NC solving of a system of linear ordinary differential
equations in several unknowns

D. GRIGORIEV

An NC algorithm is described for reducing a system of linear ordinary differential

equations in several unknowns to the standard basis form

INTRODUCTION

We consider a problem of solvability of a system of linear ordinary differential equations

in several unknowns
E Ll‘ju]‘ = b,
J

where b, € Q(X) and L;; = > fk% are linear ordinary differential operators with the
rational coefficients fr € Q(X). We consider a solvability of the system in the unknowns
u; in the differential closure of C(X) (in fact, as we deal with the linear operators it is
equivalent to the solvability in Picard-Vessiot closure of C(X)) (see [K]), in which any
(resp. linear) ordinary differential equation has a solution. In other words, solvability
in Picard-Vessiot closure means that the system cannot be brought to a contradiction by
equivalent transformations over the ring R = C(X) [%] of the linear differential operators,

or more precisely, that the ideal in the ring of differential polynomials in {u;}, generated
by the differential polynomials {E L;ju; —b;}, differs from the unit one.

Remark that this problem is szarticular case of the problem of solvability (over differ-
ential closure) of a system of non-linear ordinary differential equations in several unknowns
(more general, a quantifier elimination problem for these systems), for which an algorithm
with elementary complexity (more precisely, double-exponential) was designed in [G87].

In the present paper we deal with a linear fragment of this general problem and describe
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for it an algorithm with a considerably better (than for the general problem) complexity,
namely from the complexity class NC, i.e. with polynomial time and polylog depth (par-
allel time), moreover the algorithm produces a “triangular” basis for the space of solutions

of the system.

A close problem to the one under consideration is solving linear system over the ring
R of differential operators for which an algorithm was designed in [G91] (even for the case
of the differential operators with the coefficients in many variables from Q(Xy,---, X,)).
The problem considered in the present paper is more subtle from the point of view of the
allowed transformations of a system since for the sake of equivalence we may not multiply
the equations of the system by the differential operators, as we could do in the case of the

linear systems over R (see [G91]).

Therefore, we need to carry out elementary transformations with the matrix over R
of the system (see section 1 below), in order to reduce the matrix to a standard basis
form which is a particular case of a differential standard basis [G], [O], [C] for partial
differential operators. Since the ring R is non-commutative (some of its properties one can
find in e.g. [B]), the difficulties arise in estimating the standard basis form of the matrix
over R unlike the case of the matrices over the (euclidean) rings of integers or univariate
polynomials, because for the latter one exploits the notion of the determinant. But still
we are able (see lemma 4) to bound the size of a quasiinverse of a matrix over R (for
an inversible matrix a similar bound follows from the bound in [O] obtained for a more
general situation of nonlinear operators) and define the rank of a matrix over R (see [J],
also Lemma 5 below). To replace the notion of the determinant we consider (see section
2 below) the order [R] of a system of linear differential operators, i.e. of a matrix over
R, being the dimension over C(X') of the factor of the free R-module over the submodule
generated by the rows of the matrix. We prove that the order is additive with respect to
the product of the square matrices (Lemmas 6, 7). Relying on Lemma 7, on the analogue

of Bezout’s theorem for differential equations [R], [Ko] (see also Lemma 9 below) and
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on a bound on a quasiinverse (see Lemma 4 in section 1), we estimate in section 3 the
size of the standard basis form of the matrix (see Lemma 10) using the construction of a
minimal element in a module with respect to a non-archemedian form (the order). In the
last section 4 we give an algorithm from NC for constructing the standard basis form of
a matrix, applying the bounds achieved in section 3. This provides a desired algorithm
from NC for testing solvability of a system of linear ordinary differential equations and
producing a “triangular” basis for the space of solutions of a system (see the theorem at

the end of the paper).

Let us underline that the main purpose of this paper is to describe an algorithm
with the low complexity (NC) for an important problem in symbolic computations in
systems of linear differential equations. The needed auxiliary bounds from sections 1,2
(unfortunately, nowhere written explicitely) could be obtained without difficulties by the

experts in differential algebra and they are included to make the paper self-contained.

