
NC solving of a system of linear ordinary di�erentialequations in several unknownsD. GrigorievAn NC algorithm is described for reducing a system of linear ordinary di�erentialequations in several unknowns to the standard basis formIntroductionWe consider a problem of solvability of a system of linear ordinary di�erential equationsin several unknowns Xj Lijuj = biwhere bi 2 Q(X) and Lij = Pk fk dkdxk are linear ordinary di�erential operators with therational coe�cients fk 2 Q(X). We consider a solvability of the system in the unknownsuj in the di�erential closure of C (X) (in fact, as we deal with the linear operators it isequivalent to the solvability in Picard-Vessiot closure of C (X)) (see [K] ), in which any(resp. linear) ordinary di�erential equation has a solution. In other words, solvabilityin Picard-Vessiot closure means that the system cannot be brought to a contradiction byequivalent transformations over the ringR = C (X) � ddX � of the linear di�erential operators,or more precisely, that the ideal in the ring of di�erential polynomials in fujg, generatedby the di�erential polynomials fPj Lijuj � big, di�ers from the unit one.Remark that this problem is a particular case of the problem of solvability (over di�er-ential closure) of a system of non-linear ordinary di�erential equations in several unknowns(more general, a quanti�er elimination problem for these systems), for which an algorithmwith elementary complexity (more precisely, double-exponential) was designed in [G87].In the present paper we deal with a linear fragment of this general problem and describeTypeset by AMS-TEX



for it an algorithm with a considerably better (than for the general problem) complexity,namely from the complexity class NC, i.e. with polynomial time and polylog depth (par-allel time), moreover the algorithm produces a \triangular" basis for the space of solutionsof the system.A close problem to the one under consideration is solving linear system over the ringR of di�erential operators for which an algorithm was designed in [G91] (even for the caseof the di�erential operators with the coe�cients in many variables from Q(X1; � � � ;Xn)).The problem considered in the present paper is more subtle from the point of view of theallowed transformations of a system since for the sake of equivalence we may not multiplythe equations of the system by the di�erential operators, as we could do in the case of thelinear systems over R (see [G91] ).Therefore, we need to carry out elementary transformations with the matrix over Rof the system (see section 1 below), in order to reduce the matrix to a standard basisform which is a particular case of a di�erential standard basis [G], [O], [C] for partialdi�erential operators. Since the ring R is non-commutative (some of its properties one can�nd in e.g. [B] ), the di�culties arise in estimating the standard basis form of the matrixover R unlike the case of the matrices over the (euclidean) rings of integers or univariatepolynomials, because for the latter one exploits the notion of the determinant. But stillwe are able (see lemma 4) to bound the size of a quasiinverse of a matrix over R (foran inversible matrix a similar bound follows from the bound in [O] obtained for a moregeneral situation of nonlinear operators) and de�ne the rank of a matrix over R (see [J],also Lemma 5 below). To replace the notion of the determinant we consider (see section2 below) the order [R] of a system of linear di�erential operators, i.e. of a matrix overR, being the dimension over C (X) of the factor of the free R-module over the submodulegenerated by the rows of the matrix. We prove that the order is additive with respect tothe product of the square matrices (Lemmas 6, 7). Relying on Lemma 7, on the analogueof Bezout's theorem for di�erential equations [R], [Ko] (see also Lemma 9 below) and2



on a bound on a quasiinverse (see Lemma 4 in section 1), we estimate in section 3 thesize of the standard basis form of the matrix (see Lemma 10) using the construction of aminimal element in a module with respect to a non-archemedian form (the order). In thelast section 4 we give an algorithm from NC for constructing the standard basis form ofa matrix, applying the bounds achieved in section 3. This provides a desired algorithmfrom NC for testing solvability of a system of linear ordinary di�erential equations andproducing a \triangular" basis for the space of solutions of a system (see the theorem atthe end of the paper).Let us underline that the main purpose of this paper is to describe an algorithmwith the low complexity (NC) for an important problem in symbolic computations insystems of linear di�erential equations. The needed auxiliary bounds from sections 1,2(unfortunately, nowhere written explicitely) could be obtained without di�culties by theexperts in di�erential algebra and they are included to make the paper self-contained.Mention also that the problem of solving a single linear ordinary di�erential equationin one unknown leads to the problem of factoring of the equation, for the latter probleman algorithm was proposed in [G88]. A slight generalization of this problem is solvinga �rst-order system of linear ordinary di�erential equations, an algorithm for reducing amatrix of this system to the block-triangular form was exhibited in [G90]. A connectionof the �rst-order linear systems with the general linear systems considered in the presentpaper, is discussed in section 4 below.1. Transformations and the rank of matrices over the ring of linear di�er-ential operators.Denote by D = ddX ; R = C (X)[D] , and by F a Picard-Vessiot closure (see [K] ), i.e.any linear di�erential equation L =  P0�i�n fiDi! u = 0 with the coe�cients fi 2 F andthe leading coe�cient `c(L) = fn 6= 0 has n linearly independent over C solutions in F ,and furthermore, a sub�eld of constants of F (i.e. the elements c 2 F such that Dc = 0)coincides with C . 3



