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Abstract .  We prove the first nontrivial (and superlinear) lower bounds 
on the depth of randomized algebraic decision trees (with two-sided er- 
ror) for problems being finite unions of hyperplanes and intersections 
of halfspaces, solving a long standing open problem. As an application, 
among other things, we derive, for the first time, an f~(n 2) randomized 
lower bound for the Knapsack Problem, and an ft(n logn) randomized 
lower bound for the Element Distinctness Problem which were previously 
known only for deterministic algebraic decision trees. It is worth not- 
ing that for the languages being finite unions of hyperplanes our proof 
method yields also a new elementary lower bound technique for deter- 
ministic algebraic decision trees without making use of Milnor's bound 
on Betti number of algebraic varieties. 
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1. In troduct ion  

Starting with Manber & Tompa (1985), Snir (1985), Meyer auf der Heide 
(1985a) and Meyer auf der Heide (1985b) there has been a continued effort 
in the last decade to understand the intrinsic power of randomization in alge- 
braic decision trees (see also Biirgisser, Karpinski & Lickteig (1993), Grigoriev 
& Karpinski (1993), Grigoriev & Karpinski (1994) for some more recent re- 
sults). Several algebraic and topological methods which were introduced in 
proving lower bounds for deterministic algebraic decision trees (cf. Yao (1981), 
Steele & Yao (1982), Ben-Or (1983), BjSrner,Lov&sz & Yao (1992), Yao (1992), 
Grigoriev, Karpinski & Vorobjov (1997), Yao (1994)), with the exception of 
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Biirgisser, Karpinski & Lickteig (1993), and Grigoriev & Karpinski (1993), were 
not yielding lower bounds for the case of randomized decision trees. In Meyer 
auf der Heide (1985a) a lower bound has been stated on the depth of random- 
ized linear decision trees (randomized algebraic decision trees of degree 1) for 
the case of languages being finite unions of hyperplanes (a gap in the proof of 
the Main Lemma of Meyer auf der Heide (1985a) for the generic case was closed 
in Grigoriev & Karpinski (1994)). Our paper provides the first lower bounds 
on the depth of randomized algebraic decision trees in the ease of the problems 
being finite unions of hyperplanes as well as intersections of halfspaces. This 
provides also a new method for proving lower bounds for deterministic alge- 
braic decision trees without making use of Milnor's bound and Betti numbers 
of algebraic varieties. As an application we derive randomized lower bounds for 
a number of concrete problems, among others, Knapsack (f~(n 2) lower bound), 
and the Element Distinctness (t2(n log n) lower bound). 

The paper is organized as follows. Section 2 introduces randomized alge- 
braic decision and computation trees. Section 3 overviews the known results 
in the area. Section 4 summarizes our results and applies them for a number 
of concrete problems. Section 5 gives an outline of the lower bound proof, and 
Sections 6 and 7 give the proof of the Main Theorem. Section 8 contains the 
complexity lower bound for deterministic decision trees under less restrictive 
conditions than in the Main Theorem for their randomized counterparts. 

2. D e t e r m i n i s t i c  a n d  r a n d o m i z e d  d e c i s i o n  t r e e s  

An algebraic decision tree of degree d, a d-DT, for inputs (z l , . . . , x~)  E ~ 
is a rooted ternary tree. Its root and inner nodes are labelled by polynomials 
from P~[X1, �9 �9 �9 Xn] of degree at most d, its leaves are accepting or rejecting. 
The computation of the d-DT on input (xl, . .  �9 x~) E ]R ~ consists of traversing 
the tree from the root to a leaf, always choosing the left/middle/right branch 
of a node labelled with polynomial 9 depending on whether 9(Xl, . . . ,  z~) is 
smaller/equal/greater than 0. 

The inputs (x l , . . . , z~)  E ]R ~ arriving at accepting leaves form the set 
S C_ ~ recognized by the d-DT. 

We deal in this paper with randomized algebraic decision trees of degree d, d- 
RDTs  for short. There are several variants of this model known in the literature 
(see, e.g. Meyer auf der Heide (1985a), Meyer auf der Heide (1985b), Meyer 
auf der Heide (1985c), Manber & Tompa (1985)). One of the most natural 
variants allows coin flipping nodes and charges for the random bits used. Other 
variants ignore the costs for random choices, or pull flipping nodes out of the 
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decision trees, and view a d-RDT as a finite collection {T~} of d-DTs T~ with 
the assigned (rational) probabilities p~, ~-~p~ = 1, of choosing T~ out of the 
collection {T~}. In the latter case we also do not charge for the randomization. 
This variant is easily seen to be equivalent (up to constant factors in the depth) 
to the "equal likelihood" variant with all trees T~ having equal probabilities p~ 
(p~ _ 1 I{~}1)" In this paper we use the last model mentioned above and define 
a d-RDT as a finite collection {Ta} of d-DT Ta. Such a d-RDT recognizes 
S c_ ]R n, if, for each x E ]R ~, at least a fraction of i - 7 of the T~'s classify x 
correctly w. r. t. S, for some 7 c (0, 1), called the (tw~sided) error probability. 

We note that the class of sets S C_ F~ n recognized by d-RDTs is closed under 

complement. 
The depth of T is the maximum depth of the T~'s. In case of d = 1 we 

talk about deterministic or randomized linear decision trees, LDTs or RLDTs. 
In case we do not restrict the degree of the polynomials but charge for each 

arithmetic operation needed to compute them we talk about deterministic and 
randomized algebraic computation trees, CTs and RCTs (for details see Ben-Or 
(1983)). 

We note that FtDTs are robust under changes of the error probability. This 
fact was first observed in Bennett &: Gill (1981), and then explicitly formulated 
and proven for RDTs in Meyer auf der Heide (1985c) (Claim 1.3, p. 327): 

FACT 1. AMPLIFICATION. Let 7 ~, 7 E (0, �89 be constants. Every d-t~DT of 
depth T recognizing L C_ 1R ~ with error probability 7' can be simulated by a 
d-RDT of depth O(T) recognizing L with error probability 7. 

