DEVIATION THEOREMS FOR PFAFFIAN SIGMOIDS
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Abstract. By a Pfaffian sigmoid with a depth d we mean a circuit with d layers in which rational
operations are admitted at each layer, and to jump to the next layer one solves an ordinary differential
equation of the type v/ = p(v) where p is a polynomial with the coefficients being the functions computed
at the previous layers of the sigmoid. Thus, Pfaffian sigmoid computes Pfaffian functions (in the sense of
A. Khovanskii). The deviation theorem is proved which states that for a real function 0 Z f computed by a
Pfaffian sigmoid with a depth (or parallel complexity) d there exists an integer n such that the inequalities
(exp (- (exp (|z]™) )7t < |f(x)] < exp (- (exp (J&|*)---) hold for all |x| > zo for a certain xo,
where the iteration of the exponential function is taken d times. One can treat the deviation theorem as
an analogue of the Liouvillean theorem (on algebraic numbers) for Pfaffian functions.

INTRODUCTION

Under Pfaffian sigmoid (cf. [MSS],[G]) with a depth d we understand a computational
circuit having d layers such that at each layer the rational operations are admitted and
for a jump to (¢ + 1)-th layer, computing a function w;41 : R — R at (¢ + 1)-th layer
is admitted, being a solution of a differential equation of the first order w}, , = p(wis1)
(cf. [Kh]) where p is a polynomial with the coefficients computed at the previous layers
of the sigmoid (see (1) and the section 1 for the exact definitions). In particular, a jump
could be made by taking exp or log of a function computed at previous layers, this kind of
Pfaffian sigmoids are called elementary and were considered in [G], where more generally
the sigmoids were introduced in which for a jump to the next layer one can substitute a
function from a previous layer into a solution of a linear ordinary differential equation with
the polynomial coefficients, thus, into exp or log, in particular. Another particular case
of elementary sigmoids are “standard” sigmoids (see [MSS]) where the jump is made by

~1. So, a function computed at (i + 1)-th layer of a

applying the function (1 + exp(—z))
sigmoid introduced in [G], satisfies a linear ordinary differential equation with the coeffi-

cients from the previous layers 1,...,:. In the present paper the corresponding differential
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equation could be non-linear, but of the special form (see (1) below), providing that the

computed functions are Pfaffian (see [IKh]).

The main result (see the theorem in the section 1) states that two different functions
fi,f2 : R — R computed by a Pfaffian sigmoids with a depth (or parallel complexity) d
cannot be too close to each other, namely (exp(---(exp p(x)--- )™ < |(fi — f2)(2)] <
exp(- - (exp p(x))) for a suitable polynomial p € Rlx] and for all + > x¢ for some z¢ € R,
where the number of iterations of the exponential function equals to d. This type of the
results was called in [G] the deviation theorem where they were proved for the sigmoids
introduced in [G] (cf. above). Also the deviation theorem could be treated as an analogue
of Liouvillean theorem on the bound on the difference of two (different) algebraic numbers,
for the functions computed by Pfaffian sigmoids. In particular, it gives a lower bound on
the approximation of a function computed by a Pfaffian sigmoid by means of a rational
function (see the corollary in the section 1). On the other hand, one could interpret the
theorem and the corollary as lower bounds on the depth (so, parallel complexity) of a
Pfaffian sigmoid, computing a function, provided that it has a rather good approximation

by a “simple” (for example, rational) function.

The proof of the theorem is conducted by induction on the depth of a sigmoid. In the
section 2 an upper bound on a function computed by a Pfaffian sigmoid is ascertained (see

the lemma), in the section 3 a lower bound and thus the inductive step are proved.

1. Pfaffian sigmoids and differential fields.

Denote the field Py = R(X), then by induction on ¢ the field P41 is generated over

P; by all the functions wgi)l : R — R (maybe having a finite number of singularities)

satisfying first-order nonlinear differential equations of the form

<w£j_)1>/ =49 <w£‘_|7_)1> (1)

where a polynomial ¢(Z) € P;[Z].



According to [Kh] any function f € P;, being Pfaffian, has a finite number of sin-
gularities and roots (for ¢+ = 1 see also [B]). Hence for every two functions fi,f2 €
Pi, f1 # f2 the difference (f1 — f2)(x) is either positive or negative everywhere on an
interval = € [xg,00) for a certain xo € R, we write f; = f3 or fi < f2 respectively. By
p1,p2, -+ € R[X] we'll denote the polynomials with the positive leading coefficients. By
exp? = exp(---(exp)---) we denote the iteration of the exponential function 7 times.

