section 1) we fix a threshold r (which could be varied). The proof
of the following theorem uses lemmas 3,4.

Theorem 2 For any r a product
∏

j Lj of linear functions can be approxi-
mated on Dn by a suitable function of the form

g1 =
∑

1≤i≤exp(O(r))

∏

m

Li,m (3)
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where Li,m are linear functions such that for every i the number of m for
which Li,m has at least one zero in Dn, is bounded by O(r). The approxima-
tion means that the probability

Pr

[
x ∈ Dn :

∏

j

Lj(x) 6= g1(x)

]
≤ exp(−Ω(r)).

If one would be able to prove that a particular function f : Dn → F
for a certain r can not be approximated by a function of the form (3), then
theorem 2 would imply a lower bound N ≥ exp(Ω(r)) on the complexity of
computing f by a depth 3 arithmetic circuit (1).

We prove a complexity exponential lower bound in the next section for
an explicitly given function f in case when |D| = q − 1, from now on we
study this particular case.

Let {a} = F−D. Observe that the only linear functions L ∈ F [X1, . . . , Xn]
without zeroes in Dn, are {Xi − a}i (up to constant factors), in particular,
ℓ = ℓs(|D|) = 2 (cf. lemma 2b). For the sake of simplicity of notations we
assume in the sequel that D = F ∗ = F − {0}, nevertheless, all the further
results still hold for any D = F −{a} by means of the linear transformation
of the coordinates Xi → Xi + a, 1 ≤ i ≤ n.

Lemma 5 In case D = F ∗ for any r a product Π =
∏

j Lj of linear functions
can be approximated on Dn by an appropriate function of the form g̃ =∏

1≤i≤n X
µi

i · g, 0 ≤ µi ≤ p − 2, 1 ≤ i ≤ n where deg g ≤ O(r). Again the
approximation means that the probability

Pr[x ∈ Dn : Π(x) 6= g̃(x)] ≤ exp(−Ω(r))

As we mentioned already a similar statement is valid for any D = F−{a}
by means of replacing g̃ for

∏
1≤i≤n(Xi − a)µig.

One can view g̃ from lemma 5 as a sparse (when r is relatively small) poly-
nomial with less than nO(r) monomials. Moreover, g̃ has a special structure
and that is why we introduce the following definition.

Definition 5 A polynomial of the form
∑

1≤η≤t X
Iηgη where XIη is a mono-

mial and deg (gη) ≤ r̃ is called (t, r̃)-sparse.

Lemma 5 implies the following proposition.
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Proposition 1 There exists a constant δ0 > 0 such that if a function f :
(F ∗)n → F can be computed by an arithmetic depth 3 circuit (1) with the
complexity N ≤ exp(δ0r) for a certain r then f can be approximated by a
pertinent (N,O(r))-sparse function g, i.e.

Pr[x ∈ (F ∗)n : f(x) 6= g(x)] ≤ exp(−Ω(r))

6 Exponential lower bound for arithmetic depth

3 circuits computing the determinant or

the permanent of matrices with nonzero

entries

The main goal of this section is to prove an exponential lower bound on
the complexity of an arithmetic depth 3 circuit (1) which computes either
the determinant, either the permanent or the Hamiltonian cycles polynomial
treated as a function : (F ∗)n

2 → F . Also the lower bounds for some other
explicitly given functions will be proved.

Although, we are interested mainly in the case D = F ∗, the next lemma is
valid for any D ⊂ F , d = |D| such that the algebra of A of function Dn → F
has a multiplicative basis of monomials M = {X i1

1 · · ·X in
n }0≤i1,...,in<d (see

definition 1 in section 2). One can rephrase definition 5 using the (Hamming
metric ρ) geometric language in M (cf. section 2): if a polynomial f is (t, r)-
sparse then its support supp (f) ⊂ M (throughout this section the support
is the set of monomials from M occurring in the polynomial) lies in a union
of t balls each of a radius at most r (centered at XIη).

The following lemma provides a lower bound on the number of nonzeroes
of a (t, r)-sparse polynomial.

Lemma 6 Let the algebra A of functions : Dn → F have a multiplicative
basis M and for a certain R the support supp (f) of a (t, r)-sparse polynomial

f ∈ A (where t ≥ n) contain a monomial XI(0) such that ρ(XI(0) , XI) ≥ R

for any other monomial XI(0) 6= XI ∈ supp (f). Then

Pr[x ∈ Dn : f(x) 6= 0] ≥ exp
(
−O

( n

R2
(r + n4/3 log2/3 t)

))
(4)
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Remark 1 The imposed inequality t ≥ n is not essentially restrictive, be-
cause when t < n one could treat f as (n, r)-sparse polynomial. Thus, one
can replace in (4) the occurrence of t by t + n getting rid of the restriction
t ≥ n.

