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M3B. AicaA- HayK CCCP Math. USSR Izvestiya
Cep. ΜβτβΜ. TOM 50(1986), Λ& 5 Vol. 29(1987), No. 2

THE COMPLEXITY OF THE DECISION PROBLEM
FOR THE FIRST ORDER THEORY

OF ALGEBRAICALLY CLOSED FIELDS
UDC 518.5

D. YU. GRIGOR'EV

ABSTRACT. An algorithm is described that constructs, from every formula of the
first order theory of algebraically closed fields, an equivalent quantifier-free formula
in time which is polynomial in Ln , where L is the size of the formula, η is the
number of variables, and a is the number of changes of quantifiers.

Bibliography: 15 titles.

Introduction

The decidability of the first order theory of algebraically closed fields was established
by Tarski [1]. Tarski originally proposed a decision procedure based on the method of
quantifier elimination for the theory of real closed fields, and then modified it for alge-
braically closed fields. The method of quantifier elimination [1] enables us to construct,
for each formula of the form

3Z11 ... 3Z1Sl]3Z21... 3Z2s2.. .]3Zal... 3ZaSaQ (1)

in the first order theory of algebraically closed fields (where Q is a propositional for-
mula with atomic subformulas of the form "/; = 0" a n d the polynomials /; are in
F[Zi,..., ZSo, Z\\,..., ZaSa]) an equivalent quantifier-free formula. If (1) is a closed for-
mula (that is so = 0), it is thereby possible to determine whether the formula is true on
the basis of this method.

Tarski's method, as well as some similar ones based on elimination theory, have very
large execution time. Later, in [4]-[7], methods of quantifier elimination were proposed
with substantially better bounds on their execution times. Specifically, let Ν be the
number of atomic subformulas of (1), η = so + si + • • • + sa the number of variables in
the formula, and let the degrees of the /, be less than d. The time bound obtained in
[4]-[7] is of order {Nd)n°W.

In the present article an algorithm is described (§§2 and 3) which for each for-
mula of the form (1) constructs an equivalent quantifier-free formula, in time of order
(Nd)o(n"> " (see Theorem 3). Thus the parameter which exerts the most essential in-
fluence on the estimate of complexity of quantifier elimination is the number a < η of
alternations of quantifiers in (1). We remark that the exponential lower bound for the
complexity of the decision problem for the first order theory of algebraically closed fields
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460 D. YU. GRIGOR'EV

[8] was established for a sequence of formulas in which the number of alternations of
quantifiers has the same order of growth as the number of variables.

The algorithm described in §§2 and 3 uses the algorithms of subexponential com-
plexity constructed in [9] and [10] for the decomposition of an algebraic variety into
irreducible components (see §1), which rests in turn on a polynomial time algorithm for
the factorization of multivariate polynomials into irreducible factors [9], [10].

We specify that in the present article we understand the execution time of an algorithm
to be the number of steps in its execution by a RAM [2], [3]. The choice of a concrete
model of computation is not very important, since the complexity bounds are given here
only up to a polynomial, and all reasonable models of computation are equivalent up to
a polynomial [2], [3].

There is no loss of generality in considering formulas (see (1)) in prenex normal form,
since the size of the prenex normal form, and also the time necessary for the reduction
to this form, are linearly bounded in terms of the size of the input formula.

§1. Decomposition of a variety into irreducible components

Let the ground field be F = Η{Τχ,...,Τι) [η], where either Η = Q or Η = F ,* ,
with q = char(Ji); here the elements Τ Ί , . . . , Tj are algebraically independent over H, the
element η is separable and algebraic over H, and the element η is separable and algebraic
over H(T\,... ,Τι). We denote the minimal polynomial οϊ η over Η(Τι,... ,TJ) by

<p = £ (<ρ™/<ρ™)εΗ{Τ1,...,Τι)[Ζ\;
0<i<degz(^)

its leading coefficient \cz{<p) = 1· Here φ^\ <p(2) € i f [7i , . ..,T{\ and the degree of <p(2)

is the least possible. Every polynomial / G F[XQ, •. • ,Xn] may be uniquely represented
in the form

0<i<degz(<p;i0,...,in)

where α ^ Ο ν . . ^ η , b € H\T\,... , TJ] and the degree of b is the least possible. We set

By the length of a notation l(h) in the case h £ Q we mean its bit length, and in the
case h € F9*, the number Klog2 q. By the length of a notation /(/) for the coefficients
of the polynomials / from the field H, we mean the maximum length of a notation for
the coefficients in Η of the polynomials at,»0,...,in and b at monomials in the variables
7 i , . . . , Tt. We define 1{φ) similarly.

Below we will suppose in the formulation of Theorem 1 that as input the algorithm
is given homogeneous polynomials /o, · · · , / * G F[X0,..., Xn] (we may suppose without
loss of generality that fo, •. •, fk are linearly independent). Let

de&Tl,...,T,,z(<P) <di> degXo< Xn(ft) <d, deg T i , . . . , Γ ( (Λ) < d2,

l(ip) < Mi, and l(ft) < Μ% for all 0 < i < k. Below, by the size £(/*) we will mean the

quantity {d^l

n)didl

2M2, and similarly £(<p) = d' 1

+ 1Mi; that is, the size of a polynomial

is defined as the size of its vector of coefficients.
We denote by {/o = · · • = fk — 0} C Pn(F) the variety of common roots of the

polynomials fo,...,fk- The variety {/0 = •· · = fk — 0} may be decomposed into
components as | J Q Wa, where the components Wa are defined and irreducible over the
maximal purely inseparable extension Fq °° of the field F [11]. The algorithm of Theorem
1 below finds all Wa (in fact, Wa is defined over some finite purely inseparable extension
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of the field F, which the algorithm also finds). We will represent the components Wa in
two ways: by a generic point [11] or by giving some system of equations whose common
roots constitute the given component; in the latter case we will say that the system of
equations gives the component.

