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Under a sigmoid with a depth d we understand a circuit with d layers where each real
function computed at (i 4 1)-th layer is obtained as G(¢) where ¢ is a rational expression in
the functions computed at :-th layer and G is a gate operator from some admitted family.
Two types of the families of gate operators are considered: first, we admit to substitute
g(q) where ¢ is a solution of a linear ordinary differential equation with the polynomial
coefficients and second, as G(¢) we take a solution of nonlinear first-order differential
equation. The sigmoids of the first type compute any composition of the functions like
exp, log, sin (thus, it includes, in particular, standard sigmoids corresponding to the gate
g = (1 + exp(—2))~1), the sigmoids of the second type compute Pfaffian functions. The
main result states that if two different functions fi, f» are computed by means of the
sigmoids with the parallel complexity d, then the difference |f; — f2| grows not slower
than (exp(?(p))~" (and not faster than exp(?(p)) where exp(?) is d times iteration of
the exponential function and p is a certain polynomial, thus one can not rather good
approximate fi; with a precise parallel complexity d by means of a function f, with a less
parallel complexity. Also we estimate the number of zeroes in the intervals of a function

computed by a sigmoid of the first type. All the obtained bounds are sharp.
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1. Deviation theorems for the functions computed by sigmoids.
Denote the ring Ky = R[X], Fy = R(X), D = d/dX. By I' denote the set of real

functions v : R — R being solutions of linear ordinary differential equations of the kind

Lu=(D"+ > aD)u=0 (1)

0<j<n—1

where the coefficients a; € Fy are defined everywhere on R, in other words, their denom-
inators have no real roots. The elements of I will play the role of gate functions in the
sigmoids. As the operator L has no real singularities ([H]), the function u is analytic on
R (actually, one could get rid of this requirement and consider gate functions with real
singularities, but we shall not dwell on it for the sake of simplifying the exposition). Now
we define K; and F; by induction on ¢, namely K;4q for ¢ > 0 is a differential ring [K]
generated by the functions of the form u(q) where v € I and ¢ € F;. Define F;1; as a
(differential) field of quotients of K;41.

Under a sigmoid with a depth d we understand a circuit with d layers in which each
function wgi)l at (¢ + 1)-th layer (0 < ¢ < d) is computed as

j 1 2
wify = ul(gr/g2)(w” wi?,... X)) (2)
for a certain gate function v € I' and g1, 92 € ]R[Wi(l), Wi(z), ..., X] being polynomials in
(1 (2)
w,”, ..

the functions w; ', . computed at the previous layers of the sigmoid, and in the

variable X.

Let w = uy,...,u, where ug : R = R, 1 < ¢ < n be a basis (over R) of the space of
solutions of the equation (1) [H]. Extend the sigmoid without changing its depth adding
51),w§2), ...,X)) at (¢ + 1)-th layer. One can show by

induction on ¢ that each function wgi)l belongs to I{; 41 (and conversely, any element from

also the instructions w((g1/g2)(w

K41 can be obtained as a polynomial in the functions computed at (i + 1)-th layer of a
suitable sigmoid). Usually, u is taken from a certain subset of I', for example, in the case
of the standard sigmoid one takes u = exp(—X) (see [MSS]).

Henceforth, we fix a sigmoid and by D; C K; denote a differential ring generated
over R(X) by wgl), wgz), ...; so as an algebraic ring D; is generated by all the derivatives
(1) (1)
w, ", Dw,

function d times. Now we are able to formulate the first main result of the paper (deviation

,wgz),Dw?) .... Denote by exp¥ € K, the iteration of the exponential
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theorem for the functions computed by sigmoids).