Mention also that the problem of solving a single linear ordinary differential equation
in one unknown leads to the problem of factoring of the equation, for the latter problem
an algorithm was proposed in [G88]. A slight generalization of this problem is solving
a first-order system of linear ordinary differential equations, an algorithm for reducing a
matrix of this system to the block-triangular form was exhibited in [G90]. A connection
of the first-order linear systems with the general linear systems considered in the present

paper, is discussed in section 4 below.

1. Transformations and the rank of matrices over the ring of linear differ-

ential operators.

Denote by D = %, R = C(X)[D] , and by F a Picard-Vessiot closure (see [K]), i.e.

0<i<n
the leading coeflicient (c(L) = f, # 0 has n linearly independent over C solutions in F,

any linear differential equation L = ( S £iD' | u = 0 with the coefficients f; € F and

and furthermore, a subfield of constants of F (i.e. the elements ¢ € F such that Dc = 0)

coincides with C.



We consider a problem of solvability in F of a system of linear ordinary differential
equations in several unknowns
> Lijuj=b, 1<i<k (1)
1<
where L;; € Q(X)[D], b € Q(X) and the solutions uy,--- ,u, should be in F*. For an
operator L = E fiD' € R with le(L) = f, # 0 denote n = ord L and by deg L
denote <Z:< d(:fgfnfi. Consider k x s matrix £ = (L;;), assume that ord £ <r, deg £ <
0<i<n

d, deg(b;) <d, ie. ord L;; <r, deg L;; <d for all 7,j. Assume also that the bit-size of

each (rational) coefficient of L;;,b; does not exceed M.

Consider now k x s matrix A = (A;;) with the entries 4;; € R, assume that ord (4;;) <
r. As the ring R is left-euclidean, making elementary transformations over R with the
rows, one can reduce A to the following standard basis form, see [J] (it is a particular case

of a characteristic set [R] which is considered in [R] in nonlinear case, or of a differential

standard basis [C], [G], [O])

0 ... 0Qip,
0 ... ... 0Qy,
0 0Q3p3 *

o ... OQz’p[
O O

where p1 < p2 < -+ < py, all the rows starting with (¢ 4+ 1)-th vanish . Let us admit also

as an elementary transformation the multiplication (from the left) of a row by a nonzero
element from C(X). In other words, there is k& x k matrix B = (B;;) over R being a
product of elementary matrices such that BA = ). The rows of @) provide a triangular

basis of a left R-module R¥ A C R® generated by the rows of the matrix A.

The next lemma and the corollary one can deduce from the results in [J].

LEMMA 1. A square k X k matrix A over R is inversible from the left if and only if A

equals to a product of elementary matrices.



COROLLARY. A square matrix is inversible from the left if and only if it is inversible from
the right. The left inverse is unique and coincides with the right inverse. Thus, one could

talk simply about inversible matrices.

We say that k X s matrix A is quasiinversible from the left if there exists s X k matrix G

Cy @)

over R such that GA = ( ) ) is a diagonal matrix with nonzero diagonal elements
@) Cs

Cy,...,C; (in a similar way one could define quasiinversibility from the right).

LEMMA 2. A is quasiinversible from the left iff the dimension dim@(X)(RS/RkA) < oo of
the factor-module is finite.

& @)

Proof. f GA = ( ) and ord C; = rq,...,ord Cy = r, then the vectors H(egj)) =

o«
I(0,---,0,D7,0,---,0) € R®/RFA for 1 <i < s, 0<j <r; constitute a generating set
_‘/_/

over C(X) of R-module R*/R*A, where II : R® — R*/R¥A, is the natural projection,

hence dim@(X)(RS/RkA) <ri+---+rs (a better inequality see below in Lemmas 9, 10).