We consider a problem of solvability in F of a system of linear ordinary di�erentialequations in several unknownsX1�j�s Lijuj = bi; 1 � i � k (1)where Lij 2 Q(X)[D]; bi 2 Q(X) and the solutions u1; � � � ; us should be in Fs. For anoperator L = P0�i�n fiDi 2 R with `c(L) = fn 6= 0 denote n = ord L and by deg Ldenote P0�i�n degX fi. Consider k� s matrix L = (Lij), assume that ord L � r; deg L �d; deg (bi) � d, i.e. ord Lij � r; deg Lij � d for all i; j. Assume also that the bit-size ofeach (rational) coe�cient of Lij ; bi does not exceed M .Consider now k�s matrix A = (Aij ) with the entries Aij 2 R, assume that ord (Aij ) �r. As the ring R is left-euclidean, making elementary transformations over R with therows, one can reduce A to the following standard basis form, see [J] (it is a particular caseof a characteristic set [R] which is considered in [R] in nonlinear case, or of a di�erentialstandard basis [C], [G], [O] )Q = 0BBBBBBB@0 : : : 0Q1p10 : : : : : : 0Q2p20 : : : : : : : : : 0Q3p3 �... . . .0 : : : : : : : : : : : : : : : 0Q`;p` : : :
 
 1CCCCCCCA (2)where p1 < p2 < � � � < p`, all the rows starting with (` + 1)-th vanish . Let us admit alsoas an elementary transformation the multiplication (from the left) of a row by a nonzeroelement from C (X). In other words, there is k � k matrix B = (Bij) over R being aproduct of elementary matrices such that BA = Q. The rows of Q provide a triangularbasis of a left R-module RkA � Rs generated by the rows of the matrix A.The next lemma and the corollary one can deduce from the results in [J].Lemma 1. A square k � k matrix A over R is inversible from the left if and only if Aequals to a product of elementary matrices. 4



Corollary. A square matrix is inversible from the left if and only if it is inversible fromthe right. The left inverse is unique and coincides with the right inverse. Thus, one couldtalk simply about inversible matrices.We say that k�s matrix A is quasiinversible from the left if there exists s�k matrix Gover R such that GA =  C1 
.. .
 Cs! is a diagonal matrix with nonzero diagonal elementsC1; : : : ; Cs (in a similar way one could de�ne quasiinversibility from the right).Lemma 2. A is quasiinversible from the left i� the dimension dimC(X)(Rs=RkA) <1 ofthe factor-module is �nite.Proof. If GA =  C1 
.. .
 Cs! and ord C1 = r1; : : : ; ord Cs = rs then the vectors �(e(j)i ) =�( 0; � � � ; 0;Dj| {z }i ; 0; � � � ; 0) 2 Rs=RkA for 1 � i � s; 0 � j < ri constitute a generating setover C (X) of R-module Rs=RkA, where � : Rs ! Rs=RkA, is the natural projection,hence dimC(X)(Rs=RkA) � r1 + � � �+ rs (a better inequality see below in Lemmas 9, 10).Let dimC(X)(Rs=RkA) < 1. Then one can reduce A by elementary transformationsof the rows to standard basis form (2) and if ` < s then the in�nite family of vectors�(e(0)p ); �(e(1)p ); : : : , where 1 � p � s is distinct from p1; : : : ; p`, are independent overC (X) and we get a contradiction. Therefore, ` = s. One can show that there exists s � kmatrix G over R such that GQ =  C1 
...
 Cs! with nonzero C1; : : : ; Cs. Indeed, multiplythe �rst row of Q by a suitable element 0 6= �1 2 R such that �1Q12 = �1Q22 for a certain�1 2 R (this is possible since R is an Ore domain [B]), then subtract from the �rst row thesecond one multiplied by �1, thereby we'll achieve vanishing the entry with the coordinates(1, 2). Continuing in a similar way, we'll make all the entries in the �rst row (except thediagonal entry) to be zeroes. Then we proceed to the second row and so on. As a resultwe'll get a diagonal matrix which shows that A is quasiinversible from the left.Observe that when dimC(X)(Rs=RkA) < 1, the latter dimension coincides with theorder of the system Au = 0 [R]. In [R] the order was introduced for a prime ideal in the5



