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A s e t  of d i s j u n c t i o n s  of s o m e  v a r i a b l e s  is  c o n s t r u c t e d  and a n o n l i n e a r  l o w e r  bound is p roved  for  
the c i r c u i t  c o m p l e x i t y  of this  s e t  in  s y s t e m s  of func t iona l  e l e m e n t s  (s. f. e .)* in a f ixed  monotone  
b a s i s .  The p r o p o s e d  method  for  p r o v i n g  the l o w e r  bound of c i r c u i t  c o m p l e x i t y  in  the s.  f. e. d i f -  
f e r s  f r o m  p r e v i o u s l y  known me thods  (in a monotone  b a s i s ) .  

1. A monotone  Boo lean  func t ion  is  the c o m p o s i t i o n  of con junc t ions  and d i s j u n c t i o n s .  In  [1-4] the a u t h o r s  
e x a m i n e  the p r o b l e m  of f inding a l o w e r  bound for  the c o m p u t a t i o n a l  c o m p l e x i t y  of a s e t  of monotone  Boo lean  
func t ions  in s y s t e m s  of func t iona l  e l e m e n t s  ( s . f .e . )  in  a f ixed  monotone  b a s i s ,  i . e . ,  a b a s i s  of monotone  func-  
t ions .  N e c h i p o r u k  [1] was  the f i r s t  to c o n s t r u c t  a s e t  of d i s j u n c t i o n s  wi th  a n o n l i n e a r  l o w e r  bound fo r  t he i r  
c o m p u t a t i o n a l  c o m p l e x i t y  in  s.  f. e. in  a monotone  b a s i s .  The d i s j u n c t i o n s  c o n s t r u c t e d  by N e e h i p o r u k  had the 
p r o p e r t y  tha t  no two had m o r e  than  one c o m m o n  v a r i a b l e .  The s e t  of d i s j u n c t i o n s  in [2] has  the s a m e  p r o p e r t y .  

In the present paper we construct a set of disjunctions for which we prove a nonlinear strict (to within a 

multiplicative constant) lower bound for the computational complexity in an s. f. e. in a fixed monotone basis. 

The method of proving the lower bound may therefore also be of interest. This method was used to obtain the 

lower bound for the computational complexity of a set of linear forms (see [5, Sec. I]). 

Nechiporuk (see [I]) proved that in computing a set of disjunctions in an s. f. e. in a monotone basis we 

can, without increasing the complexity, restrict ourselves to a basis consisting of one two-place disjunctive. 

We represent each s. f. e. in the usual way (see [5]) in the form of a directed graph with the number of vertices 

equal to the number of elements of the s. f. e., counting the variables which occur in it. Each vertex of the 

graph therefore corresponds to a Boolean function. We shall say that the functions corresponding to the ver- 

tices of a graph are computed by a given s. f.e. The complexity of an s. f. e. is the number of vertices in its 

corresponding graph. Therefore, we shall consider systems of functional elements in a basis of one two-place 

disjunction, which compute sets of disjunctions. 

2. We proceed to the construction of the required set of disjunctions. Let M be a natural number, I be 

any nonempty subset of the set {1 ..... M}. We denote by A I the disjunction of all variables xi(0 _< i < 2M), 

such that if i = i s . . . iM is the expansion of i in the binary scale, then the sum ~i~1~q is even. Thus, we con- 

struct the set I•ll r {t,:. ,Nl , consisting of 2 M - i disjunctions of 2 M variables. We shall calculate the com- 

putational complexity of this set in s. f. e. in the basis {V}. 

The number of variables that occur in any disjunction ~) is the weight of ~, and we denote it by i~ o We 

note that for every I 7 O, Ic {I, .... M 1 , IAII = 2M-t holds. 

First we obtain an upper bound for the computational complexity- of [~Ii~IclI .... ,M} in an s. f. e. in the 

basis {V~. We denote by K~ (e = 0, i) the following subset of the set(0, 1 ..... 2 M- i}: K~ ={i: i =i I. . .i M 
is the binary expansion of i and ~--j~1%J- g~0d~]. 

We put A I =~%~E~ ~4' where e = 0, I. Obviously, A~ = A I for every ~ I=[q...,M~. We construct in the basis 

{ V} the s .  f. e. of c o m p l e x i t y  -<M" 2 M+I w h i c h  c o m p u t e s  the s e t  of d i s j u n c t i o n s  { A f  }, 1 c {%... ,  N},  ~= 0, t, We 
p r o d u c e  the c o n s t r u c t i o n  by induc t ion  on M. F o r  M = 1 the c o n s t r u c t i o n  is obvious .  Le t  the r e q u i r e d  s.  f. e~ S 
be a l r e a d y  c o n s t r u e t e d  for  M = K. 