A standard notion of runtime of randomized algorithms is worst case ex- 
pected time, i.e., the maximum of the expected runtimes of the algorithm started 
with input x, maximum taken over all inputs of length n. In Manber f~ Tompa 
(1985) it is shown that any d-RDT with worst case expected time T can be 
simulated by one with depth O(T). Using Fact 1, the error probability can 
remain unchanged. 

3. K n o w n  results  

The most important results in connection to this research are the variants 
of the component counting lower bounds for deterministic computations: Let 
L c IR n have q connected components. Then each LDT for L has depth 

r _ n )  f~(l~g(q)) Dobkin ~: Lipton (1978), each d-DT for L has depth ~lo-~-~ 
(can be deduced from Ben-Or (1983), see also Steele ~: Yao (1982)), each CT 
for L has depth f/(log(q) - n) Ben-Or (1983). 
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The last two results heavily depend on Milnor's bound on Betti numbers 
for real algebraic varieties, thus use deep results from algebraic topology. 

In order to apply the component counting lower bound one has to count 
the number of connected components of interesting problems. 

Consider, e.g., an Integer Programming Problem Ln,s = {x E Nn, 3a E 
{0, . . . ,  s} n : xa = s} cf. Meyer auf der Heide (1985a), Meyer auf der Heide 
(1985b). For each s > 1, the family {Ln,s, n C IN}, restricted to integer inputs, 
is NP-complete, for s = 1 this is the famous Knapsack Problem. 

As shown in Dobkin & Lipton (1978) for s = 1 and in Meyer anf der Heide 
(1985b) for arbitrary s, IR ~' - Ln,s has (s + 1) a(~2) many connected components, 
yielding lower bounds f~(n 2 log(s + 1)) in the above models. In Meyer auf 
der Heide (1984) and Meiser (1993) it is shown that all these NP-complete 
problems have polynomial depth LDTs,  for their n-dimensional restrictions. 

A further important example is the Element Distinctness Problem Ben-Or 
(1983), with the connected components bound n!, and therefore a determin- 
istic lower bound ft(n logn). Other related problems are: Set Disjointness, 
Resultant, and the s-Approximation Knapsack Problem (cf. Ben-Or (1983)). 

As far as randomized DTs are concerned much less is known. In Meyer 
auf der Heide (1985a) it is shown that deterministic and randomized LDTs,  
d-DTs, and CTs, resp., are polynomially related. A randomized lower bound 
is shown in Meyer auf der Heide (1985b) that extends the lower bounds for e. g. 
the problems mentioned above to randomized LDTs. (A gap in that proof for 
the generic case was closed in Grigoriev & Karpinski (1994).) 

In Bfirgisser, Karpinski & Lickteig (1993) it is shown that there are benefits 
if randomization is used in CTs: Consider the language {(x, y) E N2~ : y is 
a permutation of x} C_ 1~ 2n. As this language consists of n! n-dimensional 
linear subspaces of IR 2n, a restriction to an n-dimensional affine subspace in 
general position turns it into a set of n! isolated points. Thus its deterministic 
complexity is f~(n log n) on the above deterministic models. On the other hand, 
as noted in Biirgisser, Karpinski & Lickteig (1993), RCTs need time O(n) only. 

4. N e w  results  

m Consider S = Uim=l H~ or S + = N/=I H+ where the H/'s are hyperplanes, and 
the H+'s are closed halfspaces. S is often called a linear arrangement, S + is 
a polyhedron. A k-face L of S is a k-dimensional plane defined by intersecting 
n - k of the Hi's. If L is k-dimensional on the boundary of S +, it is also a 
k-face of S +. O-faces are also called vertices. 

We prove the following lower bound. 
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MAIN THEOREM. For any constants 0 _< 3' < �89 s > 0 and T > 6 >_ O, 
there exists a constant Co > 0 satisfying the following. Let H1, . . . ,  H,~ be 
hyperplanes in ~{n, S m + m = Ui=l Hi, S = Ni=I H+ for m > n. I f S  or S + has at 
least m "(~-k) k-faces for some k ~ {0 , . . . ,  n - 1}, then each d-RDT for S or 
S + with error probability -), has depth greater than Co(n - k) log(m), provided 
that d G elm ~. 

Obviously, in a generic arrangement (when all the intersections of subfam- 
ilies of the hyperplanes are pairwise distinct) the number of k-faces equals 
(~-k) which is bounded from below by m a(~-k), provided that  m > ~2(n 1+~~ 
for some ~ro > 0, thus the bound on the number of k-faces from the theorem is 
attainable. In case of a polyhedron, the upper bound O(mmin{n-k'[~ ]}) Edels- 
brunner (1987) on the number of k-faces is also attainable (for example for the 
dual to the cyclic polyhedra, see McMullen & Shephard (1971), also Grigoriev, 
Karpinski & Vorobjov (1997)). 

Our Main Theorem yields directly the following two concrete applications. 

COROLLARY 2. For 6 > 0 sut!iciently small, the following randomized lower 
bounds hold. 

(1) a(n  2 ]og(s + 1)) is a lower bound for the depth of any d-RDT (with 
d = O((s + 1)~)5 < ~ )  recognizing the Integer Programming Problem 
L T ~ 8  �9 

(2) a(n 2) is a lower bound for the depth of any d-ROT (with d = O(2en), 6 < 
1 )  recognizing the Knapsack Problem or the G-Approximation Knapsack 
Problem. 

COROLLARY 3. f~(n log n) is a lower bound for the depth of any d-RDT (with 
d = O(ne), 6 < �89 for the following problems: 

(1) Element Distinctness, 

(2) Set Disjointness, 

(3) Resultant (Decision Version). 