THEOREM 1. Let a function 0 # f be computed by a sigmoid with a depth d. For any
p1 there exist pg, py where pg,p1,p2 € Ko are univariate nonconstant polynomials, being

positive everywhere on R such that for any ©* € R the measure of the points y from an

interval I = (¢ —(p1(x))™", 2) at which [f(y)] > exp!D(po(x)) or |f(y)] < (exp'® po())~*
(paen™ _ ||
exp(pa(2)) — explpa(2))

is less than



COROLLARY 1. The measure of the points y € R for which |f(y)| > exp®(ps(y)) or
|F(y)| < (exp'® p3(y))~" is finite, moreover the measure of such point y with |y| > x, for
any xog > 0 is less than (exp ps(2))~"! for suitable nonconstant polynomials p3, ps € Ky

being positive everywhere on R.

Remark 1. The polynomials pg, p2, p3, ps4 could be calculated explicitly in terms of the size
of the sigmoid and in the coeflicients a; of the differential operators L (see (1)) to which

satisfy the gate functions u occuring in the sigmoid.

Remark 2. The bounds in the theorem 1 and in the corollary 1 are sharp. As an example
consider a function f = sin -(exp(d))_1 with the parallel sigmoidal complexity equal to d:
the set of the points y at which |f(y)| < (exp'® ps(y))™" consists of a union of intervals
where n-th interval (n = 0,1,...) has a length (exp(? ps(n))™" and contains the point 7n
(for appropriate polynomials ps, ps € Ky).

One can treat the theorem 1 and the corollary 1 as the impossibility of “rather good”
approximation of a function with the parallel sigmoidal complexity d by means of a func-
tion with less parallel complexity (in particular, by a rational function), thus if such an

approximation does exist, it gives a lower bound on the parallel sigmoidal complexity.

The corollary 1 could be easily extended to the sigmoids with branching instructions
as the resulting function would be piecewise and one could apply the corollary to each
piece. In particular, when we consider only rational computations, it gives a lower bound
(the similar as in the corollary 1) on the approximation by means of Blum-Shub-Smale
computation ([BSS]).

Finally, we estimate the number of zeroes of a function computed by a sigmoid.

In the next proposition let us adopt a convention that exp!=") = const.

PROPOSITION. Let a function f be computed by a sigmoid with a depth d > 1. There
exists a set J C R with a finite measure such that for any © € R the number of zeroes of
f in the set [0,z] ~ J does not exceed exp'®™") p;(x) for a suitable polynomial p; € Ky,

moreover the intersection [0,x] N J is a union of at most exp'®~2) p7(x) intervals.

2. Upper bounds on the functions computed by sigmoids.

(From now on pi,ps,... will denote polynomials from K, each having a form p; =
p;(X?) where a polynomial p; monotonically increases on Rt and p;(0) > 1. The proof of
the following lemma is based on the Gronwall’s inequality [H]. Let u satisfy (1).

LEMMA 1. For each j > 0 there exists a polynomial pgo) such that |D/u| < exp(pgo)).

The proof of the theorem 1 is conducted by induction on d. The next lemma serves to

get upper bounds in the inductive step, its proof relies on (2) and lemma 1.

LEMMA 2. Let 0 < ¢ < d. For a family of differential polynomials G1,...,Gr € D;iq
one can produce a family of differential polynomials 0 # Hy,...,H,, € D; such that for
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every pi,ps there exists ps satisfying the following property: for arbitrary x € R if the
inequalities |Ho| > (exp(p2))™", |H;| < expP(p2), 0 < j < m hold everywhere on an
interval I; = (z — (exp™ p1(2))™', z) then |Gy| < exptV(p3), 1 < { < k everywhere on
I;.

3. Upper and lower bounds on Wronskians of the functions computed by
sigmoids.

Denote by W, the Wronskian of (1) (see [H])

U1 Ce Un
Duy Du,
W, = det .
l)n—lu1 Dn—lun

As Wy (x) = Wu(xo)exp/ (—an—1) ([H]) we get the following lemma.