Let dim@(X)(RS/RkA) < 00. Then one can reduce A by elementary transformations
of the rows to standard basis form (2) and if ¢ < s then the infinite family of vectors
H(ej(go)), H(e]gl)), ..., where 1 < p < s is distinct from pq,...,ps, are independent over

C(X) and we get a contradiction. Therefore, { = s. One can show that there exists s X k
@)

Ch
matrix G over R such that GQ = ( : ) with nonzero C1,...,Cs. Indeed, multiply

O .
the first row of @) by a suitable element 0 # «; € R such that a1Q12 = $1Q22 for a certain

f1 € R (this is possible since R is an Ore domain [B]), then subtract from the first row the
second one multiplied by 1, thereby we’ll achieve vanishing the entry with the coordinates
(1, 2). Continuing in a similar way, we’ll make all the entries in the first row (except the
diagonal entry) to be zeroes. Then we proceed to the second row and so on. As a result

we’ll get a diagonal matrix which shows that A is quasiinversible from the left.

Observe that when dim@(X)(RS/RkA) < 00, the latter dimension coincides with the

order of the system Au = 0 [R]. In [R] the order was introduced for a prime ideal in the
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ring of differential polynomials, we use it for a linear ideal generated by the rows of A.

The next lemma was actually proved in [G91].

LEMMA 3. A is quasiinversible from the left iff there does not exist a vector 0 # v € R?
such that Av = 0. For (s — 1) X s matrix A one can select 0 # v € R® such that Av = O
and ord (v) < (s — 1)r + 1.

& @)

Proof. If A is quasiinversible from the left and GA = ( ) then Av # 0 for any

o Cs
0 # v € R® as R has no divisors of zero ( [B]).

Conversely, let Av #£ 0 for any 0 # v € R?®. Let us show that in the standard basis form
(2) ¢ = s. Suppose { < s. Consider the C(X )-space R¥" of the vectors (ay,...,as) € R®
for which ord (ay),...,ord (as) < N. Let ord (Q;;) < R for all ¢, j. Then the composition

of the mapping @ : v — Qv with the restriction onto first ¢ coordinates (notice that

others are zeroes, see (2)) maps Q : RN — RENTE - Ag dime x) R5N = s N, for

N = {fi} + 1 we get that dimg(x, RN > dimgy x) RENFR and therefore, there exists
a vector 0 # v € R*Y such that Qv = 0, hence BAv = 0 and thus Av = 0 since B is
a product of elementary matrices (cf. Lemma 1). The obtained contradiction with the
supposition justifies the equality ¢ = s. Then one can show that A is quasiinversible from
the left. This proves the first statement of the lemma. For the second statement follow

the latter proof considering instead of Q the mapping A : R%M — Rs—LiMtord (4) {4

M=(s—1)ord A+ 1.

The next lemma was proved in [G91].

LEMMA 4. A square s X s matrix A is quasiinversible from the left iff A is quaisiinversible
Cy @)

from the right. In this case there exists G for which GA = ( ‘ ) with ord (G) <
@) Cs

(s —1)r+1.

Proof. Let A be quasiinversible from the left. Then for an appropriate matrix B, being a

6



Qll Q12

‘ ) where Q11 -+ Qss # 0 (see
O Qs

product of elementary matrices, we have BA = (
(2) and the proof of Lemma 2). Let us show that for any vector 0 #w € R* holds w A # 0,

this would imply that A is quasiinversible from the right because of Lemma 3. Assume
that 0 = wA. Then 0 = wA = (wB~'Q) and we get a contradiction, which justifies that

A 1s quasiinversible from the right.

In order to prove the necessary bound on G, consider for each 1 < j < s a matrix A
obtained from A by deleting its j-th column. Lemma 3 shows that there exists a vector
0 # g € R® such that ¢ AU = 0 and ord ¢ < (s — 1)r + 1. As a matrix G take a

matrix with j-th row equal to ¢(¥).

Notice that when A is inversible, lemma 4 follows from the theorem 6 in [O], where
a similar bound was proved for a much more general situation of an inversible nonlinear

differential map.

Thus, for a square matrix A we can say that it is quasiinversible without specifying from
the left or from the right. Notice (see also [G91] ) that a square matrix A is quasiinversible

iff its Dieudonné determinant ( [A]) does not vanish.