We will use the notation gi < g2P(hi,..., hs) below, where gi, g2, and hi,...,ha are
functions, to mean that g\ < g2P{hi, • · •, ha) for a suitable polynomial P.

Let W be a projective subvariety of P " ( F ) of codimension m, defined and irreducible
over some field i\ which is a finite extension of F, and let F2 be the maximal subfield
of F\ which is a separable extension of F. Let f i , . . . , tn-m be algebraically independent
over F. A generic point of variety W may be given by the following isomorphism of
fields:

for some qv and 0 < jo < n, where θ is an algebraic separable element over the field
F2(ti,... ,£ n _ m ) , and Φ(Ζ) is its minimal polynomial, with \cz^) = 1. The elements
Xj/X]0 are regarded as rational functions on the variety W here, where W is not con-
tained in the hyperplane defined by the equation XJO — 0. Under the isomorphism (2)
the element Xj/Xj0 is taken to the element ti, 1 < i < η — m. Here and in the sequel
we observe the convention that qv > 1 for q > 0 and qu = 1 if q = 0. The algorithm
presents a generic point of the variety W by giving the images of the rational functions
(Xj/XJO)ql' in the field ^ ( i i , · • · ,in-m)[#] under the action of the isomorphism (2).

In the statement of the theorem below some component Wa of the variety {fo —
• • • = fk = 0} is considered. We will use the following notation for a generic point of
the component Wa (cf. (2)) in the statement of the theorem: m = codimVKQ, θα = θ,
Φα = Φ, and the remaining notation will be as in the isomorphism (2).

THEOREM 1 [9], [10]. An algorithm can be proposed which determines a generic

point for each component Wa and constructs a certain family of homogenous polynomials

V[a\..., Ψ ^ € F[X0, ...,Xn\, such that Wa = {Ψ<α) = · • · = J ^ a ) = 0}. Further, the

algorithm represents each polynomial Ψ^ in the form Ψ^ = Φ^α (Ζ^,ο, · · ·, ·Ζ^η-τη+2),
where the Ζ^β are linear forms in Xo,... ,Xn with coefficients from the field H. The
following bounds hold for the elements constructed:

qv < d2m, degz Φα < degWa < d™, p< m2d4m,

for all 1 < i < p, 0 < j < n, and 0 < β < η - m + 2.

The total execution time of the algorithm for the construction of generic points and
for producing systems of equations for all components Wa is bounded above by a certain
polynomial in MiM2{dndid2)n+l{q + 1).

Below we will use the following remark due to A. L. Chistov, whose proof may be
found in [10], Chapter II, §2.
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REMARK. // a generic point is given for a certain component Wa {with bounds on
its parameters, as in Theorem 1), which is the closure Wa — n'{Vi) under projection
π': P n —• P m , where ΤΓ'(Χ0 : • · • : Xn) = {Xo '··•·• Xm), of a suitable component Vi
of the variety {/0 = •·· = /* = 0 } C P " , then it is possible to construct a family of
equations in the time specified in the theorem, with the same bounds on its parameters
as for the family {*s }, which gives Wa.

We will now describe an important auxiliary construction from [12], which will be
used below in §2. Let go,· • • ,gk-i £ F[Xo,...,Xn] be homogeneous polynomials of
degrees 6o > • · • > 6k-i respectively. We introduce new variables UQ, ...,Un which are
algebraically independent over F(Xo,... ,Xn)· We set

gk = XoUo + ••• + XnUn e F{U0,...,Un)[X0,...,Xn\

and D — Σ0<ί<ηδί—η; here 6k = • • • = δη = 1 if k < n. We consider the linear mapping
51: So Θ · • • ®~Bk —* Β over F(UQ, ..., Un), where the Bi (respectively S) are the spaces of
homogeneous polynomials in Xo,..., Xn of degree D - δ{ (respectively D) for 0 < i < k,
denned by

a(bo,...,bfc)= Σ hi9<-
0<i<k

Any element b = (bo, . . . , bfc) 6 So θ · · · θ Bk can be expressed in the form

b = (bo,i, · · • ^ ο , ρ ο , ^ , ι , . . . , b i ) P l , . . . ,bfc,i,... ,bfc)Pfc)

where pi = ( n + ^ ~ ) a n ( i b ^ j , . . . ,b, ) P i are the coefficients of the polynomial b^, under
the condition that some indexing of the monomials of degree D — 6i is fixed. The elements
of the space β may be similarly represented. With respect to the chosen coordinates the
mapping 21 has a matrix A of order

The matrix A may be represented in the form A = (A1, A"), where A' (which we call the
numerical portion of A) contains ^ 0 <i<fc-i Pi columns, A" (we call it the formal part of
A) contains pk columns, and furthermore the elements of A' lie in F, while the elements
of A" are linear forms over F in the variables Uo,...,Un (cf. also [13]).

THEOREM 2 [ 1 2 ] . 1) The system g0 — ••• = g^-x = 0 has a finite number of

solutions in Pn(F) if and only if the rank of A is ( n ^ D ) {we write r — (™^£>))·

2) All r χ r minors of A generate a principal ideal, whose generator R is their greatest
common divisor.

3) The form R, homogeneous with respect to the variables Uo,...,Un, factors as a prod-

uct R = Πι<ί<£>ι Li, where Li = Σ0<^<η C,-Uj is a linear form with coefficients from

F, and in addition {ξο : · · · : ξη ) is a root of the system and the number of occurrences

of forms proportional to L in the product equals the multiplicity of corresponding root

{ξο] •••••• ξη]) of the system (1 < i < D{). Furthermore, deg i? = Dx = r - r&nk{A').