LEMMA 3. For a suitable py (exp py)™' < |[W,| < exp py.
(7)

A function w = w;y; (see (2)) computed by the sigmoid, satisfies a linear ordinary dif-
ferential equation 0 = ( > be£> w with the coefficients by € D;. Without loss of gen-
0<l<n

51)77“052)7 cee 7X))7 cee ,Un((gl/QZ)
.., X)) € Ditq (see (2)) constitute a basis (over R) of the space of solutions of
this equation. Denote by W,, the Wronskian of this equation. One can prove the following

erality we can assume that w # const, then uq((g1/g2)(w

(w(l) w?,

lemma using lemma 3 and the identity

Wa = Wallgr /g2) (i w0} X0) - (Dl fg2)y ™, X012

7

LEMMA 4. For each function const # w = wgi)l computed by the sigmoid (see (2)) one

(w)
0

can produce differential polynomials 0 # H ,...,ng) € D, such that for every pi,ps

there exists pg satisfying the following property: for arbitary x € R if the inequalities
|Héw)| > (exp™ ps)7t, |H§w)| < expP(ps), 0 < j < s hold everywhere on an interval
I; = (z — (exp'® py(z))™", z) then the Wronskian W, satisfies inequalities

(exp(i—i_l)(pta))_l < W < exp(i"i'l)(p(;) everywhere on I;.

Let a differential polynomial G € D;y;. Then G satisfies a certain linear ordinary

differential equation 0 = LG = ( > thj> G with the coefficients h; € D; and with a

0<j<m
basis (over R) of the space of solutions from D;41 (one could produce the operator £ by
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induction on the construction of G, see [S]). Denote by W¢ the Wronskian of the operator
L. The main purpose of this section is to establish the bounds on W¢. An upper bound
is provided by applying lemma 2 to W and getting a family HO, . Hm1 € D;, a lower
bound is proved by induction on the construction of G (so, on the number of operations

of differentiating, adding and multiplying), lemma 4 gives the base of this induction.

To prove the inductive step we assume that two functions vy,vs € D;41 satisfy lin-

ear ordinary differential equations 0 = Qqv1 = Q2v3, where Q1 = > oDt Q, =
0<<k;

> BODY and the coefficients o9, 310 € D;. We assume also that by induction some
0<<k;

differential polynomials 0 Hévl), . ,Ha(evll), 0# Hév2), o ,Ha(e?) € D; are produced such
that for every pr there exists pg satisfying the following property for any x € R: if

[H" ). |Hy™ ] = (exp@ pr) ™ [ H| < exp® pr 3)
for all 7 > 0 everywhere on an interval I; = (z — (exp!™ pi(z))™", ) then
(exp ™V pg) ™ < W[, [Woy | < exptY pg (4)

everywhere on I;, here W, ,W,, denote the Wronskians of the operators @1, @2, resp.
One can produce (cf. [S]) the linear ordinary differential operators Qp, Q4+, Qx of the

minimal orders with the coefficients from D;, namely, being differential polynomials in
a0 30 and with basis of the spaces of solutions from D;4q such that 0 = Qp(Dvy) =
Q+(U1+702) = Qx(v102) for all the solutions of the equations 0 = Q171 = @273. The main
task is to estimate their Wronskians Wpy,, Wy, 40,, W, e,, that would prove bounds (4)
for the inductive step. As estimating Wp,, is comparatively easy and on the other hand
considering Wy, 4., and W, ,, are similar, let us dwell on estimating W, 4,,.

Replace the equations 0 = Q171 = Q202 = Q4(v1+702) by the corresponding first-order
linear systems DVy; = A1 Vy, DV, = A, Vo, DV, = ALV, resp. where the matrix

0 1 O

0
A=
1
o(© o) QB =1)
_a(kl) _a(kl) - a(kl)

is in the Frobenius form (see [H]), the similar for A3, A4. Denote by Vi, Vs, V4 the cor-
responding spaces (over R) of solutions of the linear systems. Consider a natural epi-
morphism o : V4 & V2 — V4 mapping o((v (]1), Dv(jl) Dkl_lvg‘h)) & (v, (72) Dv(]2), -
Dk2 1 £]2))) _>( (]1)_|_v£]2) D( (]1)_|_ (]2)) DZ( (]1)_|_v(]2))7”‘)‘ The direct sum VI@VZ