Define the rank rk(A) as a maximal ¢ such that there exists ¢ x { quasiinversible
submatrix of A (cf. [J]), the following lemma can be deduced from the results in [J].
LEMMA 5. rk(A) coincides with

a) ( in the standard basis form (2);

b) the maximal number of the columns of A being R-linearly independent;

¢) the maximal number of the rows of A being R-linearly independent.

2. Some properties of the order of a system of linear differential operators.

For brevity we adopt the notation dim(R*/R¥A) = dim@(X)(RS/RkA).
LEMMA 6. For any m X k matrix B and k X s matrix A over R
dim(R*/R™BA) < dim(R¥/R™B) 4 dim(R*/RF A)
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If A is quasiinversible from the right then this inequality turns to be the equality.

Proof. Consider the natural projections

I, : R — R*/RFA, T, : R¥ — R¥/R™B, Iy : R* — R*/R™BA.

Let uy,...,uy € RF be such that Iy(uy),...,Ha(u,) constitute a basis over C(X) of
RE/R™B, and vy,...,vs € R® be such that II;(vy),...,II;(vs) constitute a basis over
C(X) of R®/R¥ A (note that v or § could be infinite). Let us prove that II3(vy),. .., 3(vs),
O3(uiA),. .., I5(uyA) generate R°/R™BA over C(X) and constitute a basis when A is

quasiinversible from the right. Indeed, let for some elements fi,..., fs, ¢1,...,9, € C(X)
and a vector (31,...,0m) € R™ we have fivqg + -+ + fsvs + (g1ur + -+ + gyuy)A =
(f1,-+ ,Bm)BA, then f1 = --- = fs = 0. If A is quasiinversible from the right then

giug + -+ gyuy = (P, -+, Bm ) B by virtue of Lemma 3, hence g1 = --- = g, = 0.

On the other hand, for any vector w € R?® there exist fi,...,fs € C(X) and a vector
v € R¥ for which w = fivi+---+ fsvs +vA. Then v = gyuy +- -+ g4u~ +ubB for suitable
G1s---,9y € C(X), v € R™. Therefore w = fiv1+-- -+ fsvs +gru1 A+ -+ g u A+ uBA,
i.e. dim(R*/R™BA) <~ + 6= dim(R¥/R™B) + dim(R*/R*A).

In other terms we can reformulate what was proved above, saying that we have the

following exact sequence of C(X )-vector spaces
RY/R"B 5 R°/R™BA - R*/RFA — O

where a(v + R™B) = vA + R™BA and n(w + R"BA) = w + R¥A. In the case of

quasiinversible A the following sequence is exact:
O— R¥/R"B - R*/R"BA - R*/R¥A — O

LEMMA 7. Ifamatrix A is square then dim(R°/R™BA) = dim(R°/R™ B)+dim(R*/R*A)
Proof. If A is quasiinversible (see Lemma 4) then we use Lemma 6.
If A is not quasiinversible then dim(R°/R™BA) > dim(R*/R°A) = .
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Remark that as in the following example dim <R2 /R* < 1 11)>> =1, dim <R/R2 < 1 >> =

2

0 and for the product of these matrices dim <R/R2 <1—|—D

>> = 0, the inequality in Lemma

6 for rectangular matrices could be strict.

Cl *
LEMMA 8. a) For a triangular k x s (where k > s) matrix C = ( ) we have

O .
dim(R*/R¥C) = ord Cy + --- + ord C,, provided that Cy---C, # 0.

b) dim(R*/R*¥A) < oo iff { = s in the standard basis form (2). In this case
dim(R®/R¥A) = ord Q11 + -+ + ord Q..

c) When A is a square matrix then dim(R*/R°A) = dim(R*/AR?®), where in the right
side of the equality we regard R° as a right R-module.

d) A square matrix A is inversible iff dim(R°/R*A) = 0.

Proof. a) Is obvious.

b) The first statement one can find in the proof of Lemma 3. The second statement
follows from a) and the equality dim(R*/R*¥A) = dim(R*/R*Q).