For k = η the polynomial R is the U-resultant of the system go = • • · = gn-i = 0.

§2. The construction of the projection of a variety

Let an initial formula

3Xi · • · 3XS(& i<j<*-i(/i = 0)kg φ 0))
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be given, where the parameters (the degrees and the lengths of the notation) of the poly-
nomials fi, g € F\Z\,..., Zn-s,Xi,... ,XS] satisfy the same bounds as the parameters
of the polynomials fi in §1. The algorithm described in the present section constructs a
quantifier-free formula equivalent to the initial one, of the form

V
1<ί<Λ

for suitable /t-• , g\ € F[Z\,..., Zn-S\\ that is, the algorithm carries out the projection
of the variety. We remark that formulas are equivalent if and only if they define the same
constructible set in affine space An~a(F).

We introduce the homogeneous polynomials

f(X X i_ vdeg"i x »^ ' / f7 7 X IX X IX \

_ , v v Ν _ v d e g X j xs(g) / y 7 Υ Ι Υ Υ ΙΥ \
gyJ{.Q, . . . , J\3-\-i) — Λ-Q QyZj\, . . . , Zjji — S, Λ.\ I JVQ: . . . , -Λ s IJLQ ),

J0=Xs+1g-X0

We may suppose without loss of generality that deg X o Xs+l (fj) = d—1 for 0 < j < k—1,

replacing the fj if necessary by the family of polynomials {fjXi J }o<;<s+i· The
initial formula is equivalent to

(Ρ - \

Then the projection Π ̂  An~s(F), which it is necessary to construct, consists of all
those points (z\,..., zn-s) for which the last formula is satisfied.

We introduce the variety

U = {( Z l , . . . , * „ _ , ; (x0 : · · • : xs+i)) € ( A " - s χ PS+1)(F) : ko<3<k-if] = 0}

and the natural linear projection π: A " ~ s x P s + 1 —» A " ^ s ; then the desired constructible
set is Π = π(υ Π {XQ Φ 0}). Furthermore for each point ζ = (z\,..., z n _ s ) € An~a(F)
we consider the variety (fiber) Uz = π " χ ( ζ ) Π U C {ζ} χ PS+1(F) ~ P S + 1 ( F ) . The
condition ζ € n(U Π {Χο Φ 0}) is equivalent to the existence for some m, 0 < m < s +1,
in the fiber Uz of at least one component W of dimension s +1 — m not lying at infinity;
that is, W <£. {Xo = 0}.

In the following discussion we will temporarily fix a point ζ G An~s and an index m.
We suppose below that the field H, if finite, contains enough elements, extending Η

if necessary. We set N' = ((k — l)(d — l ) m + 1 + 1 ) 5 and we suppose the nonzero elements
7ii · · · j ΊΝ' € Η are distinct. Then clearly the family of N' vectors

enjoys the property that any k of them are linearly independent (cf. Lemma 2.1 of [9]).
We write

then hi(z) € F[X0, • • • ,X3+i], and here the coordinates of the point ζ are substituted
for the variables Ζχ,..., Zn-S.

We show by induction on 0 < β < m (cf. [9], Chapter II, §3) that for suitable indices
1 < ii,..., if) < N', every component of codimension less than β of the variety {hi1 (z) =
• · · = hig(z) = 0} C P s + 1 is simultaneously a component of the fiber Uz. We assume
that the existence of indices iχ,... ,ίβ has already been shown, with β < m — 1, and
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we suppose that there is no index 1 < ip+i < N' with the desired property. If some
component W\ of the variety {hi1 (z) = · · · = hig (z) = 0} is not a component of Uz (thus
codim Wi = β), then there are no more than k — 1 indices 1 < i < N' for which the
polynomial hi(z) vanishes on the component Wi, in view of the property of the vectors
v^\..., v^N \ By Bezout's inequality [14], there are at most (d - I)13 components in
the variety {h{1 (z) = • • • = hi0(z) — 0}. Consequently there is an index 1 < ίβ+ι < Ν'
for which the polynomial hlg+l(z) is not identically zero on each component W\ of the
variety {ΗίΎ{ζ) = · · · = fti/9(z) = 0} which is not a component of the fiber Uz, which
leads to a contradiction. Hence the existence of a suitable component W of the fiber Uz

(see above) is equivalent to the existence of indices 1 < i\ < • • • < im < N' for which W
is a component of the variety {hi1 (z) = • • • = him (z) — 0} (not lying at infinity).

We will now construct a family 971 = fDiS i S_m(d_1)m (see [9], Chapter II, §1) consisting
of (s—m+l)-tuples of linear forms in the variables Xi,... ,Xs+i with coefficients from H,
enjoying the property that for every variety Wi C P S ( F ) (here the coordinates in P s are
(Xi : • • · : -Xs+i)) for which dim W2 < s—m anddegW^ < (d-l)m, there is an (s-m+1)-
tuple (Yi,..., y s _ m + i ) C 971 satisfying the condition W2 Π {Yi = · · · = F s - m + i = 0} =
0 . For the construction, as above, we consider a family of N" = s(d — l ) m + 1 vectors
ι»' 1),.. ., v(N") € H3+1, and s + 1 of which are linearly independent. For each 1 < i < N"
we define the linear form Y^ = Σ κ > < β + ι vj -^J'I an^ w e t a ^ e ^ o r ^ the family of all

possible (s — m + l)-tuples of the linear forms F ' 1 ' , . . . , Υ(Ν h The required property of
the family 971 is verified similarly to the property of the polynomials hi(z),..., h,N<{z')
(see above).