A 0
! V. The subspace Ker(o) C V16V,

is the space of solutions of the system DV = ( 0 A
2

5



is invariant under the differential Galois group of the latter system (see [K], also [BBH],

[GI0Db]). Therefore, any nonsingular linear transformation of the space Vy & Vs, being of
*

the form @ = where * is a matrix with the entries from R reduces (see e.g. [BBH])
o
A 0 — Cy 0\ =
the system DV = ! V to the block-triangular form DV = ! V', where
0 A Cy Cs

V' =3&V. The space of solutions of the system DV; = C3V3 coincides with Ker(o) and the
space of solutions of the system DV = €1V equals to V4 (in [G90a], [GI0Db] one can find

the complexity bounds on reducing a system to the block-triangular form).

Using the formula for the Wronskian We, = exp [ trCy ([H]), we obtain equalities

WoWe, =W o gy =etd) - W p o = (det7) Wy, W,
CQ C3 0 BZ

As the coeflicients of the vectors from Ker(o) C Vi & V2 belong to D;y1 one can apply
to them lemma 2 and get a family Héa),...,H,(%) € D;. Also det(7) = Hy/H, for
suitable Hy, H; € D;. Finally, using (3) we take Hév1+v2) = Hévl) -Hév2) - H, -Héa) - Hy,
and as H{vl—i_w),... we take the union of H;vl),H;v2),ﬁj,H§U),FO,F1 for all j > 0
and using (4) prove the inductive step for vy + vy. Namely, for every pg there exists pig
satisfying the following property: for any « € R (cf. (3), (4)) if |Hév1+v2)| > (exp(pg)) ',
|H§v1+v2)| < exp(i)(pg) for all 7 > 0 everywhere on an interval I; then (exp("'i'l)(plo))_1 <
Wi 40, | < exp(i'i'l)(plo) everywhere on I;.

This completes the consideration of the inductive step for the sum vy + vy. The

bound on W, ,, is proved in a similar way, the role of the direct sum V; & Vs is being

A 0
replaced by the tensor product V; @g V2 and the role of the matrix ! ) is played

0 A,
by A1 @ Eg, + E, @ Ay where E}, denotes the unit k; X &y matrix. Thus, by induction on

the construction of the differential polynomial G € D;11 we get the following lemma.

LEMMA 5. For every differential polynomials Gy = G, Gy, ...,Gyx € D;41 one can produce
differential polynomials 0 # Hy, ..., H, € D; such that for any polynomials pi,pi1 there
exists a polynomial pyy satisfying the following property: for arbitrary x € R if |Hy| >
(exp(i) p11)7 Y, |Hel < exp” p11, 0 < ¢ < n hold everywhere on an interval I; = (x —
(exp(i) pi(x))~ 1 2) (cf. lemmas 2,4) then |G| < exp(i"'l)(plg), 0 <! < aand |[Wg| >

(exp(i'i'l)plg)_l everywhere on I;, where W denotes the Wronskian of a certain linear

ordinary differential equation 0 = ( > ’y(j)Dj> G with the coefficients vV € D; and
0<j<m
with a basis (over R) of the space of solutions G ... Gom—1 € Diy1.

4. Lower bounds on functions computed by a sigmoid.

Relying on a lower bound on the Wronskian W (see lemma 5) one can obtain a lower
bound on a differential polynomial 0 # G € D; 44
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LEMMA 6. For every differential polynomials 0 # Gy = G, G1,...,G, € D;;11 one can
produce differential polynomials 0 # Hy,...,H, € D; such that for any polynomials
p1,p13 there exist polynomials p14, p15, p16 satistying the following property: for arbitrary
r € R if [Hy| > (exp(i) p13)7 Y, [Hel < exp” p13, 0 < ¢ < v hold everywhere on an
interval I; = (z — (exp'” py(2))™", ), then |G| < expl+V) p1y everywhere on I; and there
exists a disjoint family of subintervals {Il(_ic_q}a of the interval I; each with the length

|Il(ii = (exp " pis(2))~t, moreover the lower bound |G| > (expU*tV piy(z))™" holds

everywhere on Il(_ic_q for each « and finally E|IZ(_|C_Y;| > |L)(1 = (exp™ V) pig(2))™"). In
) (63

addition, the complement I; ~ Ul'i(_ic_y1 consists of at most exp'? p1s(x) intervals and G has
(63
at most exp!? p1s(x) zeroes in I;.

