
DEVIATION THEOREMS FOR PFAFFIAN SIGMOIDSD. Yu. GrigorievAbstract. By a Pfa�an sigmoid with a depth d we mean a circuit with d layers in which rationaloperations are admitted at each layer, and to jump to the next layer one solves an ordinary di�erentialequation of the type v0 = p(v) where p is a polynomial with the coe�cients being the functions computedat the previous layers of the sigmoid. Thus, Pfa�an sigmoid computes Pfa�an functions (in the sense ofA. Khovanskii). The deviation theorem is proved which states that for a real function 0 6� f computed by aPfa�an sigmoid with a depth (or parallel complexity) d there exists an integer n such that the inequalities(exp (� � � ( exp (jxjn) � � � )�1 � jf(x)j � exp (� � � ( exp (jxjn) � � � ) hold for all jxj � x0 for a certain x0,where the iteration of the exponential function is taken d times. One can treat the deviation theorem asan analogue of the Liouvillean theorem (on algebraic numbers) for Pfa�an functions.IntroductionUnder Pfa�an sigmoid (cf. [MSS], [G] ) with a depth d we understand a computationalcircuit having d layers such that at each layer the rational operations are admitted andfor a jump to (i + 1)-th layer, computing a function wi+1 : R ! R at (i + 1)-th layeris admitted, being a solution of a di�erential equation of the �rst order w0i+1 = p(wi+1)(cf. [Kh] ) where p is a polynomial with the coe�cients computed at the previous layersof the sigmoid (see (1) and the section 1 for the exact de�nitions). In particular, a jumpcould be made by taking exp or log of a function computed at previous layers, this kind ofPfa�an sigmoids are called elementary and were considered in [G], where more generallythe sigmoids were introduced in which for a jump to the next layer one can substitute afunction from a previous layer into a solution of a linear ordinary di�erential equation withthe polynomial coe�cients, thus, into exp or log, in particular. Another particular caseof elementary sigmoids are \standard" sigmoids (see [MSS] ) where the jump is made byapplying the function (1 + exp(�x))�1. So, a function computed at (i + 1)-th layer of asigmoid introduced in [G], satis�es a linear ordinary di�erential equation with the coe�-cients from the previous layers 1; : : : ; i. In the present paper the corresponding di�erentialAMS subject classi�cation: 68C25.Key words and phrases: pfa�an sigmoid, deviation theorems, parallel complexity.Typeset by AMS-TEX



equation could be non-linear, but of the special form (see (1) below), providing that thecomputed functions are Pfa�an (see [Kh] ).The main result (see the theorem in the section 1) states that two di�erent functionsf1; f2 : R ! R computed by a Pfa�an sigmoids with a depth (or parallel complexity) dcannot be too close to each other, namely (exp(� � � (exp p(x) � � � )))�1 � j(f1 � f2)(x)j �exp(� � � (exp p(x))) for a suitable polynomial p 2 R[x] and for all x � x0 for some x0 2 R,where the number of iterations of the exponential function equals to d. This type of theresults was called in [G] the deviation theorem where they were proved for the sigmoidsintroduced in [G] (cf. above). Also the deviation theorem could be treated as an analogueof Liouvillean theorem on the bound on the di�erence of two (di�erent) algebraic numbers,for the functions computed by Pfa�an sigmoids. In particular, it gives a lower bound onthe approximation of a function computed by a Pfa�an sigmoid by means of a rationalfunction (see the corollary in the section 1). On the other hand, one could interpret thetheorem and the corollary as lower bounds on the depth (so, parallel complexity) of aPfa�an sigmoid, computing a function, provided that it has a rather good approximationby a \simple" (for example, rational) function.The proof of the theorem is conducted by induction on the depth of a sigmoid. In thesection 2 an upper bound on a function computed by a Pfa�an sigmoid is ascertained (seethe lemma), in the section 3 a lower bound and thus the inductive step are proved.1. Pfa�an sigmoids and di�erential �elds.Denote the �eld P0 = R(X), then by induction on i the �eld Pi+1 is generated overPi by all the functions w(j)i+1 : R ! R (maybe having a �nite number of singularities)satisfying �rst-order nonlinear di�erential equations of the form�w(j)i+1�0 = q �w(j)i+1� (1)where a polynomial q(Z) 2 Pi[Z]. 2



