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It is proved that for i somorph i sm of n-ver tex  graphs with weights on the edges there exists a 
complete sy s t em of n 2 + 1 polynomial invariants .  It is also shown that i somorph i sm of graphs r e -  
duces in polynomial time to the factor izat ion of a polynomial in one variable into factors  i r r educ-  
ible over  some field. 

In the present note two reductions are given of the problem of isomorphism of graphs (in connection with 
the literature, cf. [1-4]). It is proved that for n-vertex graphs with weights on the edges, there exists a com- 
plete system of invariants, consisting of (n 2 + 1) polynomials, the degree of each of which does not exceed n 2. 
The second result consists of the reduction in polynomial time of the problem of isomorphism of graphs to the 
factorization of a polynomial into irreducible factors over some field. There appears to be great interest in 
estimating the complexity of the factorization of a polynomial into irreducible factors (especially over the field 
of rational numbers, cf., e.g., [5, 4.6.2]). In some sense both the reductions indicated are realizations of the 
Hfunctorial~ approach (the term is borrowed by the author from [4]). 

To get the reductions indicated, one uses concepts and results, well known in the theory of invariants and 
Galois theory (references are given to the corresponding literature). We shall consider the problem, formally 
more general than the problem of isomorphism of graphs, of the isomorphism of hypergraphs with weights on 
the edges - for this problem there is a clearer connection evident with the algebraic concepts used. The last 
problem reduces in polynomial time to the problem of isomorphism of graphs with weights 0, 1 on the edges - 
we shall call them simply graphs (the indicated reduction is in [2] and is based on considerations already known 

to Birkhoff). 

In order to precisely formulate the problem of isomorphism of hypergraphs, we fix a field F of character- 
istic q. By a (k, n)-hypergraph we shall mean a k-dimensional tensor T = (Til" . .ik) , where 1 -< i~ . . . .  , i k -< n, 
i.e., a k-dimensional cube with side n, in whose cells stand Til" . .ik, elements of the field F; the class of all 
(k, n)-hypergraphs we denote by Gk, n. We shall call a (k, n)-hypergraph T symmetric if Ti~...i k = TiTr(i ). . .i~(k) 
for any 7r, an element of the group S k of all permutations of a set of k elements. In the case when k = 2 and all 
elements Tij assume values 0, 1, we get the contiguity matrix of an ordinary graph (if T is symmetric, then 
the corresponding graph is unoriented). Two (k, n)-hypergraphs T and T' are called isomorphic (and we write 

t 
T ~ T'), if there exists a permutation ~- E Sn, such that T = rT',  i.e., Ti~" . .ik = TT(il). �9 .T(ik) for all 1 -< is, . . . ,  
i k -< n. If TT = T, then T is called an automorphism of the hypergraph T, and the group of all automorphisms we 

denote by nut T. 

The algorithmic formulation of the isomorphism problem consists in estimating the complexity of the 
recognition problem: Are two given graphs isomorphic or not (cf., e.g., [I ] ? This problem is considered dif- 
ficult (a fairly detailed bibliography on attempts to solve it is given in [3]) - it remains an ope n question whether 
it belongs to the class of problems recognizable in polynomial time or not. 

For the first reduction of the isomorphism problem of (k, n)-hypergraphs one constructs a complete sys- 
tem of n k + 1 invariant polynomials, n k of them have simple form and their values can be calculated rapidly, 
while the remaining (nk + 1)-th polynomial takes a long time to calculate with the help of the known schemes of 
calculation (furthermore, there is no evident effective method of defining it). If one succeeded in giving a cal- 
culation of the values of this polynomial in polynomial time, then it would be established that the isomorphism 
of graphs belongs to the class of problems recognizable in polynomial time. 

1. We denote by Fq the primitive field of characteristic q (q is a prime or zero). We call a polynomial 
P(<xil" . .ik >) in n k variables with coefficients in the field Fq an invariant q-polynomial, or simply an invariant 
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for Gk,n, if for any T ~ Gk, n and any permutation r e S n one has P((Til" . .ik)) = P((Tr(il)...r(ik)}). A system 
(finite or infinite) of invariants { Pi} is called complete if for any T, T' ~ Gk,n, from the fact that Pj(( Til" . .ik}) = 
Pj(<T~ ik}) for all j, it follows that T ~ T'. We denote by R = R(q, k, n) the ring of invariant q-polynomials 

for Gk, n;'by F(q, k, n) its field of fractions. 