The latter inequality informally means that the desired lower bound on |G| holds

“almost everywhere” on I;.

To prove lemma 6 first apply lemma 5 to Gy,...,G» and produce Hy,...,H,. Then

taking an equation 0 = (Y. ~UWDJ)G from lemma 5 produce an equation 0 = (3
0<y<m 0<y<m

a(j)Dj)DG with the coefficients o) € D;, (") = ¢(") £ 0. Apply lemma 2 to a family
{DjGo’f}ogj’fgm_l (see lemma 5) and get a family H,, ... ,FN € D;. As the required
in the lemma differential polynomials take Hy = HoHyo'™ and as Hy,..., H, take the
union of Hy,...,H,, Ho,..., H,, o .. o™ Hence lemmas 2, 5 imply the existence
of polynomials pi7,pig, pro,p2o such that inequalities |o(™| > (exp® p17)™", |[Wg| >
(exp(i'i'l)plg)_l, |G| < exptY) pg. |DjG0,g| < explt) pyg, |ﬂ(f)| < exp'¥ p17 hold ev-
erywhere on I;. When G = const, these inequalities give the lemma, so assume that

G # const.

We claim that G takes every value e in the interval I; at most max{m + 1,2(m +
)|L;|exp® p?.(z)} times. Suppose the contrary. Then there exists a subinterval I C I
of a length A\ = min{|L;|, (2exp? p?.(x))~'} in which G takes value € at least m + 1
times. Therefore, each derivative DG, ..., D™G has a least one root in the interval I.

Denote M) = max,er |D?G(y)|. Then A\MUTY > MU 1 < j < m. Let D"F'G reach
('™ (yo)) ™ ( 2 UU)DHIG(%))

0<j<Tm—1
(exp® prr(2))2 M) (X4 X2 4. £ X)) < MUY | the contradiction proves the claim.

MUY at a point yo € I. Then M = <

Construct a sequence of polynomials rg,...,r,n,—1 € Ky by (inverse) induction: set
rm—1 = p1s + (m — 1)pao + m?, and r; = 2rj41 + pao + 2, 0 < j < m — 1, then
rg > ry > --- > ry,—y everywhere on R. First, assume that at some point x; €

I; inequalities |D'G(x1)| < (exp(i'i'l)rj(:z;))_l < (exp(i'i'l)rm_l(:z;))_l hold for all 0 <
J < m — 1. Then expanding Wronskian W with respect to the column consisting of
G,DG,....,D"'G (as G # 0 we can take G as one of the elements of a basis of the

space of solutions of 0 = (>, ~WDJ/)G we obtain inequalities (exp) pig(z))™" <
0<i<m



[We(xr)| < (exp(H’l) rm_l(x))_lm!(exp(i'i'l)pgo(:zj))m_l, that contradicts to the choice of
Tm—1-

Consider a subinterval I(®) ¢ I, on which |G| < (exp(H’l) ro(2))~! everywhere. Take
the minimal 1 < j; < m —1 such that there exists a point z¢ € I®) for which | D70 G(xg)] >
(expt* Dy, (2))7'. Since [D7oF1G| < expl) pyg(2) everywhere on I; we get for arbi-
trary @ € I; inequalities | D/ G(x2)| > | D G(xo)| — |w2 — x0|exp(i+1)p20(:1;) > (exp(H’l)
rio ()7t — |og — x0|exp(i+1)p20(:p). Assume that at least one of two points x3 = x¢ £
(expU D (1, +pag)(2)) ™! belong to (9 then | D71 G(zg)— D7 ' G(z3)| = |f;03 DI G| >
(2expU D (0 + pao)(@)) " Hexpt D vy (2))™1 > 2(expltVr; _i(2))7", that leads to a
contradiction with the minimality of jo. Thus, neither of two considered points belong to
IO therefore, |1 < 2(expl (1, + pao)(x)) 1.