ring of di�erential polynomials, we use it for a linear ideal generated by the rows of A.The next lemma was actually proved in [G91].Lemma 3. A is quasiinversible from the left i� there does not exist a vector 0 6= v 2 Rssuch that Av = 0. For (s � 1) � s matrix A one can select 0 6= v 2 Rs such that Av = Oand ord (v) � (s� 1)r + 1.Proof. If A is quasiinversible from the left and GA =  C1 
. ..
 Cs! then Av 6= 0 for any0 6= v 2 Rs as R has no divisors of zero ( [B] ).Conversely, let Av 6= 0 for any 0 6= v 2 Rs. Let us show that in the standard basis form(2) ` = s. Suppose ` < s. Consider the C (X)-space Rs;N of the vectors (�1; : : : ; �s) 2 Rsfor which ord (�1); : : : ; ord (�s) < N . Let ord (Qij ) � R for all i; j. Then the compositionof the mapping Q : v ! Qv with the restriction onto �rst ` coordinates (notice thatothers are zeroes, see (2)) maps �Q : Rs;N ! R`;N+R. As dimC(X)Rs;N = sN , forN = h `Rs�`i + 1 we get that dimC(X) Rs;N > dimC(X) R`;N+R and therefore, there existsa vector 0 6= v 2 Rs;N such that Qv = 0, hence BAv = 0 and thus Av = 0 since B isa product of elementary matrices (cf. Lemma 1). The obtained contradiction with thesupposition justi�es the equality ` = s. Then one can show that A is quasiinversible fromthe left. This proves the �rst statement of the lemma. For the second statement followthe latter proof considering instead of �Q the mapping �A : Rs;M ! Rs�1;M+ord (A) forM = (s � 1)ord A+ 1.The next lemma was proved in [G91].Lemma 4. A square s� s matrix A is quasiinversible from the left i� A is quaisiinversiblefrom the right. In this case there exists G for which GA =  C1 
.. .
 Cs! with ord (G) �(s � 1)r + 1.Proof. Let A be quasiinversible from the left. Then for an appropriate matrix B, being a6



product of elementary matrices, we have BA =  Q11 Q12.. . . ..
 Qss! where Q11 � � �Qss 6= 0 (see(2) and the proof of Lemma 2). Let us show that for any vector 0 6= w 2 Rs holds wA 6= 0,this would imply that A is quasiinversible from the right because of Lemma 3. Assumethat 0 = wA. Then 0 = wA = (wB�1Q) and we get a contradiction, which justi�es thatA is quasiinversible from the right.In order to prove the necessary bound on G, consider for each 1 � j � s a matrix A(j)obtained from A by deleting its j-th column. Lemma 3 shows that there exists a vector0 6= g(j) 2 Rs such that g(j)A(j) = 0 and ord g(j) � (s � 1)r + 1. As a matrix G take amatrix with j-th row equal to g(j).Notice that when A is inversible, lemma 4 follows from the theorem 6 in [O], wherea similar bound was proved for a much more general situation of an inversible nonlineardi�erential map.Thus, for a square matrixA we can say that it is quasiinversible without specifying fromthe left or from the right. Notice (see also [G91] ) that a square matrix A is quasiinversiblei� its Dieudonn�e determinant ( [A] ) does not vanish.De�ne the rank rk(A) as a maximal ` such that there exists ` � ` quasiinversiblesubmatrix of A (cf. [J] ), the following lemma can be deduced from the results in [J].Lemma 5. rk(A) coincides witha) ` in the standard basis form (2);b) the maximal number of the columns of A being R-linearly independent;c) the maximal number of the rows of A being R-linearly independent.2. Some properties of the order of a system of linear di�erential operators.For brevity we adopt the notation dim(Rs=RkA) = dimC(X)(Rs=RkA).Lemma 6. For any m� k matrix B and k � s matrix A over Rdim(Rs=RmBA) � dim(Rk=RmB) + dim(Rs=RkA)7