We take as W2 the variety Wn-f-Xo = 0}. We extend the sequence of linear forms YQ =
Xo, Yi,..., Ya-m+i to a basis ΥΌ,..., Ys+i for the space of linear forms in Xo,..., Xs+i
with coefficients in H. We make a change of variables under which hi(z) (Yo,..., Ys+i) =
h{(z). As a result the assertion under consideration concerning the existence of W is
equivalent to the existence for some 0 < m < s + l o f indices 1 < i\ < • • • < im < N1

and linear forms (Υχ,..., Ys-m+i) G 971 for which the variety

{hi, {z){Y0,0,...,0, Y a - m + 2 , · · ·, Y,+i) =

••• = him(z)(Yo,0,..., 0, Y s _ m + 2 , . . . , Ya+1) = 0} c Pm(F)

has as one of its components a point Ω = (ξο: f s _ m + 2 : · · • : ξβ+ι) such that

Ω = (ζ, (ξ0 : 0 : · · · : 0 : £ s _ m + 2 : • · • : ξ β + 1 ) ) G Uz Π {Υο φ 0},

by the theorem on the dimension of an intersection [14] (dim W is not fixed in the context
of this equivalence).

We consider the system of equations

ft. = ft,·,(z)(Y0,0,..., 0, Ys-m+2, • • •, Ys+i) - YY?llw - 0, 1 < j < m, (3)

in the variables Yo, Y s _ m + 2,. · ·, Ys+i with coefficients from F[Y] C Κ = F(Y), where
Υ is algebraically independent over F. From Lemma 2.1 of [10] it follows that system
(3) has a (nonempty) finite set of roots in Pm(K). The minimal prime ideals

pK c K«-°° [Yo, Y s _ m + 2 , · • ·, Ya

correspond bijectively to classes VPK C Pn(K) of roots of the system (3) which are

conjugate over Kq °°. On the other hand, they correspond bijectively to those minimal

prime ideals

P F C F[Y, Yo, Ya-m + 2, · · • , Υβ+ΐ}/(ϋή , · · · , 9iJ,
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which do not intersect the multiplicatively closed subset

F[Y}\(0)cF[Y,Yo,Ys-m+2,...,Ys+1}/(gil,...,gim)

(see Lemma 2.2 of [10]).
We may also consider (3) as a system of equations in the variables Y, YQ, Ys-mj-2, · · ·,

Ys+i with coefficients from F, which gives a variety Uz ' c A m + 2 ( F ) . The ideals p^
correspond bijectively to components VPF of the variety Uz , which do not lie in any
finite union of hyperplanes of the form {Y — ω = 0} C A m + 2 ( F ) , where ω € F; we
remark that dimVPf = 2 (see Lemma 2.2 of [10]).

The algorithm constructs a matrix A with coefficients from the ring F[Y, Z\,..., Zm-a,
lio,Us-m+2,· • • Ms+i] corresponding to system (3), in which the polynomials
hi3{Zi,... ,Zn-a) are considered in place of the polynomials hi^z), according to the
construction sketched at the end of §1. The matrix Az is obtained by substitution
of the coordinates of the point ζ in the matrix A. Suppose the polynomial Rz €
F[Y, UoMs—m+2, • • •, Ua+i] corresponds to the matrix Az, as in Theorem 2. We may
assume without loss of generality that Υ \ Rz (dividing Rz by the greatest possible
power of the variable Y).

We consider a representation

PF

where Xi € F[Y,Yo,Ya-m+2,---,Ya+i], with the polynomials Xi homogeneous in the
variables Yo,Ys~m+2, • • • ,Ya+i· It is shown in Lemma 2.6 of [10] that for the system
Xi(0,Yo,Ys-m+2, • • • ι Ys+i) — 0, 0 < i < k, taking Theorem 2 into account, we have
Rz{0,Uo,UB-m+i,...,UB+i) = UiL"', and further the linear forms Lt = E* £ J %
correspond bijectively to points (f£° : ^ ' 2 m + 2 : · · · = 6s+i) ^WzcPm, where

From Lemma 2.3 of [10] it follows that the point QEW'Z.

Thus in the notation introduced above we have established the following fact.

LEMMA 1. The formula

3X1 • • • 3Xa ( & !<,•<*_!(Λ = 0)&(<7 φ 0))

is valid at the point ζ € F if and only if for some 0 < m < s + 1 there are indices
1 < z'x < • · · < im < N', a sequence of linear forms (Υχ,..., Ys-m+i) (Ξ 9Η, and a point
Ω € Uz Π {XQ φ 0}, where Ω = (ζ, (ξ0 : 0 : • · • : 0 : £ s - m + 2 : • · • : ^s+i)) in coordinates

z, (Yo : • • • : Ya+i), such that the linear form (ξο110 + ^ s _ m + 2 i / s _ m + 2 Η l· 6+i^s+i)
divides Rz(0, Uo, Us-m+2,..., Ua+i), where the polynomials Rz corresponds to the system
(3) according to Theorem 2 o/§l.