¢) Because of Lemma 4 both left and right sides of the equality are finite or infinite
Q11 *
simultaneously. Assume they are both finite. Then BA = (

‘ ) (see (2)) where
@) Qs
B is a product of elementary matrices and Q11 -+ Qss # 0 (see b) ). For any s X s elemen-

tary matrix G we have dim(R*/R°G) = dim(R*/GR?) = 0, hence by Lemma 7 the same
is true for any inversible matrix (cf. Lemma 1), thus dim(R*/R°B) = dim(R*/BR?’) = 0.
a) implies that for the triangular matrix

Q11 *
Q = ( ) the equalities dim(R°/R°Q) = dim(R°/QR*) = ord Q11 + --- +

@) Qs
ord Qs hold, then Lemma 7 entails c).

d) follows from b) and Lemma 1.

The following lemma was proved in [R], p. 135 (see also [Ko]) in a more general form

for the order of a prime ideal in the ring of differential polynomials.

9



LEMMA 9. If k x s matrix A is quasiinversible from the left then dim(R*/R*A) <
max {ord a;; } + - -+ + max {ord a;s}.

3. Bounds on the standard basis form of a matrix over the ring of differen-

tial operators.

In this section we’ll estimate ord (@), ord (B) in the standard basis form (2) relying

on the results on the order from the section 2.

Take any s X s permutation matrix P, mapping P(p;) =1,...,P(p¢) = (, then BAP =
le
. Represent AP = (A;Ay) where k X { submatrix Ay consists of the

Qep, -
O O

first ¢ columns of AP, then by Lemma 5 rkA = rkA; = (. Complete A; by (k—{) columns
of the type (0,...,0,1,0,...,0)7 to k x k quasiinversible matrix (4; A3). Then
Q1P1

B(A143) = 0
Lpe
O *

Making several elementary transformations with the rows having indices bigger than ¢,

reduce the matrix at the right side to the triangular form

Q1P1 *

Q¢
By(A143) = T

041,041

O

(0)
kk
herewith B = <g;> where Bj is ¢ x k submatrix, By = <g;> and dim(Rk/RkB) =
dim(R*/R*¥By) = 0 (see Lemma 8 d)).

Moreover, making some elementary transformations with the rows, one can assume
w.Lo.g. that ord (Qi,) < ord (Qjp, ), ord (QV) < ord (QY) for all i < j.

By Lemmas 6, 7, 9 ord (Qup,) + -+ ord (Qup,) + ord (Q, 1) + - + ord (Q43)

= dim(R*/R¥A; A5) < max{ord A, } + -+ + max{ord 4;,,} < fr, hence ord (Q;p, ),
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ord (Qgg)) < lr. By Lemma 4 there exists k x k matrix G over R such that (41 4;) G =
Cy O

( e Ch )
Cy O

where Cy --- Cf # O0and ord (G) < (k—1)r+1, hence ord (C;) < kr+1. As By ( )
O Cr

Qipq *
= E G, we conclude that ord (By) < ({+k — 1)r + 1.
O QL
Observe that By A has the standard basis form similar to (2) (with the same “diagonal”

entries Qip,,...,Q¢p, and perhaps different other entries as we achieved the conditions

ord Qip, < ord Qj,, ord (Q4)) < ord (@), i <)

0 ... 0Qi,, *
0 ... 0Q2p,

B()A: : .
0o ... oo 0Qeyp,

O O

since rkA = (. Therefore ord (Q) < (¢ + k)r + 1. Let us summarize the proved in the

present section in the following lemma.

LEMMA 10. There exists an inversible matrix B such that BA = Q) has the standard

basis form (2) and moreover ord (B) < (s +k—1)r+ 1, ord (Q) < (s + k)r + 1.

4. NC algorithm for finding standard basis form of a matrix over the ring

of differential operators.

Let us design an algorithm which finds the standard basis form of a matrix in NC, 1.e.

polynomial time and with polylogarithmic depth (parallel complexity).