If A is quasiinversible from the right then this inequality turns to be the equality.Proof. Consider the natural projections�1 : Rs !Rs=RkA; �2 : Rk ! Rk=RmB, �3 : Rs ! Rs=RmBA.Let u1; : : : ; u
 2 Rk be such that �2(u1); : : : ;�2(u
) constitute a basis over C (X) ofRk=RmB, and v1; : : : ; v� 2 Rs be such that �1(v1); : : : ;�1(v�) constitute a basis overC (X) of Rs=RkA (note that 
 or � could be in�nite). Let us prove that �3(v1); : : : ;�3(v�);�3(u1A); : : : ;�3(u
A) generate Rs=RmBA over C (X) and constitute a basis when A isquasiinversible from the right. Indeed, let for some elements f1; : : : ; f�; g1; : : : ; g
 2 C (X)and a vector (�1; : : : ; �m) 2 Rm we have f1v1 + � � � + f�v� + (g1u1 + � � � + g
u
)A =(�1; � � � ; �m)BA, then f1 = � � � = f� = 0. If A is quasiinversible from the right theng1u1 + � � �+ g
u
 = (�1; � � � ; �m)B by virtue of Lemma 3, hence g1 = � � � = g
 = 0.On the other hand, for any vector w 2 Rs there exist f1; : : : ; f� 2 C (X) and a vectorv 2 Rk for which w = f1v1+ � � �+f�v�+vA. Then v = g1u1+ � � �+g
u
+uB for suitableg1; : : : ; g
 2 C (X); u 2 Rm. Therefore w = f1v1+ � � �+f�v�+g1u1A+ � � �+g
u
A+uBA,i.e. dim(Rs=RmBA) � 
 + � = dim(Rk=RmB) + dim(Rs=RkA).In other terms we can reformulate what was proved above, saying that we have thefollowing exact sequence of C (X)-vector spacesRk=RmB ��! Rs=RmBA ��! Rs=RkA ! Owhere �(v + RmB) = vA + RmBA and �(w + RmBA) = w + RkA. In the case ofquasiinversible A the following sequence is exact:O! Rk=RmB ��! Rs=RmBA ��! Rs=RkA! OLemma 7. If a matrixA is square then dim(Rs=RmBA) = dim(Rs=RmB)+dim(Rs=RsA)Proof. If A is quasiinversible (see Lemma 4) then we use Lemma 6.If A is not quasiinversible then dim(Rs=RmBA) � dim(Rs=RsA) =1.8



Remark that as in the following example dim�R2=R2 � 1 11 D �� = 1, dim�R=R2 � 11 �� =0 and for the product of these matrices dim�R=R2� 21+D�� = 0, the inequality in Lemma6 for rectangular matrices could be strict.Lemma 8. a) For a triangular k � s (where k � s) matrix C =  C1 �.. .
 Cs! we havedim(Rs=RkC) = ord C1 + � � � + ord Cs, provided that C1 � � �Cs 6= 0.b) dim(Rs=RkA) < 1 i� ` = s in the standard basis form (2). In this casedim(Rs=RkA) = ord Q11 + � � �+ ord Qss.c) When A is a square matrix then dim(Rs=RsA) = dim(Rs=ARs), where in the rightside of the equality we regard Rs as a right R-module.d) A square matrix A is inversible i� dim(Rs=RsA) = 0.Proof. a) Is obvious.b) The �rst statement one can �nd in the proof of Lemma 3. The second statementfollows from a) and the equality dim(Rs=RkA) = dim(Rs=RkQ).c) Because of Lemma 4 both left and right sides of the equality are �nite or in�nitesimultaneously. Assume they are both �nite. Then BA =  Q11 �. ..
 Qss! (see (2)) whereB is a product of elementary matrices and Q11 � � �Qss 6= 0 (see b) ). For any s�s elemen-tary matrix G we have dim(Rs=RsG) = dim(Rs=GRs) = 0, hence by Lemma 7 the sameis true for any inversible matrix (cf. Lemma 1), thus dim(Rs=RsB) = dim(Rs=BRs) = 0.a) implies that for the triangular matrixQ =  Q11 �.. .
 Qss! the equalities dim(Rs=RsQ) = dim(Rs=QRs) = ord Q11 + � � � +ord Qss hold, then Lemma 7 entails c).d) follows from b) and Lemma 1.The following lemma was proved in [R], p. 135 (see also [Ko] ) in a more general formfor the order of a prime ideal in the ring of di�erential polynomials.9