Furthermore, we specify a variant we shall need of the Gaussian algorithm for reduction
of matrices by means of elementary row transformations to generalized row echelon form.
A variant of the Gauss algorithm for mi χ η\ matrices is defined as a sequence of pairs
of indices (to, Jo), · · ·, (ixjx) with ιμ < mx, ΐμ < m. Here ia φ i0 and j a φ ]β if
α φ β. For each initial m\ χ n% matrix A^ this sequence produces a chain of m\ χ ηχ
matrices A^°\ ..., Α^χ+1^. We introduce the notation A^ = (a\a ), where the leading

entry a^ja φ 0 and the ith row of the matrix yl(Q+1) is obtained from the ith row of
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A^ by adding to it the iath row of A^ multiplied by a i ^ / a | " J a f° r all i different

from io,..., ia; the rows with indices i$,..., ia are not changed. The matrix Α ' λ + 1 ^

has generalized row echelon form; in other words, a\X+1' = 0 if either i is different from

i0, . ..,i\, or if i = ia, j = in, and a > β: at the same time a)x+/> = a)a'• φ 0.

We denote by Δ^" the determinant of the (a +1) χ (α 4-1) submatrix of A^ formed

by the rows with indices io,...,ia-i, i and the columns with indices jo,-- -,ja-i, j

under the assumption that i is distinct from all i0,.. •, ia-i and that j is distinct from

all jo,... ,ja-i- Then under the preceding hypotheses a\a- = A^/A^~^'-_i (see, for

example, [15]).

We now return to the consideration of an arbitrary point ζ G A n ~ s ( F ) . We tem-
porarily fixO<m<s + l, indices 1 < z'i < · · • < im < N', and a sequence of linear
forms (Yi,..., Ys-m+i) G 9JI (see Lemma 1). We recall that r is the number of rows in
the matrix A (cf. Theorem 2).

We will construct a certain sequence of variants of the Gauss algorithm Γ ι , Γ 2 , . . .
over the field F(Y, Z\,..., Zn-3, Uo, Us-m+2, ••·, Us+i) and a sequence of polynomials
Pi,P2, · · · G F[Y, Z\,..., Zn-a, Uo, Us-m+2, • • •, Us+i] so that application of the algo-
rithm Ti to the matrix Az is well defined (that is, pivots are nonzero) for all points
ζ = [z\,..., zn-s) (possibly empty) of the quasiprojective variety [14] Wi C A"~ s which
is defined by the following conditions: the inequality

0^Pi{Y,Zl,...,Zn-a,Uo,Ua-m+2,---,Ua + i)eF[Y,UO,Ue-m+2,---,Ua+l]

holds, and also the equalities

0 = Pj(Y, Zi, . . . , Zn-S, UQ, Us-m+2, · · • , Us+l)

for 1 < j < ι: — 1. In addition, the variety

{{zi,..., z n - s ) : Pi{Y, z i , . . . , z n - s , Uo, Us-m+2, •••, Us+1) = 0 f o r a l l i )

is empty, or in other words |J^ Wi = An~s.
We apply the Gauss algorithms Γχ, Γ 2 , . . . to the matrix A below. We take as Γι any

variant of the Gauss algorithm. Let the polynomial

Pi = Π ΔΚ ,
0<α<λι

and see below for Pi (we use the notation introduced above for the Gauss algorithm under
consideration at each given step). We suppose now that Γ ι , . . . ,Γ,_ι and P i , . . . ,Pi-i
have already been constructed. Then we take as Γ; a variant of the Gauss algorithm in
which for each 0 < α < λ, the index of the pivotal column j a of the matrix A^ is the
least possible, and furthermore, such that j a > ja-i and the polynomials Pi,... ,P,_i
and Πο</3<α ^ij · are linearly independent over F. Finally, we set

ρ - TT Λ ( ° )

0<α<λ;

The process of constructing the Gauss algorithms Γ ι , Γ 2 , . . . is terminated when no Γ;
can be constructed satisfying the conditions formulated above.

It is not hard to conclude on the basis of Theorem 2 that if Wi φ 0 , then for every
ζ G Wi the polynomial Rz is obtained as the value at the point ζ of the polynomial det A*
(up to a factor Υε for suitable e), where the r χ r submatrix Aj of the matrix A is formed
from the columns with indices jo,.-.,jr-i, corresponding to the Gauss algorithm Γ .̂
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Indeed, in the matrix (A^)z the elements ajj*' = 0 for all β distinct from IQ, ... ,ia-i,
and j < j a , in view of the choice of j a . Therefore if a is such that the {ia-i, · · • ,ja-i)
entry is found in the numerical portion A' of the matrix A (recall that A = (Α',Α")), and
the (ia,ja) entry is found in the formal portion A", then r&nk((A')z) = a, from which
the required representation of the polynomial Rz follows. We remark that if Ai < r — 1
then Wt = 0 (see (3) and Theorem 2).

We write

where A J e ) ( Z l s . . . , Z n _ e ) € F[Z1,...,Zn-a,U0,Ua-m+2,...,Ua+i]. We consider the
quasiprojective varieties

, . . . , Ζ η _ θ ) ,. . . ,Zn-a) = 0,

for ε > 0. The variety W^ is quasiprojective, as the intersection of two quasiprojective
varieties; namely, if

{
for j = 1,2, then

=0™ =

Furthermore Ήλ ( ε ι ) Π ) = 0 for ει φ ε 2 and (J e

o, Ua-m+2, ••·, Ua+i) = Α\ε

= ^i- We have

We further represent Α^ε' in the form

Λ(ε) - V
0<j<D2

where e^ '^ ( Z i , . . . , Z n _ e ) € F [Z i , . . . ,Zn^s,Us-m+i, • • • ,Ua+i]. We introduce the
quasiprojective varieties