Join to the matrix A the unit matrix and denote the resulting k x (s 4+ k) matrix by

A = (AE). Obviously rkA = k (see Lemma 5). Therefore, the standard basis form of A
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equals to

0 ... 0Qip,

BiA=|0 ... ... ... 0Qy =* _

L

(see (2))

0 oo e 0Qk
where dim(R*/R*B;) = 0 (see Lemma 8).
Foreach1l <m < s+ kand 0 <j < (s+2k)r + 1 the algorithm tests, whether there
exists a vector w = (wy,...,wx) with ord (w) < (s+2k—1)r+1 (cf. Lemma 10) such that

the vector wA = (0,...,0,v,...) where ord v = j and the leading coefficient lc(v) = 1.
————

m

The latter condition can be written as a linear system 7,,, ; over Q(X) with k((s+2k—1)r+
2) unknowns being the coefficients of wq,...,wy in the powers of 1, D, ... , Dlst2k=1)r+1
and with at most (s 4 k)((s + 2k)r + 1) equations. As the entries of this linear system are
the rational functions from Q(X) with the degrees in X not exceeding d and with the size
of rational coefficients at most M, the algorithm can solve 7, ; in time (Mdskr)*™) with

the depth (parallel complexity) logo(l)(MdSkr) using [M].

As the rows of the matrix @ constitute a (triangular) basis of the left R-module R¥ A,
the system 7, ; could be solvable only for m = p1,..., pg. For each of these m = p; take

the minimal such j; for which 7, ;; is solvable. Lemma 10 implies that 7, ; is solvable for

j =ord Q;,,, hence j; <ord Q;,.. Take a solution W) = (wgi), e ,wg)) for 7,, ;;, and

denote by W k x k matrix with i-th row to be W, Then
0 ... 0Qip,
WA= *
0 ... ... 0Q,

I
O

where ord Qvi,pi = 7.
Let us prove that dim(R¥/R¥W) = 0. Denote by AO,QO,QVO the k& x k matrices

obtained from A,Q,@ respectively, by taking the submatrices formed by the columns
P1,...,pr. Then BiAg = Qq, WAy = QVO,
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Lemmas 7, 8 a) entail 0 = dim(R*/R*B;) = ord Q1 p, + - -+ord Qi ,, — dim(R*T*/RFA) >
ord Qvl,pl—l—- - 4ord ka,]?k_ dim(R*+T* Rk A) = dim(R* /RF¥W) > 0, therefore dim(R* /R¥W) =
0 and moreover ord Qvi,pi =ord Q;p;, 1 <1 < k. As WA has a desired standard basis

form (see (2)), we get the following lemma

LEMMA 11. There is an NC-algorithm, so running in time (Mdskr)*") with a depth

(parallel complexity) logo(l)(Md skr), which produces an inversible over R k X k matrix
0 ... 0Q1p,

W such that WA = | - * has the standard basis form.

0 o 0Quy,
@) @)

Now we get a criterium for solvability of a system (1). Namely, apply Lemma 11 to
b1
kx(s+1) matrix A = (L;; b; )i<i<k, 1<j<s, so the last column is (

by
(1) has a solution in the field F iff and only if p; < s (in other words p; # s + 1) and the

) . Then the system

standard basis form provides a “triangular” basis of the space of solutions of (1). Let us

summarize the obtained above in the following main result of the paper.

THEOREM. One can test solvability of a system (1) of linear differential equations in
several unknowns in the Picard-Vessiot closure F and find a “triangular” basis of the

space of solutions of (1) in NC complexity class, so with the time (Md skr)°") and with a
depth (parallel time) logo(l)(Md skr).

Observe that the space of solutions of a homogeneous system (1), so when by = --- =
by = 0, has a finite dimension (over C(X)) if and only if py = 1,...,p; = ( and { = s (for
k x s matrix A = (L,;), see above). In this case the standard basis form WA of the system
can be rewritten in the common first-order matrix form DY = HY (cf. [G90] ) where the
vector Y has coordinates uy, Duy, ..., D" " Yuy us, ..., D> Tuy, . uy, ..., DI "y, and
ji = ord Qvi,pi, 1 <1 < s, one could easily get the matrix H over Q(X) from the matrix
W A.
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