Lemma 9. If k � s matrix A is quasiinversible from the left then dim(Rs=RkA) �maxi ford ai1g+ � � �+maxi ford aisg.3. Bounds on the standard basis form of a matrix over the ring of di�eren-tial operators.In this section we'll estimate ord (Q); ord (B) in the standard basis form (2) relyingon the results on the order from the section 2.Take any s�s permutation matrix P , mapping P (p1) = 1; : : : ; P (p`) = `, then BAP =0B@Q1p1 ... Q`p` :::
 
1CA. Represent AP = (A1A2) where k � ` submatrix A1 consists of the�rst ` columns of AP , then by Lemma 5 rkA = rkA1 = `. Complete A1 by (k�`) columnsof the type (0; : : : ; 0; 1; 0; : : : ; 0)T to k � k quasiinversible matrix (A1A3). ThenB(A1A3) =0BBB@Q1p1 . . . Q`p`
 �1CCCAMaking several elementary transformations with the rows having indices bigger than `,reduce the matrix at the right side to the triangular formB0(A1A3) =0BBBBBBBBB@Q1p1 �. . . Q`p` Q(0)`+1;`+1
 . . . Q(0)kk 1CCCCCCCCCAherewith B = �B1B2 � where B1 is ` � k submatrix, B0 = �B1B3 � and dim(Rk=RkB) =dim(Rk=RkB0) = 0 (see Lemma 8 d)).Moreover, making some elementary transformations with the rows, one can assumew.l.o.g. that ord (Qipj ) < ord (Qjpj ); ord (Q(0)ij ) < ord (Q(0)jj ) for all i < j.By Lemmas 6, 7, 9 ord (Q1p1) + � � � ord (Q`p`) + ord (Q(0)`+1;`+1) + � � � + ord (Q(0)kk )= dim(Rk=RkA1A3) � maxi ford Aip1g + � � � + maxi ford Aip`g � `r, hence ord (Qi;pj );10



ord (Q(0)ij ) � `r. By Lemma 4 there exists k � k matrix G over R such that (A1A3) G = C1 
.. .
 Ck!where C1 � � �Ck 6= 0 and ord (G) � (k�1)r+1, hence ord (Ci) � kr+1. As B0 C1 
. ..
 Ck!= 0BB@Q1p1 �. .. . ..
 Q(0)kk 1CCAG, we conclude that ord (B0) � (`+ k � 1)r + 1.Observe that B0A has the standard basis form similar to (2) (with the same \diagonal"entries Q1p1 ; : : : ; Q`;p` and perhaps di�erent other entries as we achieved the conditionsord Qipj < ord Qjpj ; ord (Q(0)ij ) < ord (Q(0)jj ); i < j)B0A = 0BBBBB@ 0 : : : 0Q1p1 �0 : : : : : : 0Q2p2... . . .0 : : : : : : : : : : : : 0 Q`p`
 
1CCCCCAsince rkA = `. Therefore ord (Q) � (` + k)r + 1. Let us summarize the proved in thepresent section in the following lemma.Lemma 10. There exists an inversible matrix B such that BA = Q has the standardbasis form (2) and moreover ord (B) � (s + k � 1)r + 1; ord (Q) � (s + k)r + 1.4. NC algorithm for �nding standard basis form of a matrix over the ringof di�erential operators.Let us design an algorithm which �nds the standard basis form of a matrix in NC, i.e.polynomial time and with polylogarithmic depth (parallel complexity).Join to the matrix A the unit matrix and denote the resulting k � (s + k) matrix by�A = (AE). Obviously rk �A = k (see Lemma 5). Therefore, the standard basis form of �A11