According to [Kh] any function f 2 Pi, being Pfa�an, has a �nite number of sin-gularities and roots (for i = 1 see also [B] ). Hence for every two functions f1; f2 2Pi; f1 6= f2 the di�erence (f1 � f2)(x) is either positive or negative everywhere on aninterval x 2 [x0;1) for a certain x0 2 R, we write f1 � f2 or f1 � f2 respectively. Byp1; p2; � � � 2 R[X] we'll denote the polynomials with the positive leading coe�cients. Byexp(i) = exp(� � � (exp) � � � ) we denote the iteration of the exponential function i times.Obviously exp(i)(p1); (exp(i)(p1))�1 2 Pi. Now we are able to formulate the main resultof the paper (cf. [G] ).Theorem. For any function 0 6� f 2 Pi there exists a polynomial p1 such that(exp(i) p1)�1 � jf j � exp(i) p1:The theorem will be proved in the next two sections, now we indicate the connections withthe sigmoids (cf. [MSS] ). Under a Pfa�an sigmoid with the depth d we understand acomputations consisting of d layers such that a function w(j)i+1 at (i+1)-th layer satis�es anequation (1) where the coe�cients q`; 0 � ` � n of the polynomial q(Z) = P0�`�n q`Z` arethe rational functions in the functions of the form w(j1)i computed at the previous (1; : : : ; i)layers of the sigmoid (cf. [G] ). Thus, at each layer of the Pfa�an sigmoid the rationaloperations are admitted and the jump from the previous layer to the next one is doneby solving an equation (1). Thus, inducion on i shows that a function w(j)i+1 computed at(i + 1)-th layer of a Pfa�an sigmoid belongs to Pi+1.In [G] the elementary sigmoids were considered where the function w(j)i+1 was obtainedas either w(j)i+1 = exp(f1=f2) or w(j)i+1 = log(f1=f2) where f1; f2 were the polynomials in thefunctions of the form w(j1)i computed at the previous (1; : : : ; i) layers of the elementarysigmoid. Evidently, an elementary sigmoid is a particular case of Pfa�an sigmoids. In itsturn, so-called \standard" sigmoid where the jump from the previous layers to the nextone is ful�lled by applying the gate function (1+ exp(�x))�1 ( [MSS] ) is a particular caseof the elementary sigmoids. 3



An important question, how good one can approximate a function computed by aPfa�an sigmoid by means of a rational function (cf. [G] ).Corollary. If a function wd 2 Pd is computed by a Pfa�an sigmoid with a depth d thenfor any rational function r 2 P0 holds jwd � rj � (exp(d)(p2))�1 for a suitable polynomialp2, unless wd = r.2. Upper bound on Pfa�an function.We start proving the theorem by induction on i. The base of induction for P0 is obvious,let us proceed to the inductive step. In the present section we'll prove the required upperbound on the function w(j)i+1 (see (1)).Assume by inductive hypothesis the coe�cients q` 2 Pi; qn 6= 0 of the polynomialq satisfy the following inequalities (exp(i)(p2))�1 � jq`j � exp(i)(p2); 0 � ` � n for anappropriate polynomial p2.If jw(j)i+1j � 4(exp(i)(p2))2 is valid, the required upper bound is proved. Suppose thecontrary. Then12(exp(i)(p2))�1 � �����qn + qn�1w(j)i+1 + � � � + q0(w(j)i+1)n ����� = ����� (w(j)i+1)0(w(j)i+1)n ����� � exp(i)(p2) + 1If n = 0 then jw(j)i+1(x)j � C0 + xRx0 (exp(i)(p2) + 1) � exp(i)(p3(x)) for su�ciently largex � x0 and suitable polynomial p3 and C0 2 R. If n � 2 then j(w(j)i+1(x))�n+1j �(n � 1) 1Rx 12 (exp(i)(p2))�1 � (exp(i)(p4(x)))�1 for su�ciently large x and a suitable poly-nomial p4, therefore jw(j)i+1j � (exp(i)(p4)). Finally, if n = 1 then log jw(j)i+1(x)j � C1 +xRx0 (exp(i)(p2) + 1) � exp(i)(p5(x)) for su�ciently large x � x0 and suitable polynomial p5and C1 2 R, therefore jw(j)i+1j � exp(i+1)(p6) for a suitable polynomial p6.We summarize the proved upper bound in the following lemma (for i = 0 one can �ndits proof in [B] ). 4



Lemma. Assume the statement of the theorem is proved for Pi and w(j)i+1 satis�es (1)where deg(q) = n. Thena) if n = 0 or n � 2 then jw(j)i+1j � exp(i)(p7)b) if n = 1 then jw(j)i+1j � exp(i+1)(p7)for an appropriate polynomial p7.Remark. For any polynomial h 2 Pi[Y1; : : : ; Ym] the similar upper bound as in the lemmajh(w(j1)i+1 ; : : : ; w(jm)i+1 )j � exp(i+1)(p8) is valid where the functions w(j1)i+1 ; : : : ; w(jm)i+1 satisfysimilar to (1) equations, namely (w(js)i+1 )0 = q(s)(w(js)i+1 ) where q(s) 2 Pi[Z]; 1 � s � m. Thisis an upper bound on a function h(w(j1)i+1 ; : : : ; w(jm)i+1 ) 2 Pi+1 required in the theorem.3. Lower bound on Pfa�an function.Now we proceed to proving a lower bound on jh(w(j1)i+1 ; : : : ; w(jm)i+1 )j required in thetheorem. Firstly, we consider the case when w(j1)i+1 ; � � � ; w(jm)i+1 are algebraically indepen-dent over Pi. Assume that the required lower bound is wrong, so jh(w(j1)i+1 ; : : : ; w(jm)i+1 )j �(exp(i+1)(p`))�1 for all the polynomials p`. Then we say that the function h(w(j1)i+1 ; � � � ; w(jm)i+1 )is small. Also we assume that m is the least possible with this property. Finally, withoutloss of generality one can assume that the polynomial h is irreducible over Pi.As the derivative (h(w(j1)i+1 ; � � � ; w(jm)i+1 ))0 2 Pi+1 is a Pfa�an function [Kh], it shouldbe also small. One can represent (h(w(j1)i+1 ; � � � ; w(jm)i+1 ))0 = P1�s�m @h@w(js)i+1 � q(s)(w(js)i+1 ) =g(w(j1)i+1 ; � � � ; w(jm)i+1 ) for a certain polynomial g 2 Pi[Y1; � � � ; Ym].If h - g in the ring Pi[Y1; � � � ; Ym] then there exist polynomials h1; g1 2 Pi[Y1; � � � ; Ym]such that 0 6� hh1 + gg1 2 Pi[Y1; � � � ; Ym�1] since h is irreducible. But then the function(hh1 + gg1)(w(j1)i+1 ; � � � ; w(jm�1)i+1 ) is small, applying the remark at the end of the section 2to the polynomials h1; g1, that contradicts to the minimality of the choice of m.Now suppose that g = hg0 where g0 2 Pi[Y1; � � � ; Ym]. Consider any 1 � s � m forwhich degZ(q(s)) � 1, then degw(js)i+1 � @h@w(js)i+1 q(s)(w(js)i+1)� � degw(js)i+1 (h(w(j1)i+1 ; � � � ; w(jm)i+1 ))5