Obviously exp®(py), (exp'?(p1))~" € Pi. Now we are able to formulate the main result
of the paper (cf. [G]).

THEOREM. For any function 0 £ f € P; there exists a polynomial p; such that
(exp' p1) ™" <[] < exp' pr.

The theorem will be proved in the next two sections, now we indicate the connections with

the sigmoids (cf. [MSS]). Under a Pfaffian sigmoid with the depth d we understand a

computations consisting of d layers such that a function wgi)l at (14 1)-th layer satisfies an

equation (1) where the coefficients q¢, 0 < { < n of the polynomial ¢(Z) = 5, qZ* are
0<l<n
(J1)

the rational functions in the functions of the form w,”"’ computed at the previous (1,...,1)

layers of the sigmoid (cf. [G]). Thus, at each layer of the Pfaffian sigmoid the rational

operations are admitted and the jump from the previous layer to the next one is done
by solving an equation (1). Thus, inducion on i shows that a function wgi)l computed at
(1 + 1)-th layer of a Pfaffian sigmoid belongs to P;y1.

In [G] the elementary sigmoids were considered where the function wgi)l was obtained

as either wgi)l =exp(fi/f2) or wgi)l = log(f1/f2) where f1, f2 were the polynomials in the
(J1)

functions of the form w,”*’ computed at the previous (1,...,1) layers of the elementary
sigmoid. Evidently, an elementary sigmoid is a particular case of Pfaffian sigmoids. In its
turn, so-called “standard” sigmoid where the jump from the previous layers to the next
one is fulfilled by applying the gate function (1 + exp(—a))~1 ([MSS]) is a particular case

of the elementary sigmoids.



An important question, how good one can approximate a function computed by a

Pfaffian sigmoid by means of a rational function (cf. [G]).

COROLLARY. Ifa function wg € Py is computed by a Pfaffian sigmoid with a depth d then
for any rational function r € Py holds |wq — r| > (exp'®(py))~! for a suitable polynomial

po, unless wg = r.

2. Upper bound on Pfaffian function.

We start proving the theorem by induction on . The base of induction for Py is obvious,
let us proceed to the inductive step. In the present section we’ll prove the required upper
bound on the function wgi)l (see (1)).

Assume by inductive hypothesis the coeflicients g0 € P;, ¢, # 0 of the polynomial
q satisfy the following inequalities (exp®(p2))™" < |qe| < exp(?(py), 0 < ¢ < n for an

appropriate polynomial ps.

If |w£;|7_)1| < 4(exp(p2))? is valid, the required upper bound is proved. Suppose the

contrary. Then

1 ; _ Gn— g (w; i
W;4q (wi—i—l) (wi+1)

If n = 0 then |w£;|7_)1(:1;)| < Cy + f(exp(i)(pz) + 1) < expD(ps(z)) for sufficiently large
x > x¢ and suitable polynomial Opg and Cp € R. If n > 2 then |(w§j_)1(:1;))_"+1| >
(n—1) T%(exp(i)(pz))_l > (exp(py(2)))™" for sufficiently large = and a suitable poly-
nomial ;4, therefore |w£;|7_)1| < (exp(py)). Finally, if n = 1 then log|w§j_)1(:1;)| < Cy+
f(exp(i)(pz) + 1) < expP(ps(z)) for sufficiently large = > ¢ and suitable polynomial ps

Zo

and C; € R, therefore |w£;|7_)1| < explt ) (pg) for a suitable polynomial pg.

We summarize the proved upper bound in the following lemma (for « = 0 one can find

its proof in [B]).



LEMMA. Assume the statement of the theorem is proved for P; and w(]) satisfies (1)

where deg(q) = n. Then

a) ifn=0orn>2 then |w(‘7) | < exp(i)(p7)

b) ifn =1 then |w(‘7) | < eXp(l—H)(P?)

for an appropriate polynomial pr.