= {{zi, • • ·,*»-») e Vt
(£) : e | £ ' K ) ( 2 l , . . . , *„_,) = 0 for 0 < κ < j

then W> 'n> Π
since

= 0 for j i ^ j 2 , and Uo<i<D2
• W e remark that

= [[LP
β

is a product of linear forms for ζ G Wt , the relation

l e i Jz — ei \Zli-· · ,Zn-a)\(Ai

J'follows in the ring F[Uo, U.s-m+2, • • •, Us+i] for all ζ e "W%

 J', since in this case (ef'3')s+i
is equal to the product of the powers Lc£ of those linear forms Lp whose i/o-coemcient
is zero.
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Our next goal is the computation of the quotient (A^')2/(ej ) z for ζ €
We arrange all monomials in the variables Zia_m + 2 , . . . , Ua+i in lexicographic order on
their multi-indices in the polynomials ef'3' — J^j μΐΙΙ1, where / = ( 7 s _ m + 2 , . . . , / s+i)
and U1 — Ug'Sm+l''' ^a'+i • As usual the lexicographic order I < J means that for
some 1 < κ < m we have / s - m +2 = Ja-m+2, • • -Ja-m+K = Js-m+κ, and J s _ m + K + 1 <
J s _ m + K + i . Let / be a multi-index (to remain fixed in the considerations below) for
which 0 φ μι € F[Zi,..., Zn-S). We introduce the quasiprojective variety

Μεϊ3) = {(«ι. · · ·. zn-s) e W^3) : μ3{Ζι,..., zn_ s) = 0 for all J > /

and///(*!,...,zn_ s) φθ}.

Clearly TVfrf Π W^ = 0 for Λ φ J2, and [jj^-'f = ^e<j)• For all points

(zi,...,zn-a) e ^ϊ3) the quotient (AJe ))z/(e t^
ύ )) ζ is obtained with the help of the

division process described below, and the subsequent substitution of the coordinates
Z\,..., zn-s for the variables Z\,..., Zn-S.

Let

0 φ Φ e F{ZU ..., Zn-s)[Us-m+2, • · . , Us+1}.

We introduce the notation Φ = Φ(ί/^ , η + 2 , ί/^+ 3, · ·., Zis+i) and 0(Φ) = deg(^). We
set

Then e | £ j ) ) z = (e j e j ) ) z for all points ζ € W^, bearing in mind that (e^' j ))2 is the
product of the linear forms whose highest monomials (in the sense of the lexicographic
ordering) are (μ/)2ί/

/, and consequently for every other nonzero monomial ̂ j)zli
J in the

polynomial {ef'3')z we have D(UJ) < ^(U1). We temporarily fix an index j < κ < D2-
The algorithm constructs a sequence of nonzero polynomials Φο = e||ε , Φ ι , . . . , Φρ €
F[Zi,..., Zn_s, 2i s_m + 2 , . . . , Z/s+ι]· For every 0 < τ < ρ we may represent Φτ uniquely
as ΦΤιι +Φτ,2 + Φτ,3, where the polynomials ΦΤιι and Φ τ 2 are homogeneous with respect
to the variables Us-m+2, • • • ,Ua+i, and further 0(ΦΤ:3) < 0(Φ) = 0(Φτ,ι) = 0(Φτ,2);
moreover, the quotient

^τ,ι/U1 e F[ZU..., Zn_s, Ua-m+2, •••, Us+1);

finally, no nonzero monomial of the polynomial Φτ,2 is divisible by U1. We set

Φ τ + 1 = μ / (Φτ - *r.a) - VrJ^/U1,

where Φρ+ι = 0. Clearly 0(Φ τ +ι) < 0(Φτ)· We consider the polynomial

and we write

=

0<τ<ρ

}<K<D2

For every ζ e W^f it is easy to check by induction on τ that {ef'3')z\{^T)z in the ring

F [ ^ _ m + 2 , . . . , 2 i 3 + 1 ] and (* r , 2 ) , = 0, since (μ?^^),/^), = (Φ?/ ' κ ) ) , ; hence

(Ale))z/{e\e'j))z = ( μ 7 Ρ " 1 Φ ^ / ) ) 2 is equal to the product of the powers L^ of all the
linear forms Lp whose ^-coefficient is nonzero.
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We also recall that cone(W^2) = \JfF VVF Π {Υ = 0}, and we write

w'= U (W χ W η {y0 # o}))

(we fix the indices i,e,j, and / temporarily). We remark that

W = j ( z i , . . . , zn-a, (2/0 : ys-m+2 ••••: y.+i)) € T^6/*

xAm(F) c Tl/J^ x Pm(F)

Writing out the polynomial

s-m+2<a<s+l

we arrive at the equality

W = {& JEJ = θ} Π (ΉΛ^ χ A m ).

Thus the subset W is closed in the quasiprojective variety W^' χ A m .

We introduce the natural linear projection Ι Ί 2 : A n " s χ ( P m Π {Υο ψ 0}) —> An~s,
defined by

7T2(Zi,..., Z n _ a , (y0 : y 3 _ m + 2 : · · · : Ys+i)) = {ZU..., Zn_s).

We consider the morphism πχ: W —• Wj /i:/ which is the restriction of π 2 to W. Our

next goal is to prove that πχ is a finite morphism [14]. Clearly the preimage of any affine

open subset V C W^' under πι is isomorphic with ("V χ A m ) Π W, and consequently

the preimage is an open subset of W which is affine, since it is closed in "V χ A m [14]. We

will now check that every coordinate function {Ya/Ya) on the variety TTJ~ 1("V) satisfies an

equation of integral dependence over the ring F[V], where s — m + 2<a<s + l. Let

* £ J ) = MyHUo, Us-m+2, · · ·, Us+1). Then

9§j)(Ya/Yo,O,... ,0, - 1 , 0 , . . . ,0) = 0 on π^(ν) C W,

where (—1) is substituted for the variable Ua. As {μΐ)ζ Φ 0 for ζ € Wi j , this gives an
equation of integral dependence. Thus the morphism πχ is finite.