We give examples of the simplest invariants. Let M ~ Gk, n and the elements of M be zero and one (we 
shall use this notation below also). We set 

where the product is taken over all xil" . .i k for which Mi~" . .i k = 1. Then p~ = ~____~ ~(~) is an invariant. 

THEOREM I. For any q, k, n, there exists a complete system of invariants for Gk,n, containing n k + I 
elements, each of which is an Fq-linear combination of invariants { PM}. 

LEMMA 1. The ring R is finitely generated over Fq (its generating system is, e.g., the set of all {PM}). 

The assertion about the finite generation of the ring R follows from the theorem of Hiibert-Nagata ([6, 
p. 368] - in the present case ~ = S n, A ~' = R). The proof of the fact that for any q, as generating system one 

can take { PM}, completely follows the proof of the fundamental theorem on symmetric polynomials [7, p. 124]. 

LEMMA 2. The ring R(q, k, n) is a complete system of invariants for Gk,n. 

For each T ~ Gk, n we define in the following way a polynomial fT(F, (7i~...ik}) of n k + I variables: 

~ S ~  ~/,~v.. ~ 

If T ~ T ' ,  then fT = fT '  as  p o l y n o m i a l s ,  i . e . ,  t h e i r  c o r r e s p o n d i n g  c o e f f i c i e n t s  c o i n c i d e .  C o n v e r s e l y ,  l e t  fT  = 
f T ' .  We c o n s i d e r  fT and fT '  as p o l y n o m i a l s  in one v a r i a b l e  F wi th  c o e f f i c i e n t s  in the  r i n g  R = F [ ( ? i ~ . . . i k ) ] -  
S ince  the  r o o t s  of the  p o l y n o m i a l s  fT  and fT '  c o i n c i d e ,  fo r  s o m e  T ~ S n in the  r i n g  R~ one has  

T I n rl 

By virtue of the factoriality of the ring R I [7, p. 115], Til...i k r(i~)...r(i k) for all I < ii, . . i k - n. Hence 
T ~ T' is equivalent with the fact that fT = fT', which means the coincidence of the corresponding coefficients 
of the polynomials fT and fT', all of which are elements of R(q, k, n). 

LEMMA 3. The field F(q, k, n) is generated over Fqby(n k+l) by elements which can be chosen as Fq- 
linear combinations of the invariants { PM}. 

This lemma is a special case of Theorem 6 of [8, p. 48], which follows from the primitive element theo- 
rem (cf. [7, p. 168]). In the present ease, the transcendence degree of the field F(q, k, n) over Fq is equal to 
nk and that the field F(q, k, n) is finitely generated over Fq follows from Lemma I. 

The theorem follows from Lemmas 2 and 3. 

Remark. From what is mentioned on p. 417 of [9] it follows that Lemma 3 can be improved: even the 
ring R(q, k, n) is generated over Fq by (nk + i) elements. 

2. The isomorphism problem for hypergraphs reduces to the isomorphism problem for symmetric hyper- 
graphs, evengraphs -eL, e.g., [2] (here and later the reducibility means reducibility in polynomial time). In 
this section, without saying this each time specially, we consider symmetric hypergraphs. 

Let T ~ Gk, n. We divide the set of numbers {I, . . ., n} into domains of transitivity with respect to T, 
putting i, j (1 <- i, j -< n) into one domain if and only if one can find a T ~ aut T such that ri = j. 

It is well known that the problem of isomorphism of graphs reduces to the problem of partitioning into 
domains of transitivity with respect to a given hypergraph. Namely, for T', T" E Gk, n we construct T E Gk,2n , 
s er r ing 

, if Yt, '4"J~j). , .IbK~H, ~ - T  H Tt~,.. t~ - ~,~-~--. tK-~ 
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and otherwise setting Ti, i~ equal to an element of the field F, not occurring among the elements {Tjt" , .jk} 
and { T i t . . . J k }  (if the h e l d  F , s  f ,  m t e  and th is  c anno t  be done ,  then  we pas s  t e m p o r a r i l y  to a l a r g e r  f i e l d ,  and 
then  wi th  the  he lp  of the  me thod  a l r e a d y  m e n t i o n e d ,  r e c o u n t e d  in [2], we pas s  to  g r a p h s ) .  H y p e r g r a p h s  T'  and 
T" a r e  i s o m o r p h i c  i f  and on ly  i f  one can  f ind n a t u r a l  n u m b e r s  i ,  j s a t i s f y i n g  1 -< i -< n < j -< 2n,  and ly ing  in one 
d o m a i n  of  t r a n s i t i v i t y  w i th  r e s p e c t  to T. 