Partition the interval I; on the subintervals with the endpoints in which G takes the
values #(exp!T! ro(2))~". By the proved above there are at most 2max{m + 1,2(m +
1)|L;|exp® p?.(z)} such subintervals. Also we have proved that the length of any subinter-
val on which |G| < (exp*1 rg(2))™" everywhere, is less than 2(explT (1}, + pao)(2)) ™
(this is used in the proof of the proposition from the section 1), partitioning all the other

)

subintervals into disjoint subintervals Ii(j_yl completes the proof of lemma 6.

Finally, one can prove theorem 1 (and as well the proposition). First, apply lemma 6
to: = d — 1 and a family of differential polynomials consisting of a single element f € Dy,
then to the obtained family from D;_; and ¢ = d — 2 again apply lemma 6 and so on
decreasing ¢ until we get a family of the rational functions from Dy = R(X). Then we
ascertain the necessary bounds by induction on (increasing ¢) again using lemma 6 for the

inductive step.

5. Deviation theorems for the functions computed by Pfaffian sigimoids.

Consider another class of sigmoids which are called Pfaffian and which also contain, in
particular, “standard” sigmoids. Denote the field Py = R(X), then by induction on ¢ the
field P;41 is generated over P; by all the functions vg_)l : R — R (possibly having a finite
number of singularities) satisfying first-order nonlinear differential equations of the form

D vz(i)l = q(vz(i)l) (5)
where a polynomial ¢(Z) € P;[Z]. Obviously exp® € P;.

According to [Kh] any function f € P;, being Pfaffian, has a finite number of singulari-
ties and roots. Hence for every two functions f1, fa € Pi, fi Z f2, the difference (f1 — f2)(x)
is either positive or negative everywhere on an interval © € [xg,00) for a certain z¢ € R,
we write f1 = fy or fi < fa2, respectively. Now we can formulate the deviation theorem

for Pfaffian sigmoids.

THEOREM 2. For any function 0 # f € P; there exists a polynomial py; such that
(exp' par) ™" < |£| < exp' pa
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The bounds are obviously sharp. For Pfaffian sigmoids the necessary bounds are valid
starting with some point vy unlike corollary 1 where the bounds were valid out of a finite-
measure set. Analogues of the remark 1 and the remark concerning Blum-Shub-Smale

model are true also for Pfaffian sigmoids.

The theorem is proved by induction on ¢ and firstly we prove an upper bound (for ¢ = 0

one can find its proof in [B]).

LEMMA 7. Assume that the statement of the theorem 2 is proved for P; and vl(i)l satisfies

(5) where deg(q) = n. Then for an appropriate polynomial pss
a) ifn=0orn>2 then |v£i)1| < exp pyy
b) ifn=1 then |v£;17_)1| < explith pyy

(J1) plm)

Let each of the functions v;3'/,...,v;)7" € Py satisfy an equation similar to (5),
namely Dvl(fl) = qi(v 1(217—[1)) Then for any polynomial 0 # h € P;[Zy,...,Zy] the bound
|h(v£;|7_11), - 1(;17_"11))| < expUtY) pys holds for a suitable polynomial P23 because of lemma 7.
Thus, to prove theorem 2 it remains to prove a lower bound on h(vl(fl), N l(i"{)) € Piyq.

Firstly, we consider the case when vl(ill), e ,vl(i”{) are algebraically independent over
P;. Suppose that |h(v 1(;17_11), ce 1(;17_"11))| < (expU*D p)~! for all the polynomials p. Then we
say that h(vl(ill), - l(i”{)) is small. Also we suppose that m is the least possible with this

property. Finally, without loss of generality, one can suppose that the polynomial % is

irreducible over P;.