* T r a n s l a t o r ' s  note:  F o r  " func t iona l  e l e m e n t s "  r e a d  " B o o l e a n  c i r c u i t s . "  
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We take  two s a m p l e s  of S ( d e n o t e d b y S  1 and 82) , and we r e p l a c e  e v e r y  index i of the v a r i a b l e  o c c u r r i n g  in  
S 1 by 2i. C o r r e s p o n d i n g l y ,  in  S 2 we r e p l a c e  i by 2i + 1. We denote  the s y s t e m s  thus f o r m e d  by SI and S~, r e -  
s p e c t i v e l y .  We denote  the output  of the s.  f. e. S I by {A~,~ and the output  of S~ by { A [ ' t } ,  I c It .... , K t ,  ~= 0,t. 
W e  now c o m b i n e  S'  2 and S~ and ob t a in  an  s .  L e. w i th  input  v a r i a b l e s  x0, x 1 . . . . .  X2k+L f We c o n s t r u c t  the output  

for  the r e s u l t i n g  s .  f. e . ,  [ A~t, Ic  I t , . , . ,  k ,q ,  t =0, t (see c l a r i f i c a t i o n  below) 

(where  A~ is the d i s j u n c t i o n  of a l l  the v a r i a b l e s ,  and A ~  is the e m p t y  d i s junc t ion ) .  Le t  I c  [~,...,k*t~.. We con-  
s i d e r  tw c a s e s :  

~ A ~ and A~ = A ~~ v A'~'; 1) k , t~ t  I �9 Then  A I : A]'~ - I  

2) k , t e I .  We put I'-I~{k*~}. Then  

o o,o V /~,~,t t t,o o,,t 
A l  = h I '  and h I = ~x I, V ~ l ,  ' 

Thus, we have constructed an s. f. e. (see Fig. i) on the basis { V} with complexity no greater than 2. 
2 k+1 + k" 2.2 k+t = (k + I)2 k+2, which computes the set (~I}~Ic(t ..... k+Q, ~'oA. This proves the inductive state- 

ment for M= k+ I. 

3) We proceed to establish the lower bound. 

THEOREM. The computational complexity of the set (~,}~Ic(~,..~} in s. f. e. in a monotone basis is not 

less than (M- 1)(2 M-i - I/2). As a preliminary, we prove some subsidiary lemmas. 

A directed graph G is ordered if it has the following properties: 

i) It contains no directed cycles (see [6]); 

2) no more than two arcs enter each vertex of the graph G. 

The letter G will denote ordered graphs. 

Vertices that are entered by no arc are input; vertices from which no arc leaves are output. We shall 

say that the vertex B is situated above the vertex C in the graph G, if there exists a directed chain in the graph 

G from B to C (see [6]). For every vertex A of the graph G we put fiG,(A) equal to the number of input vertices 

of the graph G which are situated above A in the subgraph G' of the graph G. The following lemma is well- 

known in coding theory. 

LEMMA 1. Let G' be a subtree of an ordered graph G, having one outgoing vertex R. Then 

r.A~ ~ ~.~ >, j%, c I~) ~ ~, ~.  

Lemma 1 can be proved by induction on the number of vertices of G', using the convexity of the function x log2x 

on the positive semiaxis. 

LEMMA 2. Let G be an ordered graph with a single output vertex R. Then 

P r o o f .  L e t  G = G 0, G~, . . . ,  G m be s o m e  c h a i n  of o r d e r e d  g r a p h s ,  such  tha t  

(1) Gi  i s  ob t a ined  f r o m  Gi_ ~ by the d e l e t i o n  of s o m e  a r c  i = 1, . . . ,  m; 

(2) Gm has  a unique output  v e r t e x  R and is a t r e e .  

I t  is  not  d i f f i cu l t  to c o n s t r u c t  s u c h  a c h a i n  f r o m  G. F o r  e v e r y  v e r t e x  A of the g r a p h  G, the i nequa l i t y  

is satisfied. In addition, by virtue of property (2), for G m the equality fiG(R) = /JGm(R) is satisfied. Taking 

account of this, and applying Lemma 1 for the graph Gin, we get 
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Lemma 2 is proved. 

Variation. By using the Lemma 2 just proved, we can avoid the restriction (**) in the condition of Theo- 

rem 1 in [5]. 

4. We now consider the s. f. e. in the basis {V} which computes the set of disjunctions ~ ~iir ~, ,,~, 
and its corresponding ordered graph G. We denote by v(A) the vertex of the graph G which corresponds to the 
disjunction A. We denote by G~ the subgraph of the graph G which is generated by the vertices of the graph G 
which are situated above v(Ai). For each disjunction A which is an element of the s. f. e. we denote by d(A) the 

number of graphs G I in which the vertex v(A) occurs. 

LEMMA 3~ 

Proof, The left part of (i) equals 

We apply L e m m a  2 to each GI and obtain 

whence we deduce (I). Lemma 3 is proved. 

Note. Let A =V~eF ~ be computed in some vertex of the graph O. Then vertex v(A) can occur in the 
Q 

graph G I only in the case where ~c K I . 

This follows from the monotonicity of the disjunction. 