Now Ie t  T E Gk,n and l e t  Yt . . . . .  Yn be  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  F .  Le t ,  f u r t h e r ,  ~ = Yt + �9 �9 �9 + 
Yn . . . . .  an  = Yr. �9 .Yn be e l e m e n t a r y  s y m m e t r i c  p o l y n o m i a l s  in Yt, . . . .  Yn" We c o n s i d e r  the  f in i t e  Ga lo i s  
e x t e n s i o n  of f i e l d s  F(~ = F ( a  I . . . . .  (~n) C F (y t ,  . . . ,  yn  ) = F y .  The d e g r e e  of  th i s  e x t e n s i o n  is  equal  to n! and 
i t s  G a l o i s  g r o u p  i s  S n (ef. [7, p. 222]).  W e  deno te  by f E F(7[z ] the  p o l y n o m i a l  z n -  a l z  n-1 + . . .  + (-1)n(~n. I ts  

roots are y, . . . . .  Yn" We denote further by 0T e Fy the element 2: and by FT the field 
F~(0T)" I~, . . . ,~ 

THEOREM 2. The problem of partition into domains of transitivity with respect to T reduces to the prob- 

lem of factoring the polynomial f into irreducible factors over the field F T. 

Let f = ft �9 �9 �9 fl be the factorization of f into factors, irreducible over F T. Substituting successively 
Yt, .... Yn into ft, .... fD we clarify which are the roots of the polynomials ft .... , fl. By lj we denote the 

set of indices of roots of the polynomialfj (1 < j -<- l), i.e., i EIj <~---> fj(Yi) = 0. 

The Galois group G c S n of the extension F T c Fy coincides (as permutation group) with the group of 

automorphisms autT. In fact, let g E G, then gO T = 0 T and gT = T (from the symmetry of T). Conversely, let 

g E autT, then g8 T = O T and g E G. 

The elements of the group G act transitively on the roots of the polynonlials fj (1 _< j _< l), and a root of 
the  p o l y n o m i a l  f i  c a n n o t  be  t r a n s l a t e d  in to  s o m e  r o o t  of  a p o l y n o m i a l  fj (j ;~ i).  Th is  a s s e r t i o n  i s  w e l l  known 
in G a l o i s  t h e o r y ,  but  be low we  g ive  a s h o r t  p r o o f  of  i t ,  b a s e d  on the f u n d a m e n t a l  t h e o r e m  of  Ga lo i s  t h e o r y  
(cf. [7, p. 202]).  The  s e c o n d  p a r t  of  the  a s s e r t i o n  is  p r o v e d  thus.  L e t  g E G and gYu = Yv, w h e r e  fi(Yu) = 0 and 
fi(Yv) = 0 (i ~ j ) .  But gfi  = f i ,  s o  fi(Yv) = 0 and the p o l y n o m i a l s  f i  and fj have  c o m m o n  r o o t s  - c o n t r a d i c t i o n .  Now 
we  p r o v e  the f i r s t  p a r t .  Le t  fj = hi �9 �9 �9 hm,  w h e r e  the  g r o u p  G now ac t s  t r a n s i t i v e l y  on the  r o o t s  of e a c h  of the  
p o l y n o m i a l s  hi ,  . . . .  h m (we use  the  a l r e a d y  p r o v e d  s e c o n d  p a r t  of the a s s e r t i o n ) .  Then G ac t s  i n v a r i a n t l y  on 
a l l  the  p o l y n o m i a l s  hi . . . .  , hm,  h e n c e  a c c o r d i n g  to the  f u n d a m e n t a l  t h e o r e m  of  G a l o i s  t h e o r y  the  c o e f f i c i e n t s  
of the  p o l y n o m i a l s  hi ,  . . . .  h m l i e  in the  f i e ld  F T ,  but  fj i s  i r r e d u c i b l e  o v e r  F T ,  i . e . ,  m = 1, s o  G ac t s  on the  

r o o t s  of e a c h  of the  p o l y n o m i a l s  f] (1 _< j - l) t r a n s i t i v e l y .  

I t  fo l lows  f r o m  the two a s s e r t i o n s  p r o v e d  above  t ha t  Is, �9 . � 9  I l  is  a p a r t i t i o n  into  d o m a i n s  of t r a n s i t i v i t y  

w i th  r e s p e c t  to T. The  t h e o r e m  is  p roved .  

The  a u t h o r  thanks  B. S. S t echk in  f o r  he lp fu l  c o n v e r s a t i o n s  on i s o m o r p h i s m  of g r a p h s .  
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