With the notation of Lemma 1 we conclude that the set "Vi j consisting of those

ζ = ( z j , . . . , zn-s) G "Wij for which there is a point Ω = (ζ, (ξο : 0 : · • · : 0 : £ s _ m + 2 :

• • • : fs+i)) € Uz Π {XQ φ 0}, is closed in Τ4λ j , since it coincides with the image under
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the projection τ\ of the closed subset TT^1('W1j)Π{/ο = • • • = fk-i = 0} of the domain
of πι (i.e. W), where

ί 17 y v n nv ν •*
— ]κ\£Ίι·· · , άη-s, J^OJU, , . . . ,U, r s _ m + 2 i · · · > ^s+lj

and

for 0 < κ < fc — 1, if one bears in mind that the image of a closed set under a finite
morphism is again closed [14].

We describe an algorithm for the construction of V^j . Let the quasiprojective variety

= 0 ) & \ / ( C T # 0 ) | ,
V. τ )

where the polynomials G/?, CT ε F[Z\,... ,Zn_s] were in fact constructed above. We
introduce notation for the closure of the projection:

7Γ2 {&.β{ββ = 0)&& J{EJ = 0)&&0<K<fc-l(/K = 0)}

= π 2 (w' ΓΊ {&0<K<Jfc-i/K = θ}) = 9 3 ^ C A"" 5 .

On the other hand,

rT(CT =0)} =5uf r / ) \{& T (C r = 0 ) } .

thus it remains only to construct the affine variety Vi j'
3 .

Relying on Theorem 1, we find generic points of the components of the variety

and it suffices for each such component 2U to find the closure of its projection
We now construct generic points for the irreducible varieties π2(23}). For this we remark
that the function field

°{Zu ..., Zn-S) C F*-°° (Zu ..., Z n _ s , Y i y%,..., Ya+i/%)

Therefore the generic point can be constructed, first finding a transcendence basis and
then a primitive element. The determination of a transcendence basis, and also of a prim-
itive element, is based on the procedure for the determination of a polynomial relation
(when it exists) between elements

wu...,wpe F(t!,..., * n - m i ) [0] C F«~°°{W)

(mi = codim2U; cf. (2)) under the assumption that w\,... ,wp^i are algebraically inde-
pendent, which reduces in turn to the solution of a linear system for the coefficients of
this relation (cf. §4 of [9]). Further, taking into account the remark after Theorem 1, the
algorithm finds a representation

where the polynomials Βσ G F[Z\,..., Zn-a].
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To sum up the preceding exposition: we obtain an algorithm which represents the
desired projection Π = π(υπ{Χο Φ 0}) (see Lemma 1 and the notation at the beginning
of this section) in the form

V V V V V
We now estimate the size of this formula and the execution time of the algorithm. We

recall that N' < d2n and

card(OT) = (S{d 1 Γ + Λ < (s(d - l)m + 2)-m+1.
\ S Tit ~\~ J. I

In the construction of the variants Γι, Γ2, -. · of the Gauss algorithm (see above) we may
make the estimates

(see (3) and Theorem 2; cf. also [9], Chapter 2, §2).
Finally, the length of the notation for the coefficients is

{M1 +M2 + (n + l) \ogd2)P{dm,d1).

Hence, the number of quasiprojective varieties Wt does not exceed

/ 2 ^ 1 +n-s + m~2\
< , ( 2

V n-s + m + 2 ) ~
since the Pi are linearly independent. Here each "Wl is represented by the algorithm in
the form

V ί
1<τ<Ν3

where the degrees satisfy

l Zn_.(C™) < deg(Pt) <

degTl ^(G^ )),degT l i . . .^(Ci 1)) < d2P(dm,d1),

and the length of the notation for the coefficients

Finally, N2 < (3d)(2m + l)(n+m + 5) a n d Na < (3^(2m + l)(m + 2) A t t h i g g t a g e

is polynomial in Mi + M2, d
m^n+l\ and (d\d2)

1 is sufficient for the algorithm.
Then the algorithm constructs quasiprojective varieties

V
<τ<Λ

For all the parameters of the polynomials Gy and C} 2\ and also for ./V4 and N5, there are

bounds which are similar to the ones found above for G0 , C\ , N2, and N3 respectively.
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The same is true also for the parameters of the polynomials in the representations of the
quasiprojective varieties

\^=ο)& V
1<τ<ΛΓ7

and also for the quasiprojective varieties

V
We remark that ε, j < (3d) m + 1 , and the number of multi-indices / is less than (3d)(m + 1) .

Further, the algorithm computes φ | ^ ' ! " ' with the help of the process described above

of division of a polynomial by a polynomial. For the parameters of the polynomial

^>ij3, and consequently for the polynomials Ej bounds hold, similar to those presented

above for the polynomials G^ and C v \ The bound Ej on the execution time for the

construction of Wi j , as well as Φ ^ / and is the same as above in the construction of
Wi. We mention only the bound

Then the algorithm represents the quasiprojective variety

= o)& \/(cT ψ o)

according to the remark formulated above concerning the intersection of quasiprojective
varieties. As a result we obtain similar bounds for the parameters of the polynomials
ΰβ, CT\ namely, we give here the bounds

degZll...,Zn_.(G/?) < {Ufm+\ degZi Zn_a(CT) <

and also

β < N2 + N4 + N6 + N8

Τ < N3N5N7N9 <
Further, the algorithm finds generic points of the components 2U (see above) of the variety