We introduce one more definition. We say that the subsets Ii, . . ., I K of the set {I, . . ., IV[} are A- 
independent, if for every nonempty subset L of the set {i ..... K}, the inequality hjeL lj ~ ~ is satisfied, 
where Ix denotes the symmetric difference of the sets. 

LEMMA 4, Let the subsets {I~ ..... IK} of the set { 1 ..... M} be A-independent and let the disjunction 
(element of the s. f. e.) be such that v(~) occurs in all the graphs Gii (I -< i -< K). Then I ~I -< 2 M-K. 

Proof. If~= V~Ix~ , then by virtue of the note given above, 1 c ~  K~ is satisfied. By definition of K 5 

this means that for every element i of I which has the binary expansion i = i i . . . iM the sum 

~ e l e ~ j  is even for all p ,where~$p~k. 

Thus,  the digits of the binary expansion of every  e l emen t  of the se t  I a re  the solut ion of the following 
s y s t e m  k of l inear  equations,  over  a field of two e lements :  

a~,~ W, +.,,+ak, M W~: o 

where  ~ , i : 4 ~  j r  

By vir tue of the A-independence of {Ii ,  . . . .  IK} the rank  of s y s t e m  (2) equals k. There fo re ,  by means 
of e l emen ta ry  t r ans fo rma t ions  (in a field of two e lements ) ,  (2) can be reduced to the form:  

Wp,+&~,~Wp~*...+ ~4,kWPk +.,. =0 
Wp~§ +~,kWpk+'" :o  

�9 ,. 

~ / P k  + " =o  

(3) 

The va r i ab les  WPk+t , . . . .  WPM can be chosen a r b i t r a r i l y ,  a f t e r  which Wp1, . . . ,  WPk a re  uniquely 

defined. Consequently,  the number  of solutions of s y s t e m  (3), and the re fore  a l so  of (2), equals 2 M-K,  the re -  
fore  the number  of e lements  of the se t  I does not exceed 2M-K. L e m m a  4 is proved. 
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LEMMA 5, For any k -> 1 and any t, if t > 2 k-l, then from any t mutually distinct subsets of the set 
{ 1 . . . . .  M} we can choose k which are  A-independent. 

Proof.  Suppose the con t ra ry  is true and {A1, . . . ,  A/} is a maximal sys t em of A-independent sets among 
the given t and let l < t. We consider  2 l sets of the fo rm 

h~ta,.aA% (4) 

where i, j a re  mutually distinct. Since t > 2 k-1 _> 2/, then among the original t sets there is one which cannot 
be represented  in the fo rm (4). We add this to (A 1 . . . . .  AI} and again obtain a A-independent sys tem,  which 
contradicts  the choice of {A 1 . . . . .  AI) .  Lemma 5 is proved. 

We will now prove the main theorem. We shall show that for every  disjunction A which is computable in 
some vertex of the graph G, the s ta tement  IAI.  d(A) _< 2 M is satisfied. Let v(A) occur  in the graphs Gip (1 _< 
p s d(A)). Let k be a natural  number such that 2 k-1 < d(A) _< 2 k. Then by virtue of Lemma 5 we can choose 
f rom {Ip}l<p<d(A) k subsets which are  A-independent. Then, by Lemma 4, IAI -< 2 M-K. Therefore tAI .d(A) _< 

2 M. We now use Lemma 3 and find that~ .~s ~ "  ~A~eC~ IAl" d(A)~(~M~0~M'~ ( M - 9 ,  where z is the number of 

elements of the s. f. e. which is being examined. Whence z -> (2M-1 - 1/2)( M - 1). The theorem is proved. 
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PROBLEM OF PATH CONNECTIONS IN GRAPHS 

D. Yu. Grigor'ev UDC 518.5.519.1 

A general izat ion is considered of a problem that a r i ses  in the design of electronic equipment 
- the t racing of printed circui ts .  The general izat ion is proved to be NP-complete  in the sense 
used by Cook and Karp. 

We examine here  a general izat ion of a problem in radioelec t ronics  - the design of printed circuits  (see 
[1]) - and we prove the hoP-completeness of this general izat ion (see [2, 3]). The problem of designing printed 
c i rcui ts  is as follows: in a printed circui t ,  which usually consists  of one or more  planar latt ices combined in 
a specific way, a set  of contacts (nodes) is selected and a l ist  is drawn up of the necessa ry  junctions of the 
selected contacts.  It must  be determined whether these connections can be made in the whole of the circui t  
without "short ings ."  A heuris t ic  "algori thm" for the "solution" of this problem is proposed in [1]. 

There have been numerous unsuccessful  at tempts to find an a lgor i thm for the design of printed circui ts  
that would give resul ts  comparable  to the present  heuris t ic  methods, and it has long been concluded that this 
problem is intr insical ly complicated. The recent  work of Cook [2] and Carp [3] makes it possible to prove the 
equivalence of the general ized problem of design with some other "hard" computer  problems,  e.g.,  the prob- 
lem of integer linear programming, the rucksack problem, and verifying the satisfiability of propositional 

formulas (see [3]). 
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