PROOF OF COROLLARY 2. Observe that  (1) entails (2). 
We prove now (1). Without  loss of generality we assume that  n = 8r for certain 
integer r. Our purpose is to prove that  Ln,s = {x C ]R n, 3a C {0 , . . . ,  s} ~ : xa = 

s} contains at least (s + 1 )~  vertices. Consider the following system of linear 
_ ~ n variables xl, . ,x~:  equations Ej, 1 _< j < 7 in 7 "' 
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E1 : sxl  = s; E2 : sx2 = s; E3 : sxl + sx2 + sza = s; E4 : sxl + sx2 + sx4 = s. 
For any 0 < l < r -  2: 
E4l+5  : SXl  At- 8X4l+3 -~ X4l+4 -I- X4/+5 = 8; 

]~4l+6 : SXl -~- SX41+3 2c X4/+4 @ X4/+6 = S; 

~ 4 l + 7  : 82:1 -~- X4l+5 @ ~4l+7 = 8; 

Eal+s : sxl  + x41+5 + x41+8 = s 
Obviously, the system K ( X I , . . . , X ~ )  = ( s , . . . , s )  T has a unique solution 
x4t+x = x4 +2 = ( s  + 1 ; ;   4t+3 =  4t+4 = - ( s  + 1 ;  for I = 0 , . . . ,  r - 1. 

~ matrix with the property that  all its entries being Let C be any 7 x 7 
integers in the range from 0 to s such that  its columns with the numbers 
4 l + 1 , 4 1 + 2 , 4 l + 3  for a l l0  < 1 < ~ - 1 ,  consist of zeroes. Consider the 
following n • n matrix 

A(C)  : 0 K 
n n where I is the unit 7 • ~ matrix. 

Evidently, the linear n • n system A ( C ) .  X = ( s , . . . ,  s) T has a unique 
solution X ( C )  : ( x l , . . . ,  xn). Therefore, X ( C )  is a vertex of Ln,~. 

Moreover, we claim that  for different choices of above matrices 
C, C' the respective vectors X ( C )  and X(C ' )  are different. Indeed, 
(Xg+l , . . . , z~)  = ( 1 , 1 , - 1 , - 1 , ( s  + 1),(s + 1 ) , - ( s  + 1 ) , - ( s  + 1 ) , . . . , ( s  + 
1) ~-l , (s  + 1) r - 1 , - ( s  + 1) ~ - l , - ( s  + 1)~-l). For i < ~ we have xi = 
s - Y~o<~<_r_taj(s + 1) j, aj ~ {0, . . .  ,s}, herewith i-th row of C equals to 
(ao, O,O,O, al,O,O,O, a2,0, O,O, . . . ,ar_l ,0 ,  O,O). Since0 < aj < s we get that  
the i-th components of the vectors X ( C ) ,  X (C ' )  differ, provided that  C and 
C' differ in the i-th row. 

Thus, we can choose (s + 1)@ distinct matrices of the form C and thereby 
so many distinct vertices of L~,~ of the form X(C) .  In other words, in the 
application of the main theorem we have m = (s + 1) n, k = 0 with at least 

+ : m 16 o f  0 - f ace s  in  t h e  arrangement Ln,s. []  

PROOF OF COaOLLaRY 3. The proof of (2) is similar to the proof of (1), and 
obviously (2)implies (3) (cf. Ben-Or (1983)). 
We give now a proof of (1). Observe that  the faces of the arrangement 
Ui<j{xi = xj}  (which represents the Distinctness Problem) are in one-to-one 
correspondence with all partitions of the set {1 , . . . ,  n} (except the partition 
into singletons {1} , . . . ,  {n}). Indeed, the partition A1 U . . .  U Ak = {1 , . . . ,  n} 
corresponds to the face being the intersection of all the hyperplanes {x~ = xj}  
for i , j  E At, 1 < I < k, and the dimension of this face equals to k. Taking 
k = ~ (let n be even w. 1. o. g.) we obtain at least /c! partitions A t , . . . ,  Ak 



cc 6 (1996/1997) A Lower Bound for Randomized 363 

of the following form: for each permutat ion 7r e Sk, put  A~ = {i, k + ~r(i)}, 
1 < i < k. Thus, in the application of the theorem we have k = ~ (provided 
tha t  n is even), m = (~), and the number of k-faces equal to k! > m 5(~-k), for 

1 [] arbi trary ~ < ~. 

5. Outl ine of the lower bound proof 

Assume that  the arrangement S = Ul<i<m Hi has a vertex v, then after a 
certain permutat ion one can suppose that  the hyperplanes Hi = {x G ~n:  aix = 
bi}, 1 < i < n are affinely independent and {v} -- H1 A . . .  N H~. 

Let A denote the n • n-matrix whose rows are a l , . . . , a n .  For a polyno- 
mial f E ~ [ X 1 , . . . , X n ]  we consider its expansion with origin v and coordi- 
nates a l , . . . , a n ;  f(v;H1,...,H,~) (Y1, . . . ,Yn)  := f ( v  + A - I ( Y 1 , . . . , Y n ) ) .  Denote  

for brevity g = f(v;H1,...,H,~) and define the leading term lm(g) as follows: First 
take the terms of g with the least degree in Yn, then among them with the 
least degree in Y~-I and so on, till ]I1. One could describe lm(g) by means of 
infinitesimals (eft, e. g., Grigoriev & Vorobjov (1988)). 