Proof of the lemma. Replacing f by f · (aXI(0))−1 where a ∈ F ∗ is the

coefficient at the monomial XI(0) in f (and taking into account that M is a
multiplicative basis of A), we assume f is still (t, r)-sparse, 1 ∈ supp (f) and
for any 1 6= XI ∈ supp (f) we have ρ(1, XI) ≥ R. We keep the notation XIη

for the centers of the balls. One can deem that there are (t−1) balls centered
at XIη and the monomial 1 lies in its own ball centered at 1. Taking any Iη
and XI ∈ supp (f) which lies in the ball of a radius at most r centered at
XIη , we obtain that ρ(1, XIη) ≥ ρ(1, X∗)− ρ(X∗, XIη) ≥ R− r.

Put

s =
Cn

R
(r + n2/3 log1/3 t) (5)

for an appropriate sufficiently large constant C which will be specified later.
Consider the sphere S ⊂ M of the radius d−1

d
n− s centered at 1 (w.l.o.g. we

can assume that d|n), i.e. S = {XJ : ρ(1, XJ) = d−1
d
n− s}. Since

|S| = (d− 1)
d−1
d

n−s

(
n

d−1
d
n− s

)
≥ dn exp

(
−O

(
s2

n

d2

d− 1
+ log n

))
,

we notice that the probability

Pr[XJ ∈ M : XJ ∈ S] ≥ exp

(
−O

(
s2

n

))
,

and the right side of the latter inequality has the same order of growth as
the right side of the desired inequality (8).

W.l.o.g. we can assume that s < d−1
d
n, because otherwise (4) is trivial.

Let us view a polynomial from A as a row of its dn coefficients at the
monomials from M. We suppose to prove that one can pick out at least half
of the elements XJ from S such that the matrix composed of the rows XJf
for these XJ ∈ S contains the unit submatrix just in the set J of columns
XJ . That means that the dimension of the ideal (f) ⊂ A is greater or equal
to |S|/2. Then lemma 1b) (see section 2) would imply (4) due to the obtained
above bound on |S|.

We call XJ ∈ S remote if ρ(XJ , XIη) > d−1
d
n − s + r for all η. Observe

that if we compose the above matrix of the rows XJf for all remote XJ then
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it contains the desired unit submatrix. Indeed, any monomial 1 6= XI ∈
supp (f) belongs to a ball centered at XIη for a certain η, with the radius r.
Therefore,

ρ(XJ , XI) ≥ ρ(XJ , XIη)− ρ(XIη , XI) >
d− 1

d
n− s.

Hence for any XJ0 ∈ S (even not necessary to be remote) we have

ρ(XJ , XJ0XI) ≥ ρ(XJ , XI)− ρ(XI , XJ0XI) = ρ(XJ , XI)−
(
d− 1

d
n− s

)
,

the latter equality invokes the property 2) from definition 1 (see section 2).
Thus, ρ(XJ , XJ0XI) > 0 which means that the row XJ0f can not have a
nonzero entry in any column XJ for a remote XJ (see again definition 1),
except for appearance of an entry equal to 1 in the column XJ0 (the latter
appearance makes sense only if XJ0 ∈ J , i.e., XJ0 is remote).

In order to justify the remaining goal, i.e., to show that at least half of
the elements XJ ∈ S are remote, it suffices to prove for every η that the
probability

Pr

[
XJ ∈ S : ρ(XJ , XIη) ≤ d− 1

d
n− s+ r

]
≤ 1

2t
(6)

Notice that one can assume that R ≥ 3r, otherwise (4) becomes trivial
due to the occurrence of the first term nr2

R2 .
Thus, we fix Iη and denote by U0, . . . , Ud−1 the partition of the set {1, . . . , n}

where Uj consists of all i such that i-th coordinate of the vector Iη equals to
j. Denote wj = |Uj|, 0 ≤ j ≤ d−1. Introduce independent random variables
Y1, . . . , Yn each taking the value 0 with the probability 1

d
+ s

n
and every value

among 1, . . . , d− 1 with the probability 1
d
− s

(d−1)n
.