/K = 0)} ,
and then the generic points and the defining systems of equations L· σ (Βσ = 0) of the
closures of the projections of these components. From Theorem 1 we derive the bounds

and

deg r i i... i T l(B ( T)<d 2/>(d<m + 1>n,d 1)

while the length of the notation for the coefficients is

1(Βσ) < (Mi +M2

finally,

We remark that the number of components 20 does not exceed
The execution time for our algorithm for the construction of the polynomials Βσ is

bounded above by a polynomial in M i , M 2 , d ( m + 1 ) " ( n + i ) , ( d i d 2 ) ( n + i ) , and q.
We cast the result obtained in this section in the form of the following lemma.
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LEMMA 2. An algorithm has been constructed, which finds the constructible set

3 * i · · • 3XS ( & i < K < f c _ i ( / K ( z i , . . . , zn-s, X u . . . , Xs) = θ )

h g{zi,... ,Ζη-β,Χχ,... ,XS) T^O

ie, ο projection, in the form

/fere ί/ie following bounds are satisfied:

< d2P(dsn,d1), l(B™) < (M, + M2 + (n + l)d2)Ρ(d"n,d1),

d 4 3 + 7 , degT i i... i T,(C(A)) < d2P(d2,d1),

M1 +M2 + {n + l)\ogd2)P{ds,dx).

Furthermore,

TTie execution time for the algorithm is bounded by some polynomial in Mi, M2, rfs"("+');

(d^)»*1, andq.

We remark that the lemma gives in particular an upper bound for the degree of the
projection of a constructible set, which is better than those known previously. Namely, let
π3(Ζ1: ...,Ζη) = (Ζι,.... Zn-S) and let <f C A " be a constructible set; then deg(7T3(<f))

§3. Quantifier elimination in the first order theory
of algebraically closed fields

Let a propositional formula Q with TV atoms of the form /, = 0 be given, where the
parameters of the polynomials /, € F[Xi,... ,Xn] satisfy the same bounds as in §1;
we denote by Z{Q) the size of the formula Q. First we describe an algorithm for the
reduction of Q to disjunctive normal form.

Following [7], for gi,...,gp € F[Xi,... ,Xn] we call any nonempty quasiprojective
variety of the form

with J\ U J2 = {l,...,p} and J\ Π J2 = 0 , a (gi,..., gp)-cell. We set D3 — deg gi +
• • • + deg gp. On the basis of Bezout's inequality it is shown in [7] that the number of all
(ffii · • ·) <?P)-cells does not exceed (1 + D3)

n. Now we describe an algorithm, partitioning
the space An(F) into (gi,... ,gp)-cells, recursively in p. Let all (gi,... j ^-^-ce l l s be
constructed already (p > 1). Each (gi,.. .,gp)-cel\ has the form either <ί Π [gp = 0}
or i n {gp φ 0} for a certain {g\,. •. ,gp-i)-cell £. Hence it suffices to distinguish all
nonempty sets (using Theorem 1) among the quasiprojective varieties € Π {gp = 0} and

Cp η \gP Φ ο}.
Using the algorithm just described, we construct all (/i,... ,/jv)-cells. Again using

Theorem 1 repeatedly, for each (/j,... ,/^)-cell the algorithm checks by recursion on
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the number of logical connectives in the formula Q whether this cell is contained in the

constructive set Π<2 = {Q} ^ A™, given by the formula Q. The algorithm thereby

represents the set ]JQ in the form of a union of suitable (/χ,..., /jv)-cells &x\ which

corresponds to the reduction of Q to disjunctive normal form

Here 1 < λ < ( 1 + Nd)n, 1 < σ < Ν, and each polynomial flx) = /; for some i, while

/o = Y\jej fj for a suitable subset J C {1,...,JV}. The execution time of the proposed

algorithm for reduction to disjunctive normal form is bounded according to Theorem 1

by a polynomial in Z{Q), Nn, (dndid2)
n+l, and q.

Finally, we describe a quantifier elimination process in its application to formula (1),
where the parameters of the polynomials fi satisfy the same bounds as in §1. Applying
the algorithm for reduction to disjunctive normal form presented earlier in this section
and Lemma 2 of §2 alternately to formula (1), after carrying out a stages we shall arrive
at the equivalent formula

ΞΖχ,ι · · · 3Ζι ι β 1 ] · • -3Ζα_αιι • • ·3Ζα-α,βα_α]

if V
\1<ι<Ν(°·

We write

dW = maxdeg 2 i,..., z Zi ^ Z a _ a s
tj υ

Then in view of the bounds in Theorem 1 and in Lemma 2, the following inequalities
hold:

d{a) < ( < H ( Q - 1 ) ) 4 ( , ( )

fc(a) < (η + 2 ) 2 ( ί Κ ( α - 1 ) ) 8 ( 4 σ + 5 ) ( η + 2 > .

Hence by induction we obtain

«K(«) < («n(Q-l))82(n+3)(<r+2) < ^ N ^ (82(n+3) Σα-α +

Furthermore,

m{

2

a) < (Mi +M2 + ld[a-

The execution time for the algorithm described, after the completion of a stages, may
be bounded by a polynomial in

Μχ, Μ2, (ΝάΝ){82{η+3)/α)^-^^<^^)^η+1\ (d?d2)"+', and q.

After completing a stages of the algorithm the proof of our main result is completed.
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THEOREM 3. An algorithm has been constructed which finds for every formula of the
form (1) an equivalent quantifier-free formula

VV ( ) where glJeF[Z1,...,ZS0];
l<i<M

here

i , , l \), l{gl3) < {Mx + M2 + ld2)Ρ(D,d<i).

Furthermore, M,K < D. Finally, the execution time for the algorithm is bounded by a
polynomial in £(Q), ί{φ), Dn+l, (d%d2)

n+l, and q.

The author wishes to express his gratitude to A. L. Chistov for useful discussions.
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