Namely for a real closed field F (see e. g. Lang (1984)) we say that  an 
element c transcendental over F is an infinitesimal (with respect to F) if 0 < 

< a for any element 0 < a C F. This uniquely induces the order on the field 

F(~) of rational functions and further on the real closure F(c) (see Lang (1984)). 
Now let al > . . .  > an > 0 be the elements such that  ~+1 is infinitesimal with 

respect to the real closed field JR(c) for a = ( a l , . . . , a t ) ,  0 < g < n. Then 
the sign sgn(g(E1, . . . ,  an)) = sgn( lm(g) (c l , . . . ,  an)) and this property uniquely 
determines the term lm(g). Actually, one could stick in the arguing below with 

the real numbers 1 = a~ ~ > e~ ~ > . . .  > e(~ ~ > 0 instead of s l , . . . ,  an where 

a(0) is "considerably smaller" than e~ ~ 0 < l < n - 1. But then one should ~+1 
specify, what does it mean "considerably smaller", and it is more convenient 
to use infinitesimals. 

Now fix a family of polynomials f l , . . . , f s  E IR[X1,...,Xn]. By 
Var (€ fs) we denote the number of variables among Y1, . . . ,  Yn 
appearing in the leading terms lm(f}v'Ht"'H~)), . . . ,  "**'\3slrn[f(v'Hl'""H'~)'~/" For a d- 
DT T, Var(~;H~""'H~)(T) denotes the maximum of all Vat (';H~''H~) ( f l , . . . ,  f~), 
maximum taken over all f l , . . . ,  f~ appearing as testing polynomials on a path  
in T. We extend the above definition to the case of the less number of hy- 
perplanes H1, H~-k for some 1 < k < n -  1. Then L ---- (3n-kH. is a 

�9 " �9 , - -  - -  I I i = 1  z 

k-dimensional affine subspace of lg ~. For a generic point v C L we take an 
(n - k)-dimensional subspace U orthogonal to L, with {v} = L N U. We define 
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Va (vH1 ... H,~_k) r k' ' ' (T) as above, for the polynomials f l , . . . ,  f ,  restricted to U. 
The following two lemmas imply the lower bound from our Main Theorem (in 
Lemma 4 we utilize just  introduced notations). The following chapters contain 
their proofs. 

LEMMA 4. Let  T be a d - R D T  (or an R C T )  recognizing 
a) an arrangement  S = Ut<i<_~ Hi for some hyperplanes H1, . . . ,Hm such tha t  
L = ~l<_i<_~-k Hi is a k-face of S , or 

b) a polyhedron S + = Nlgi<m Hi + such that for each 1 < 1 < n -  Ic f-~lgi<n-k Hi 
is (k + l - 1)-face o f  S +, 

1 Then  Var(v;H~"'"H~-k)(T~) > (1 -- 2"y) 2 (n -- k) with error probabi l i ty  V < 7" - " 

1 - ~  of  all T~ 's. for a fraction of  

Let us denote IR~_ = { ( x l , . . . ,  x~):  xi _> 0, 1 < i < n} and N~ = (1R\{0})% 
Lemma 4 entails two direct corollaries for both R D T s  and R C T s ,  which give 
an interesting geometric interpretation of the depth bounds of Lemma 4. 

COROLLARY 5. Any R U T  which recognizes 1R~+ or 1 ~  mus t  have dep th  greater 
1 than or equal to 7(1 - 2~/)2n. 

COROLLARY 6. Any d - f I D T  which recognizes ~n+ or 1 ~  mus t  have depth  
1 greater or equal to 2(1 - 2v)2n. 

PROOF OF COROLLARIES 5 AND 6. Because of Lemma 4 there is a CT 
(resp. d-DT) To from the definition of an I~CT (resp. d-RDT) satisfying 
the condition Var(v;x1"'"x~)(T~) >_ (I- 2v)2n (here XI,... ,X~ denote the 
coordinate hyperplanes). Take a path in T~ with the testing polynominals 
f , , . . . ,  fs  along it for which Var(v;x*" '"x=)( f l , . . . ,  fs) >_ (1 - 2 7 ) 2 n .  

To complete the proof of Corollary 5 we easily show by induction on l 
that  the polynominals f l , . . . ,  fz (1 < 1 < s) depend on at most 21 variables 
among X 1 , . . . , X ~ ,  since any computation step along the path in T~ could 
introduce into the game at most two new variables (one could evidently view 
the sequence of computation steps along the path as a straight-line program 
in which each step is an arithmetic operation with at most two arguments). 
Therefore, s >_ �89  f , ) .  To complete the proof of Corollary 

6 we notice that  each term lm(f( i ' ;x l" 'x~)) ,  1 < i < s, depends on at most d 
variables, hence s >_ ~ Var(v;x*" '"x~)( f l , . . . ,  f , ) .  [] 
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Let S Ui=lHi or S + m + = m = Ni=IH i for hyperplanes H1,.. . ,  Hm C ~3tn. 
For a k-face L of S let 1 _< il < .. �9 < in-k _< m be the (inverse lexicograph- 

ically smallest) sequence of (n - k) indices such that  L = Hi1 A. . .  N Hi~_~, i.e. 
i~_e is the maximal possible index such that  Hi~_k D L, and in-k-1 < in-k is the 
maximal possible index such that  Hi~_k_l D L and dim Hi~_~ NHi~_~_I = n -  2, 
and so on. We fix this canonical representation of L = Hil A . .  �9 ~ Hi~_~ by 
means of the indices in-k > ... > il. 

Now we give the canonical representation of a k-face L of the polyhedron 
S+ = ["ll<i<m H+- W.l.o.g. one could assume that  dim S + = n (indeed, oth- 
erwise one can replace the d-RDT under consideration by a d-RDT obtained 
by restricting this d-RDT on the plane, being the linear hull of S+). For any 
kl-dimensional face L1 of S + there exist hyperplanes Hi1,.. . ,  Hj~_kl such that  
L1 = HjI ~ . . .  A Hj~-k~. Under a hyperface of a/-dimensional  polyhedron we 
mean a (1 - 1)-plane which is its face of the dimension (l - 1). W.l.o.g. one 
could assume that  all hyperplanes H 1 , . . . ,  H,~ are hyperfaces of S +. 