and as degw(js)i+1 � @h@w(j`)i+1 q(`)(w(j`)i+1)� � degw(js)i+1 (h(w(j1)i+1 ; � � � ; w(jm)i+1 )) for every ` 6= s, hencew(js)i+1 does not occur in the polynomial g0(w(j1)i+1 ; � � � ; w(jm)i+1 ). If for some 1 � s � m degZ(q(s))� 2 then lemma implies that jw(js)i+1 j � exp(i)(p9) for an appropriate polynomial p9.Therefore jg0(w(j1)i+1 ; � � �; w(jm)i+1 )j � exp(i)(p10) for a certain p10. Thus, j (h(w(j1)i+1 ;��� ;w(jm)i+1 ))0h(w(j1)i+1 ;��� ;w(jm)i+1 ) j� exp(i)(p10), hence j log jh(w(j1)i+1 ); � � � ; w(jm)i+1 j j � exp(i)(p11) and jh(w(j1)i+1 ; � � � ; w(jm)i+1 )j �(exp(i+1)(p11))�1. This contradicts to the assumption that h(w(j1)i+1 ; � � � ; w(jm)i+1 ) is smalland proves the required in the theorem lower bound in the case when w(j1)i+1 ; � � � ; w(jm)i+1 arealgebraically independent over Pi.In the general case choose some transcendental over Pi basis (let it be w(j1)i+1 ; � � � ; w(js)i+1without loss of generality) among w(j1)i+1 ; � � � ; w(jm)i+1 . Then there exists a polynomial t(Z) =P0�`�K t(`)Z` 2 Pi[w(j1)i+1 ; � � � ; w(js)i+1 ][Z] where the coe�cients t(`) 2 Pi[w(j1)i+1 ; � � � ; w(js)i+1 ]; 0 �` � K and t(0) 6� 0, such that t(h(w(j1)i+1 ; � � � ; w(jm)i+1 )) � 0. Since we have proved thatjt(0)j � (exp(i+1)(p12))�1 and by lemma and remark after it jt(`)j � (exp(i+1)(p12)); 0 �` � K for a certain p12, we obtain that jh(w(j1)i+1 ; : : : ; w(jm)i+1 )j � 12 (exp(i+1)(p12))�2.This completes the proof of the inductive step in the proof of the theorem (see thebeginning of the section 2) because any element in Pi+1 can be represented as a quotienth(1)(w(j1)i+1 ; � � � ; w(jm)i+1 )�h(2)(w(j1)i+1 ; � � � ; w(jm)i+1 ) for some elements w(j1)i+1 ; � � � ; w(jm)i+1 2 Pi+1satisfying the equations of the kind (1) (w(js)i+1 )0 = q(s)(w(js)i+1 ); 1 � s � m and for somepolynomials h(1); h(2) 2 Pi[Y1; � � � ; Ym]. The theorem is proved.
6



BIBLIOGRAPHY[B] Bellman, R., Stability theory of di�erential equations. McGraw-Hill Book Co., 1953..[G] Grigoriev, D., Deviation theorems for solutions of linear ordinary di�erential equations and appli-cations to lower bounds on parallel complexity of sigmoids, to appear.[Kh] Khovanskii, A., Fewnomials, Transl. Math. Monogr. AMS, 88 (1991).[MSS] Maass, W., Schnitger, G., Sontag, E., On the computational power of sigmoid versus booleanthreshold circuits, Proc. 32 FOCS, IEEE, (1991), pp. 767{776.Departments of Computer Science and MathematicsPenn State UniversityState College, PA 16802 USAOn leave fromMathematical InstituteFontanka 27St. Petersburg 191011 RUSSIA

7