Denote δ = 1
6

sR
n2 and w = 1

6d
sR
n
. We say that Uj is large if wj ≥ w. Fix

a large Uj for the time being, denote by mj the number of Yi among i ∈ Uj

such that Yi = j. Then Chernoff’s inequality (see, e.g. [8]) states that

Pr

[∣∣∣∣
mj

wj

−
(
1

d
− s

(d− 1)n

)∣∣∣∣ ≥ δ

]
≤ exp(−Ω(δ2wj)) ≤ exp(−Ω(δ2w))

(7)j
in case when j ≥ 1 and

Pr

[∣∣∣∣
m0

w0

−
(
1

d
+

s

n

)∣∣∣∣ ≥ δ

]
≤ exp(−Ω(δ2w0)) ≤ exp(−Ω(δ2w)) (7)0
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in case when j = 0
where the probabilities are taken over the random variables Y1, . . . , Yn.
We claim that one can achieve that

Pr

[
n− (m0 +m1 + · · ·+md−1) ≤

d− 1

d
n− s+ r

]
≤ exp(−C0 log t) (8)

for an arbitrary constant C0 > 0 (by means of suitable specifying a constant
C in (5)).

To estimate the sum n − (m0 + m1 + · · · + md−1) (being the Hamming
distance between the monomials XY1

1 · · ·XYn
n and XIη), we handle separately

the case of a large Uj applying the inequality mj ≤
(

1
d
− s

(d−1)n

)
wj + δwj

when j ≥ 1 (see (7)j) or the inequality m0 ≤
(
1
d
+ s

n

)
w0 + δw0 when j = 0

(see (7)0), and the case of a small Uj in which we simply apply the inequality
mj ≤ wj ≤ w. Hence (with a probability greater than 1 − exp(−Ω(δ2w)))
the following inequality is true:

n− (m0 +m1 · · ·+md−1) ≥
d− 1

d
n− w0s

n
+

(w1 + · · ·+ wd−1)s

(d− 1)n
− δn− dw.

Since n−w0 = w1+ · · ·+wd−1 = ρ(1, XIη) ≥ R− r ≥ 2
3
R (see the beginning

of the proof of the lemma), we obtain

n− (m0 +m1 + · · ·+md−1) ≥
d− 1

d
n− s+

2

3

d

d− 1

Rs

n
− δn− dw.

Taking into account that 2
3
Rs
n

≥ 4δn, 2
3
Rs
n

≥ 4dw, 2
3
Rs
n

≥ 4r (the latter
inequality can be secured by choosing a sufficiently large constant C in (5))
we deduce that the required in (8) inequality n − (m0 + m1 + · · ·md−1) ≤
d−1
d

n−s+r could be true with a probability less than exp(−Ω(δ2w)). Again
increasing a constant C in (5) if necessary, we can achieve that δ2w ≥ C1 log t
and thereby, prove (8).

Now to complete the proof of (6) we denote for brevity the event that
among random values Y1, . . . , Yn there are exactly n

d
+ s zeroes, i.e. the

monomial XY1
1 · · ·XYn

n belongs to the sphere S, by (Y1, . . . , Yn) ∈ S. Then

Pr

[
n− (m0 +m1 + · · ·+md−1) ≤

d− 1

d
n− s+ r

]
≥

Pr[(Y1, . . . , Yn) ∈ S]×
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Pr

[
n− (m0 +m1 + · · ·+md−1) ≤

d− 1

d
n− s+ r|(Y1, . . . , Yn) ∈ S

]

= Pr [(Y1, . . . , Yn) ∈ S]Pr

[
XJ ∈ S : ρ(XJ , XIη) ≤ d− 1

d
n− s+ r

]
≥

1

n+ 1
Pr

[
XJ ∈ S : ρ(XJ , XIη) ≤ d− 1

d
n− s+ r

]
, (9)

the latter inequality follows from the observation that the radius d−1
d
n− s of

the sphere S is the expectation of radii of (n + 1) possible spheres in which
the monomial XY1

1 · · ·XYn
n could lie, and the probability for the monomial to

lie in a sphere increases along with the radius of the sphere till d−1
d
n− s and

after that decreases.
Together with (8) for an appropriate constant C0 the inequality (9) implies

(6), taking into account that t ≥ n, the lemma is proved.
From now on till the end of the paper we assume that D = F ∗ (cf. the

end of the previous section).
Denote by K = Z/(q − 1) the ring of residues. Recall that for a subset

U ⊂ Kn of the free K-module its coding distance m = m(U) is defined as
the minimum of ρ(u1, u2) over all pairs u1 6= u2, u1, u2 ∈ U . Denote by
fU =

∑
u∈U Xu : (F ∗)n → F the sum of the monomials with the exponents

from U .