By 7-/o denote the family of all hyperplanes Hi such that  Hi D L and Hi is a 
hyperface of S +. Since S + is a convex polyhedron, any its face is an intersection 
of some its hyperfaces, in particular, any its face L 1 which contains L C L1, 
could be represented as L1 = NH~e~,oHi for a suitable subfamily 7-/~ C 7-/o. 

Assume that  by recursion on 1 it is already produced a sequence of 
indices i~-k > . . .  > in-k-l+1, 0 _< l _< n -- k - 1, such that  
H~_~ N.- -~H~-k-z~+~ is a (n - /~ ) - f ace  of S + for every 0 < l~ _< I. De- 

note the polyhedron S + = (Hi~_k [7...[7Hi~_~_~+~) [7S+- In addition, a 
family 7-/1 C {H1,...,Hi~_k_~+~-I} is produced such that  for any Hi E Tll 
(Hi,~_k ~ . . .  ~Hi,~_k_~+~) [-]Hi contains L and is a hyperface of S +, and vice 
versa any hyperface of S + has the form (Hi~_k N . . . N H ~ - k - ~ + ~ ) ~ H i  for 
a certain Hi E 7-/I. Hence any face L1 D L of S + has the form L1 = 
(Hi~_k [7... ~Hi~_k_z+~) ~ (~H~e~I Hi) for a suitable subfamily 7-/~ C ~l .  

To carry out the recursive step, take as in-k-z the maximal index 
such that  Hi~_~_~ 6 7-/z (obviously, i~-k-I < i~-k-Z+l). Then L0 = 
H~_ k ~ . . .  ~ H~_k_~+~ ~ Hi~_k_~ is a hyperface of S +. Denote the polyhedron 
Si+d-1 = Hin-k-I N S~. Take as "}~/+1 the family of all Hi C 7-/1 such that  Lo ~ Hi 
is a hyperface of Sl+~ (evidently, L0 ~ Hi D L since Hi~_k_,, H~ e 7-/t). Due to 
the choice of i~,-k-t we have 7-l~+~ C {H~,.. . ,  Hi,~_~_~-~}. 

It remains to prove that  for any hyperface Le of S ~  such that  Le D L, there 
exists Hi ~ 7-l~+~ such that  Le = L0 A Hi. According to the property of ~ t  there 
exist Hj~, Hj~ e 7-l~ such that  L~ = (Hi,~_~O...~Hi~_~_~+~)AHi~H~ and 

L~ ~) = (Hi,~_~...~Hi,~_~_~+I)AHj~, L~ ~) = (H~,~_~...~Hin_~_~+~)~H~ 
are the hyperfaces of S +. For any face of codimension 2 of a convex polyhedron 
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there exist exactly two hyperfaces containing this face, and furthermore this 
face coincides with the intersection of these two hyperfaces. Since the face L2 
of S + lies in three of its hyperfaces -2 r(1), -2 r(2), Lo, we have either L~ 1). = Lo or 

L~ 2) = Lo. Let for definiteness L~ 2) = Lo; then Hi1 E ~l+1 by the definition of 
~z+l, and L2 = Lo A Hi1, that  completes the recursive step. 

Thus, at the end of the recursion we obtain a flag of L (which we treat as the 
claimed canonical representation of the k-face L) Hi~_k D Hi,~_~ ~ Hi~_k_~ D 
. . .  D H i ~ _ ~ H i ~ _ k _ ~ . . . ~ H ~ l  = L such that  for each 0 _< l _< n - k 
Hi~_k ~ . . .  ~ H~_k_~+l is a (n - / ) - f ace  of S + (the recursion on l implies that  
dim (Hi,_k ~ - . .  A Hi,_k_l+X) = n -- 1, cf. lemma 4). Just to satisfy these prop- 
erties of the flag of L, the above inductive construction was required. 

Let VL be a generic point of L which belongs to no lower dimensional 
face of S or S +. We choose a coordinate system (Z1 , . . . ,  Zk,! /1 , . . . ,  Y~-k) 
in an arbitrary way. Expanding each polynomial f C P~[X1,... ,X~] in 
the variables Z1 , . . .  ,Zk,  Y 1 , . . . , Y ~ - k  we define its leading monomial (cf. 
beginning of this section) lm(~L)(f) considering f as a polynomial from 
]R[Z1, . . . ,  Zk][Y1, . . . ,  Y~-k] C JR(Z1 , . . . ,  Zk)[Y~, . . . ,  Y~-k], i.e. first taking the 
monomiMs with the least degree in the variable Y~-k, after that  among them 
with the least degree in Y~-k-1 and so on till the variable Y1. Let T' be a 

,~ (~L,H~ Var(~L) (T,). d - D T .  We abbreviate VaT k ..... m~-~)(T')  by 

LEMMA 7. A s s u m e  that, for some c > O, there are at least M k-faces L o f  
S or S + wi th  V a r ~ L ) ( T  ') >_ c(n -- k). Then  the depth  t o f  T '  fulfils M <_ 

( td )~(n-k) .6n-k.  3t " m(1-c)(n-k) " tc(-Na~-k) 

Using these lemmas it is easy to conclude the Main Theorem: 

First consider a d - R D T  for S or S + with error probability 3' E (0, !) small 2 
enough such that  ~ := ~- - (1 - (1 - ~)c) > 0 , where c := (1 - 23') 2 and % 
chosen as in the Main Theorem. 