equals toB1 �A = 0BBBBBB@ 0 : : : 0Q1p1... . . .0 : : : : : : : : : 0Q`p` �... . . .0 : : : : : : : : : : : : : : : 0Qkpk : : :1CCCCCCA = �Q (see (2))where dim(Rk=RkB1) = 0 (see Lemma 8).For each 1 � m � s + k and 0 � j � (s + 2k)r + 1 the algorithm tests, whether thereexists a vector w = (w1; : : : ; wk) with ord (w) � (s+2k�1)r+1 (cf. Lemma 10) such thatthe vector w �A = (0; : : : ; 0; v| {z }m ; : : : ) where ord v = j and the leading coe�cient `c(v) = 1.The latter condition can be written as a linear system Tm;j overQ(X) with k((s+2k�1)r+2) unknowns being the coe�cients of w1; : : : ; wk in the powers of 1;D; : : : ;D(s+2k�1)r+1and with at most (s+ k)((s+2k)r+1) equations. As the entries of this linear system arethe rational functions from Q(X) with the degrees in X not exceeding d and with the sizeof rational coe�cients at most M , the algorithm can solve Tm;j in time (Mdskr)0(1) withthe depth (parallel complexity) log0(1)(Mdskr) using [M].As the rows of the matrix �Q constitute a (triangular) basis of the left R-module Rk �A,the system Tm;j could be solvable only for m = p1; : : : ; pk. For each of these m = pi takethe minimal such ji for which Tpi;ji is solvable. Lemma 10 implies that Tpi;j is solvable forj = ord Qi;pi , hence ji � ord Qi;pi . Take a solution W (i) = (w(i)1 ; : : : ; w(i)k ) for Tpi;ji , anddenote by W k � k matrix with i-th row to be W (i). ThenW �A = 0B@ 0 : : : 0 eQ1p1... �0 : : : : : : 0 eQkpk : : :1CA = eQwhere ord eQi;pi = ji.Let us prove that dim(Rk=RkW ) = 0. Denote by �A0; �Q0; eQ0 the k � k matricesobtained from �A; �Q; eQ respectively, by taking the submatrices formed by the columnsp1; : : : ; pk. Then B1 �A0 = �Q0; W �A0 = eQ0. 12



Lemmas 7, 8 a) entail 0 = dim(Rk=RkB1) = ord Q1;p1+� � �+ord Qk;pk�dim(Rs+k=Rk �A) �ord eQ1;p1+� � �+ord eQk;pk�dim(Rs+k=Rk �A) = dim(Rk=RkW ) � 0, therefore dim(Rk=RkW ) =0 and moreover ord eQi;pi = ord Qi;pi ; 1 � i � k. As WA has a desired standard basisform (see (2)), we get the following lemmaLemma 11. There is an NC-algorithm, so running in time (Mdskr)0(1) with a depth(parallel complexity) log0(1)(Mdskr), which produces an inversible over R k � k matrixW such that WA = 0B@ 0 ::: 0 eQ1p1... �0 ::: ::: 0 eQ`p`
 
1CA has the standard basis form.Now we get a criterium for solvability of a system (1). Namely, apply Lemma 11 tok� (s+1) matrix A = (Lij bi)1�i�k; 1�j�s, so the last column is  b1...bk!. Then the system(1) has a solution in the �eld F i� and only if p` � s (in other words p` 6= s+ 1) and thestandard basis form provides a \triangular" basis of the space of solutions of (1). Let ussummarize the obtained above in the following main result of the paper.Theorem. One can test solvability of a system (1) of linear di�erential equations inseveral unknowns in the Picard-Vessiot closure F and �nd a \triangular" basis of thespace of solutions of (1) in NC complexity class, so with the time (Mdskr)0(1) and with adepth (parallel time) log0(1)(Mdskr).Observe that the space of solutions of a homogeneous system (1), so when b1 = � � � =bk = 0, has a �nite dimension (over C (X)) if and only if p1 = 1; : : : ; p` = ` and ` = s (fork� s matrix A = (Lij), see above). In this case the standard basis formWA of the systemcan be rewritten in the common �rst-order matrix form DY = HY (cf. [G90] ) where thevector Y has coordinates u1;Du1; : : : ;Dj1�1u1; u2; : : : ;Dj2�1u2; : : : ; us; : : : ;Djs�1us andji = ord eQi;pi ; 1 � i � s, one could easily get the matrix H over Q(X) from the matrixWA.Acknowledgements. The author would like to thank Mike Singer for the attentionto the paper. 13
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