Theorem 3 There exists ǫ > 0 such that if the number of the elements
n ≤ t = |U | ≤ exp(ǫm6/n5) then for any depth 3 arithmetic circuit (1)
computing fU : (F ∗)n → F the complexity lower bound N ≥ t holds.

Proof. Suppose the contrary. Set r = ǫ1m
2/n for a pertinent small enough

ǫ1 > 0 which will be specified later. Applying to fU proposition 1, provided
that ǫ < δ0ǫ1, we obtain a (t−1, C1r)-sparse polynomial g which approximates
fU :

Pr[x ∈ (F ∗)n : fU(x) 6= g(x)] ≤ exp(−δ1r)

for certain C1, δ1 > 0.
Observe that (2t− 1, C2r)-sparse polynomial fU − g contains a monomial

XI(0) ∈ M from the support supp (fU) such that ρ(XI(0) , XI) ≥ m/4 for

any XI(0) 6= XI ∈ supp (fU − g), provided that ǫ1 <
1

4C1
. Indeed, denote by

XI1 , . . . , XIt−1 the centers of the balls of radii at most C1r which cover the
support supp (g). Then at least for one of the monomialsXI(0) ∈ supp (fU) we

14



have ρ(XI(0) , XIi) ≥ m/2 for 1 ≤ i ≤ t−1. Hence for any monomial XI from
the ball of the radius C1r ≤ m/4 centered at XIi we have ρ(XI0 , XI) ≥ m/4.

Now we are able to apply lemma 6 to the polynomial fU−g with R = m/4
which gives the bound

Pr[x ∈ (F ∗)n : fU(x) 6= g(x)] ≥ exp

(
−C2r

(
ǫ1 +

ǫ2/3

ǫ1

))

for a suitable constant C2 appearing from the right side of (4). Now specifying

first ǫ1 < δ1
3C2

and thereupon ǫ <
(

ǫ1δ1
3C2

)3/2
(and also satisfying ǫ < δ0ǫ1, see

above), we get a contradiction which proves the theorem.
Take any prime p0|(q−1) and consider a linear code U0 ⊂ (GF (p0))

n with

a basis u1, . . . , uk and the coding distance m. Then the subset U = (q−1)
p0

U0 ⊂
Kn obtained from U0 by multiplying every its element by q−1

p0
∈ K, has also

the coding distance m. Moreover, the following formula is valid:

fU =
∏

1≤i≤k

(
∑

0≤j≤p0−1

X
j q−1

p0
ui

)
: (F ∗)n → F (10)

Using Gilbert-Varshamov bound from the coding theory [9], which supplies
us with a linear code U of the coding distance m ≥ δ0n for appropriate
δ0 > 0 and the dimension k = ǫ0n, where 0 < ǫ0 < ǫδ60 for the constant ǫ
from theorem 3, we get the following corollary.

Corollary 2 There exists a linear code U0 ⊂ (GF (p0))
n such that for any

depth 3 arithmetic circuit (1) computing fU : (F ∗)n → F the exponential
lower bound on its complexity N ≥ exp(Ω(n)) holds.

If we would like to stick with explicitly constructed functions, we can
consider a BCH code [9] with the coding distance m ≥ Ω(n/ log n), which

has a linear dimension Ω(n), and as U
(BCH)
0 we take an arbitrary its linear

subcode (i.e. a subspace) of the dimension Ω(n/ log6 n). Again applying
theorem 3, we get the following corollary.

Corollary 3 For an explicitly constructed function fU(BCH) : (F ∗)n → F
(obtained from a BCH code) we have the exponential lower bound N ≥
exp(Ω(n/ log6 n)) on the complexity of any computing it depth 3 arithmetic
circuit (1).
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Finally, based on formula (10) which has a linear size O(n) and applying
the construction from [15] (see also [2]) to the function fU in the algebra A,
we conclude with the following corollary.

Corollary 4 For each of the following three functions : (F ∗)n
2 → F

a) Determinant
∑

π∈Sn
(−1)sgn(π)

∏
1≤i≤n Xi,π(i);

b) Permanent
∑

π∈Sn

∏
1≤i≤n Xi,π(i);

c) Hamiltonian cycles polynomial
∑

π

∏
1≤i≤n Xi,π(i), where the latter

summation is taken over all permutations π which consist of a single cycle,
any computing it depth 3 arithemtic circuit (1) has the exponential complexity
N ≥ exp(Ω(n)).
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