Remark. For any polynomial h € P;[Y7,...,Y,,] the similar upper bound as in the lemma
|h(w Ej_ll), 5;17_"{))| ~< explt(pg) is valid where the functions wgfl),...,wgi”{) satisfy

similar to (1) equations, namely (wg_l))’ = q(s)(wgfl)) where ¢(*) € P;[Z], 1 < s < m. This

is an upper bound on a function h(wgfl), . ,wgi"{)) € P;41 required in the theorem.

3. Lower bound on Pfaffian function.

(41) (4m)

Now we proceed to proving a lower bound on |h(w;iy,...,w;)7")| required in the

(41) wlim)

theorem. Firstly, we consider the case when w;y'/, -+ ,w;)]" are algebraically indepen-

dent over P;. Assume that the required lower bound is wrong, so |h(w£;|7_11), . 5;17_"{))| =

(expU*t D (p,))~! for all the polynomials p,. Then we say that the function h(wgfl), e Ej_”{))

is small. Also we assume that m is the least possible with this property. Finally, without

loss of generality one can assume that the polynomial h is irreducible over P;.

As the derivative (h(wgill), e Ei"{))) € Pi11 is a Pfaffian function [Kh], it should
be also small. One can represent (h(wgill), Ej_”{))) Y, =5 g (w 5;17_1)) =

1<s<m awl+1

g(w Ej_ll), e ,wgi"{)) for a certain polynomial g € P;[Y7, -+ Y]

If i1 g in the ring P;[Y7,- - ,Y},] then there exist polynomials hy, gy € Pi[Y1, -+, Y]
such that 0 £ hhy + gg1 € B;[Y1, -+ ,Y,,—1] since h is irreducible. But then the function
(hh1 + ggl)(wgill), e ,wgi"{_l)) is small, applying the remark at the end of the section 2

to the polynomials hy, g1, that contradicts to the minimality of the choice of m.

Now suppose that ¢ = hgo where go € Pi[Y7, -+ ,Y,,]. Consider any 1 < s < m for
which degz(q(s)) < 1, then degwgﬁ) (aj(’zrsl) q<8>(w§;’:f)> < degwgfl)(h(wgfl),--- 5;17_”{)))



and as deg, (.) (a oa ) (w “‘f)) < deg, ) (W), wily))) for every ¢ # s, hence
Wity w Wity
(J )

w; 'y does not occur in the polynomial go(wgill), e Ei”{)) If for some 1 < s < m deg,(¢"*)

> 2 then lemma implies that |w(‘7 )| < expl )(pg) for an appropriate polynomial pg.

() i) () <h<w,+1,- wip)))’
Therefore |go(w;y, - w7 )| < exp'”(pio) for a certain pio. Thus, | D |

z-|—17 ’ z-|—1

<exp<i><plo>,hence|1og|h<w§;’:f>,--- W] | < exp® (pyy) and |h(w 5;’:3,--- widm)| -

(51) (Jm)

1y, wy) s small

(41) (Jm)

i1 U)H_l are

1 ~1. This contradicts to the assumption that h(w

(expt(p11))

and proves the required in the theorem lower bound in the case when w

algebraically independent over P;.
(1) (je)

In the general case choose some transcendental over P; basis (let it be w;{, -+, w;i

(1) (4m)

without loss of generality) among w; ', - ,w;}]". Then there exists a polynomial ¢(Z) =

S 0zt ¢ Pi[wg‘_ij_ll), e Eil)][Z] where the coefficients t(©) € P; [wgfl), e ,wgfl)], 0<
0<I<K

¢ < K and t(© # 0, such that t(h(wgill), ,wgi”{))) = 0. Since we have proved that

1O = (explt1(p12))™" and by lemma and remark after it [t(9] < (exp(it1)(p13)), 0 <

{ < K for a certain pi2, we obtain that |h(w£;|7_11), o 5;17_"{))| - (exp(i"i'l)(plz))_z.

This completes the proof of the inductive step in the proof of the theorem (see the

beginning of the section 2) because any element in P;j1q can be represented as a quotient

h(l)( (1) . wginlz))/h(Z)( (]1) (]m) (j1) (Jrm)

Wiy, , i1, wiy’) for some elements wl, - will € Pigg

satisfying the equations of the kind (1) (w 5;17_1)) = ¢\ (w); (Js )) 1 < s < m and for some

polynomials R, h(?) € P;[¥7, -+ ,Y;,]. The theorem is proved.
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