Then Lemma 4 yields for each k-face L of S or S+: Var~'L)(T~) >_ c" ( n - - k )  
1-2~ of the T~'s. Thus there is a To with Var~L)(T~)  > for at least a fraction of ~ 

1-2")' (1 - 23')2(n - k) for 2---2~ " N many k-faces L of S or S +. 
Therefore Lemma 7 implies that  

2t (  t ~c(n-k) . c~(n-k)6n-k i f  d < c l m  ~. 1--23'q)@3(n--k) < . c--C-C-C-(-(-~-k)] 2--23' " "  

This proves the lower bound claimed in the Main Theorem for the choice 
of 7 described above. Using Fact 1 yields the Main Theorem for arbitrary 

3' c (0, �89 [] 
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6. Pr oo f  of Lemma 4 

First observe that  it is sufficient to prove the lemma for k = 0 and under the 
assumption that  v = 0 and Hn D HnNHn_I D - . .  D H~n. . .AH1 = { (0 , . . . ,  0)} 
is the canonical representation (flag) of 0-face { (0 , . . . , 0 )}  (in both cases a), 
b)), and herewith the Hi's, 1 < i < n, are defined by {x E Nn : x~ = 0}, in 
other words the linear transformation (Yl,. . . ,Yn) H v + A ( y l , . . . ,  y~) is the 
identity. 

b) Now let the d-RDT (or the RCT) recognize S + = D~=I H + with er- 

1 Consider the points E = ( e l , . . , O n )  and E} +) ror probability 3' < 5' �9 = 
( r  with i = 1 , . . . , n .  We show that  E c S +. 
Take any hyperplane Hi = {fllX1 + . . .  + flnXn +/3o = 0}, n + 1 _< 1 _< m 
given by a linear function LH, with flj C IR, 0 <_ j <_ n. We need to 
show that  LH~(E) >_ O. Denote by 0 < j0 < n the index such that  
fl0 . . . . .  fl~o-~ = 0, flJo r 0. It suffices to show that  fljo > 0, this 
would entail that  sgn(LHz(E)) = sgn(fljo ) > 0. Pick out an arbitrary point 

Vn-jo = (X~ "-j~ X! n-j~ 0 , O) E ((H, A ' "  N Hdo+l ) A S +) \ Hjo. There- 
" " " ~ 30 ~ ~ "" " 

fore, x(~-J~ • 0 and 0 < LH~o(v~_jo ) = xJo-(~-J~ since v~_jo E S +. Hence 
30 

0 < sgn(LH~(V~_jo)) = sgn(fljo, x!n-J~ therefore sgn(fljo ) > 0, this implies 
- -  .70 / 

that E ~ S +. Evidently, E} +) ~ S +. 
Easy counting yields that  the probability of T~'s that  classify E and at least 

1-23' (1 - 27)2n many E[+)'s correctly is greater than 2---=~7' Indeed, the probability 

of the set of all a for which T~ classifies wrong at least (1 - (1 - 27)2)n among 
7n 1 Hence the probability E(+),i 1 < i < n is less or equal to (1-(1-23")2)~ - 4(1-7)" 

of c~ such that  T~ classifies E and at least (1 - 27)2n among E(+),i 1 < i < n 

( correctly is greater or equal to 1 - 3' 4(~-7) > 2-23'" 

Take one such T~ and some io such that  T~ classifies E} +) correctly. 
Denote by f ~ , . . . ,  f~ the testing polynomials along the path in T~ fol- 

lowed by input E. We claim that  Xio occurs in one of the leading terms 
(+) 

lm( /1) , . . . , lm(f~) .  Indeed, otherwise sgn(fe(E~o )) = sgn(lm(fe(E}+)))) = 

sgn(lm(fe(E))) = sgn(f~(E)), 1 < g < s, therefore E} +) satisfies all the tests 

along the same path as E, hence the output for E}o +) would be "yes", which 
contradicts to the choice of i0. This implies Lemma 1 b) for N~__I H +. 

a) In case of T recognizing S = Ui~l Hi consider the points E} ~ = 
( r  e i+l , --- ,en)  E S, 1 _< i _< n and argue as above, replacing 
E} +) by E} ~ 1 < i < n, and observing that  the point E does not lie in the 
arrangement S. [] 
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7. P r o o f  of L e m m a  7 

To every k-face L defined by an intersection Hit ~ . . .  A Hi,_~, il < . . .  < ix-e, 
see above, with Var(VL)(T ') _> c(n - k), we associate a path in T' with the 
testing polynomials f l , . . . ,  fs for which Var(VL)(T ') = Var(~L)(fl, . . . ,  fs)- 

Consider the flag of L 

Hi,~_k A . . .  ('lHi~ where il < . . .  < in-k were described above. Our pur- 
pose is to label some of these planes in an appropriate way. As a result , a 
labeled flag would be attached to L. Morever, for a fixed path in T' with the 
testing polynomials f l , - . - ,  f~ we organize the labeled flags attached to all k- 
faces L which correspond to this path as a regular tree T = T ( f l , . . . ,  .Is) with 
all the paths of the same length n - k. 

We construct the tree T and thereby the labeled flags by induction on the 
level . The base of induction. Take L which corresponds to the fixed path (we 
utilize the introduced above notations for the coordinates in a neighborhood of 
VL). For the hyperplane Hi~_k we construct a vertex of the tree T being a son 
of the root of T,  and mark it with this hyperplane H~_ k. We label this vertex 
if and only if Y~-k divides one of f l , . . . ,  f~. To complete the construction of 
the first level of T,  we represent the polynomial f j  = f jyn_ks mj ms,~ 12mJ'PH~p, 
1 < j < S as a product for maximal possible mj ,mj ,1 , . . . ,mj ,p  where 
in-k < rl < . . .  < rp and /2H~I,...,/:H~p are all linear polynomials deter- 
mining hyperplanes H ~ , . . . , H ~ p  which divide fj  with the indices r l , . . . , r p  
greater than in-k. We assign to the constructed vertex the polynomials 

IJ l ) (Z1, . . . ,Z t~ ,Y1, . . . ,Yn-k-1)  = 5(Z1,  . . . , Z k , Y 1 , . . . , Y n - k - l , 0 ) ,  1 <_ j < s 
where the coordinates ]I1,. . . ,  Y,-k correspond to hyperplanes H i , , . . . ,  Hi,_k, 
respectively, and Zi, �9 �9 �9 Zk are arbitrary coodinates in L with the origin at VL. 
One could view the polynomial f!l) as being defined on the hyperplane Hi,  k. 