Since the derivative D(h(vl(ill), - l(i”{))) = 1<%; — (L‘fq o(v 1(217—[1)) = g(vl(ill)7 . Z(i”ll))
€ Piyy for a certain polynomial ¢ € Pi[Zy,..., Z,;],_ the derivative should be also small

(as being also a Pfaffian function). If A { ¢ in the ring P;[Z1,...,Z,,] then there exist
polynomials hy, ¢y € P;[Zy,..., 2] such that 0 # hhy+gg, € Pi[Zy, ..., Zpn—1]. But then
the function (hhq + ggl)(vl(ill), el l(i”{)) is small by virtue of lemma 7, this contradicts to
the choice of m.

Now let ¢ = hgo for some gy € Pi[Zy,...,Zy]. Consider any 1 < ¢ < m for which

deg,(q¢) <1, then for each 1 < s <m

ah 8 ‘1 ‘m
deg (Ge) (8 (s )qs( Eif)) < degv({l_zl)(h(vz(il)v"' 7vl(:|7-1)))

+1
o Ch

and therefore, Z, does not occur in the polynomial go. If for some 1 < ¢ < m deg,(q;) > 2

(]z)|

then lemma 7 entails that |v < exp® pys for a suitable polynomial po3. Hence

lgo(v G v(jM))| < exp®pyy for a certain poy.  Thus |D(h(v (1) ,vl(i”{)))/

z—l—l 9 9 ‘z—l—l i ) z—l—l 7‘
h(v 1(;17_11), . ,vgi’?))‘ < exp'® pyy, therefore |log |h(v£;|7_11), e ,vgfll)ﬂ | < exp'” pas for an

appropriate pos and finally |h(v£ill), o ,vgi’?))‘ > (expUt) pyg) ™!, this contradicts to the

supposition that h(vl(ill), . ,vgi”{)) is small.



In the general case choose some transcendental over P; basis (let it be o) v(js))

) +1° > Vi1
among vl(ill), . 7”1(:17—7111)‘ Then there exists a polynomial #Y) = Y tOy¢ ¢
0<t<k
P; [vgill), . ,vl(il)][Y] with the coefficients (0 € Pi[vl(ill), s 1(;17_1)] 0< (< kandt® £0

such that t(h(vgill), . ,vgi”{))) = 0. Since we have proved that [¢t(9] = (explt) pys)™!
and by lemma 7 [t(0] < expltD pys, 0 < £ < k for a suitable pyg, we obtain that

|h(v£ill),..., l(f{))| = (1/2)(expli*tV) pyg)™2 and complete the proof of theorem 2 tak-
ing into account that any element of the field Pjy1 can be represented as a quotient
R (v 1(;17_11), - Z(iM))/h(z)( 1(;17_11), - l(i”{)) for some elements vl(ill), o ,vl(i"{) € P;1q each

satisfying an equation of the type (1) and polynomials AV, 12 € Pi[Zy,..., Z ).

6. Deviation theorems for elementary sigmoids.

By an elementary sigmoid with a depth d we mean a sigmoid like in the section 1 where
at the computational step (2) the gate function is either u = exp or u = log, in the latter

(1)

case we impose a requirement that (g1/¢2)(w; ’,...,X) is positive everywhere. Then the
function wgi)l satisfies an equation of the form (5) and therefore w(i)l € P;+1. A function
computed by an elementary sigmoid is elementary (cf. [S]). A “standard” sigmoid ([MSS])

is a particular case of an elementary one. Theorem 2 implies the following.

COROLLARY 2. Let a function 0 # f be computed by an elementary sigmoid with a depth
d. Then for a certain polynomial pyy we have (exp(® py7)™" < |f] < exp'® pyr.

The remarks similar to remarks 1, 2 and the remark about Blum-Shub-Smale model

from the section 1 are true also for the elementary sigmoids.

Acknowledgements. The author would like to thank M. Singer for valuable remarks
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