Observe that  the linear polynomials s . . .  s do not vanish on L (due 
to the choice of i~-k) and therefore these linear polynomials do not vanish 
at VL, hence the expansion in the coordinates Z1 , . . . ,  Zk, Y1,. �9 �9 Y,~-k of s  
1 < I < p contains nonzero constant term which is thereby its leading term, thus 
lm(~L)(fj) coincides with lm(VL)~ 'Y'~j~ a ~-k, ~ up to a constant factor. Furthermore, 
l~(~L)f~'v'~J ~ lm(V~)(Z~v ~ = lm(V~)(f~l))yr~_~,l < j < s, and so the 

�9 * *  k J j ~ n _ k ]  = . . . .  t a 3 ] ~ n _  k - -  _ _  

leading term of the new polynomial f}~) up to a constant factor is obtained from 
m j  

the leading term of the former polynomial f j  by dividing on Y(~-k, 1 < j <_ s. 
We refer to this property as the maintenance of the leading term. In particular, 
if the vertex of T under consideration is not labeled, the leading term of all 
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the polynomials change only up to constant factors. If Yn-k occurs in one of 
lm(VL)(fj, 1 _< j < s then the vertex is labeled. 

Notice that  all the k-faces with the same first hyperplane Hi._k in their 
flags, correspond to the constructed vertex ( marked with Hi~_k). Remark that  

the polynomials fO), 1 _< j _< s do not depend on a particular k-face, but still 
we expand them in the coordinates which depend on L (so, VL). 

Now suppose by induction that  * < n - k levels of the tree T are already 
constructed. Consider any vertex w of T at *-th level. To the vertex w leads 
the path (partially labeled), whose vertices are marked successively by the 
beginning elements of a flag 

H~,,_ k D Hi,,_~H~,,_k= I D . . .  D H~,,_k~...~Hi,,_~_~+ ~. 

Finally, the polynomials f~),  1 _< j _< s are assigned to the vertex w. One 

could look at f~t), 1 _< j < s as a polynomial restricted on (n - g)-dimension 
plane H = Hin_~ [-].. �9 ['] Hin_k_,+~. 

If this is the beginning of the flag of a k-face L (we still consider L to keep 

the notations), then we can regard f~e) (Z~ , . . . ,  Zk, Y1 , . . . ,  Yn-k-e),  1 <_ j < s 
as the polynomials in the fixed coordinates in the neighbourhood of VL. As 
above we construct a new vertex of T of the level (~ + 1), being a son in T of 
the vertex under consideration, and mark it with the (n - ~ - 1)-dimensional 

plane Hi._ k N . . .  N H~_,_,+, N H,,_,_, = HNH~,,_,_,.  
Represent fy )  g(e)vqJ rqJ'~ {'qJ'~ 1 < j < s for the maximal 

: Jj ~n--k--~HAHt 1 . . . .  H~Ht~r' - -  - -  

possible qi,qj,1, . . .  ,qj,~r where  in-k-e < t l  < . . .  < tTr and s  ,s 
are all the linear polynomials in the plane H determining hyperplanes 
H D H t ~ , . . . , H N H t  ~ (in H) which divide f}e) with the indices h , . . . , t =  
greater than i~-k-e. We assign to the constructed vertex the polynomials 
f}~+l) = i}~) ( Z l , . . . , Z k , } ' l , . . . , Y n - k - e - l , 0 ) , l  <_ j <- s. One could view the 

polynomial f!e+l) , ~ as being defined on the plane H ~ Hi~_~_~. 
If q~ > I for at least one 1 _< j _< s then we label the constructed ver- 

tex. As in the base of the induction we observe that  the linear polynomials 
s  , s  do not vanish on L (due to the choice of i~-k-l) and 
therefore these linear polynomials do not vanish at Vc, hence the expansion 
in the coordinates Z 1 , . . . , Z k ,  Y1 , . . . ,Y~-k- I  of s 1 < 0 _< 7r con- 
tains nonzero constant term which is thereby its leading term (with respect 
to the coordinates Z1 , . . . ,  Zk, Y1, . . . ,  Y~-k-e). Thus, lm(~) f  (e) coincides with 

) lm (~L) l)Yq'_k_ t up to a constant factor. Furthermore, lm (~) ~jj ~ - k - e ]  = 

lm(VL) (-T}~)] " Ys q~ = lm(~)(f}~+~)] Yq~n-~-~,l _<J _< s. So, the leading term 
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of the new polynomial fy+l) up to a constant factor is obtained from the lead- 

ing term of the former polynomial fSe) by dividing on Yq~n-k-e, 1 _< j _< s. Thus, 
we have ascertained the maintenance property of the leading terms (see the 
base of induction). Also the vertex is labeled if and only if Yn-k-e occurs in 

one of lm(VL) (f(e)) , l <_ j < s. 
This completes the inductive construction of T. Observe that to each path 

in T corresponds exactly one k-face represented by a flag marked on the path. 
Vice versa, by the construction of T every k-face L which corresponds to the 
fixed path of d - DT T' with the testing polynomials fl,  �9 �9 fs, appears in some 
leaf of T. 

Now let us estimate the number of leaves in T. By the assumption of 
the Iemma and due to the property of the maintenance of the leading terms 
on each path of T at least c(n - k) vertices are labeled. Observe that in 
the inductive step of the described construction of T the constructed vertex 
(being a son of the vertex w of the level g; we utilize the introduced above 
notations) which corresponds to the hyperplane H A Hi~_k_, (in H) is labeled if 

and only if the linear polynomial s N m,~_k_e divides the product l~l_<j_<, f(e). 
Let ul < . . .  < up be all the indices such that s Er=~ divides the product, 

[L<j<~ f}e) 1 _< q _< p. By the observed above each labeled son of the vertex w 

is marked with some H~0,1 _< q0 < P. Since in the construction of f y+l )  1 <_ 
j _< s we divided by f-'HVIH~ for all q > q0, we conclude that the degree 

d e g ( H  f}e+l)l < d e g ( H  f r 1 7 6  
\l_<j<s ] \l<_j<_s ] 

(1) 

Notice that the polynomials f~e+l), 1 <_ j <_ s depend actually on the particular 
son of the vertex w, although we do not reflect this in the notations. 

Besides the labeled sons, any vertex in T could have at most m unlabeled 
sons (in fact, each unlabeled son is marked with some H~ with u < in-k-e+1, 
so there are less than m sons in general, but we stick with a rough bound m 

which suffices). 
To estimate the number of leaves in T denote by M(R, Q, D) the maximal 

possible number of leaves in a regular tree (actually, we could stick with subtrees 
of T, so they are partially labeled) with the length of any path equal to R, 
with at most Q unlabeled vertices on any path and with a polynomial of degree 
less or equal to D assigned to any vertex (in 7- we assign the polynomial 

I~15j<s f(e) to the vertex w, see the construction). Assume w.l.o.g, that Q < R 
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(if Q > R then set M(R,Q,D)  = 0). When R = Q we have M (R, R , D)  <_ 
m. M ( R -  1, R -  1, D) and thereby M ( R, R, D) <_ m R by induction on R. When 
R > Q considering such a tree and its subtrees with the roots being the sons 
of the root of the tree we get the following inductive inequality M(R, Q, D) < 
m. M(R  - 1, Q - 1, D) + }-~-l<p<D M(R - 1, Q, D - p )  where the first item in the 
right side relates the unlabeled sons of the root and the second item relates the 

labeled sons (see the bound (1) on deg/IF[ ~(~+1)~ From this inequality ~I ll~j~_s Jj ] ]" 

we get a bound (by induction on R): 

- ( R - Q ) t  " 

Indeed, the right side of the inequality by inductive hypothesis does not exceed 

_< 

o D R - Q  - p R - Q - 1  1) 
m ~ ( R - - Q ) ]  ( ~  l I )+o<_~_lmQ(t~--- -Q -- 1)! ( R Q  

/ 

D R - Q  -- 1 mQ((-~-'i-_-~),(~ 11) + (R~) 1 ) D R - ~  
( R - Q -  1) !R-Q/  

rn Q D R-Q 

which was to be shown. Substituting now 

R : n -  k,Q = ( n -  k)(1 - c), 

D : deg( l -I  fJ) -< sd, 
l_<j_<s 

we obtain an upper bound of 

(sd) c(n-k) n-k 
m(n-k) (1-c)  

(c(n - k))! 2 

for the number of leaves in T. 
So far, we've considered one path of the d-decision tree T' (with the testing 

polynomials f l , . . . ,  fs along this path). 
Denote by t the depth of T' (thus, T' has at most 3 t paths). Since each 

k-face corresponds to a certain path of T' (see the beginning of the proof of the 
lemma), we conclude (by Stirling's formula) that 
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M < 3tm(~-k)O-~)(c(n td--_ k)) c(n-k) �9 6 ~-k, 

which proves Lemma 7. [] 

8. Lower bound  on the complex i ty  of determinis t ic  
decision trees 

For d - D T  T'  which recognizes either an arrangement S or a polyhedron 
S +, we can give the similar complexity lower bound ~(log N) as in the main 
theorem, where N is the number of k-faces of S or S +, without the restric- 
tion N >_ m ~(~-k), imposed in the theorem. This implies the theorem from 
Grigoriev, Karpinski & Vorobjov (1997) in case of a polyhedron S +. For ar- 
rangements S, it gives new proofs of the results from Steele & Y~o (1982), 
Ben-Or (1983), without making use of Milnor's bound on the Betti numbers of 
algebraic varieties, 

THEOREM 8. Any d - D T  T' recognizing S or S + with N k-faces, has depth 
~reater than �89 N - (,~ - k) loga d). 

PROOF. This follows the proof of the Main Theorem with considerable 
simplifications. Namely, in Lemma 4 one states that 

Var(V;H1, ,H'~-k)(T ') = n -- k 

3t( td )~-~3n-k due to the estimation In Lemma 7 we have the bound N _< ~:~-k 
M ( n  - k ,  O, td)  _< ~n-k ( td ) n - k 3 n - k .  [] 

9. C o n c l u s i o n  a n d  open problems 

We have proven that the known counting lower bounds for DTs carry over to 
R D T s  for sets being finite unions of hyperplanes and intersections of halfspaces. 
Two important questions remain open: 
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o Does our lower bound for R D T s  hold also for sets of other structure, 
e. g. finite languages? 

Using the method of Example 2 in Biirgisser, Karpinski & Lickteig (1993) 
On polynomial zero-tests we can construct a finite set of n! points (permu- 
tations) in R n, for which an R D T  with degree n (cf. also the restriction 
on M in Lemma 7) needs constant time. For Randomized Computa- 
Lion Trees (//CTs) the above algorithm needs depth O(n) and Ben-Or's 
(Ben-Or (1983)) lower bound f~(nlogn) holds for deterministic CTs. Our 
lower bound does not give nontrivial bounds for R D T s  of degree rn for 
this problem. 

o Is there some analog of our Main Theorem also possible for randomized 
computation trees (RCTs)  ? 
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