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MULPIPLICATIVE COMPLEXTTY OF A BILINEAR FORM
OVER A COMMUTATIVE RING

D.Yu.Grigor'ev

Leningrad Branch of Mathematical V.A.Steklov Institute of
Academy of Sciences of the USSR, Fontanka 27, Leningrad,
191041, USSR.

Abstract. We characterize the class of Noetherian commutative
rings K such that the multiplicative complexity of a bilinear form
over K coincides with its rank. The asymptotic behaviour of the
multiplicative complexity of bilinear forms from one special c¢lass
over the polynomial rings is described, and in particular it is
shown that there is no finite upper bound for the difference betwe-
en the multiplicative complexity of a bilinear form from this class
and the rank of this form. The relationship between the multiplica-
tive complexity of a bilinear form over a ring K and homological
properties of the ring is explained.

Introduction

Multiplicative complexity of a set of bilinear forms is a very
intensively investigated subject in algebraic computational comple-
xity theory (see for instance book [1] and references there). Some-
times instead of a bilinear form we speak about the coefficient ma-
trix of the form. The multiplicative complexity of & set of biline-
ar forms is defined to be the least number of two—argument multipli-
cations and divisions to be performed in the straight-line computa-
tions (containing the arithmetic instructions) which evaluate the
set of bilinear forms under consideration. It is proved in [21, 3]
that the multiplicative complexity of a seb of bilinear forms with
coefficient matrices Ai,..., AL equals to the rank R% of this get
defined in the following manner:

R(}(A“m, A£)= mm{R A,,...,ALaI‘G contained in the
linear span of some matrices {y...y b each of which

can be presented as a product of a column by a row } .

Multiplicative complexity (or rank R%F(Ah..., Ag} ) depends on a
choice of a field F when {>1 , but we omit an index when there
is no danger of misunderstanding.

In the previous papers on the multiplicative complexity, only
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the case in which the matrices Al,..., Af/ were defined over some fi-
eld F was congsidered. The most interesting results in this subject
were the discovery of upper bounds for the multiplicative complexi-
ty of a set of bilinear forms corresponding to the problem of (1
matrix multiplication (see [4]) and (2) polynomial multiplication
(see [5] for the case of an infinite field F' ana [6] for the case
of a finite field [ ). Obviously R%F (A) is equal to the usual
rank of the matrix AL Already the determination of the multiplica-
tive complexity of a pair of matrices presents difficulvies and on-
1y for the case of an algebraically closed field F was the impli-~
cit formula for R%F (A,B) obtained in [’7] and [8] (independently)
Concerning the problem of investigating the rank from a general po—
int of view, we mention also that in [9]the group of all linear
transformations (over a field) preserving rank is characterized.

The present paper is apparently the first to treat the subject
of multiplicative complexity in a more general setting, over a com—
mutative ring rather than over a field. There are new difficulties
to be overcome here. In fact here problems arise already when we
attempt to evaluate the multiplicative complexity of a set consis-
ting of only a single bilinear form. So we will limit our treatment
to this case. In this case the definition of the multiplicative com-
plexity yields the following equality :

R(}K(A>=M{R A=u1®171+-~-+uR®vR for some

columns U,..., Uy and rows Ux,---;vg}

We have found that the multiplicative complexity is closely connec-
ted with some homological properties of the ring K (see §§ 1,2).
We mention one interpretation of the multiplicative complexity
R(}K(A) in the case when K=F[X,,..‘,Xd] is a ring of
polynomials over a field F' and when =X‘A‘+"'+Xd Ad where
each A, (1 <i <d)is a matrix over F (we shall say that such a
matrix A is square free). Obviously R K(A)<R9F‘(Air~~; Aﬁ) . The
rank R%K(A) can be interpretated as t%le multiplicative complexity
of a bilinear form A with parametric coefficients running over a
d ~dimengional linear variety. Consideration of multiplicative com-
plexity over a ring (rather than over its field of quotients ) en—
sures that the straight-line computation for calculating a given
bilinear form is a correct one (i.e, does not require divisions by
zero) for any values which may be assigned to the parameters
Xipooy X4 -
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§ 1. Multiplicative complexity of a bilinear form over
a ring and the rank of the form.

For every Nxm matrix A over a commutative (with the unity)
ring K we denote by A the usual rank of A which is equal to
the greatest size of the minors (of A ) distinguished from zero.
For proving of the main theorem of §1 the following reformulation
of R%K(A)is useful. Let KmDM be the module of the rows of A
C Km is the free module of dimemsion M ). Then RQK(A) equals to
the least number of generators of the modules M1 such that
MCMiC Km. Obviously mm{n,m} > R(}K(A) > 'L(}/—\ . A noethe-

rian commutative ring K is called Rq-ring if R A) = A for
__.9_.._% %K 'u}

every matrix A over K . All the necessary information from the
theory of rings and the homological algebra can be found in [11] .

THEOREM 1. A ring K is Rg -ring iff

1) K=K,9---@ K, for some integral domains K (1<i <t) ;

2) global homological dimension of the ring K (we denote it
by %M(K) ) is not greater than 2j

3) evexry projective K; -module is free ( i<t ).

The proof of the theorem is exposed in [10] and consists of

two gtages. At the first stage the existence or the decomposition
KeK,® @ Kt for Rq -ring K is proved with the help of the

following lemma.

oA 1. Let K be R% -ring and KS be its full quotient ring.
Then Kg is a direct sum of some fields.

The second stage consists in proving of the theorem for the
case when K is an integral domain, basing on the following lemma.

TEMMA 2. An integral domain K is R -Ting iff for every K -mo-
dule Mc Km vanishing of the torsion submodule of the factor-mo-
dule Km/M entails that M is free.

corotary 1. a) F [x,y]  is Rg -ring (F denotes a field here
and further);

b) I K is a local ring and W(K)éz then K is R%—ring;

c) If Ed}h(K) -d <2 and K is an integral domain then

R(}K(A)< "L(&A +d for each matrix A over K (in particular if K

is some Dedekind domain then R%K(A)< "L%A ).

Analogously the following problem can be put: to characterize
the class of integral domains K such that an equality R%K(A“...,Ag)=
‘qu (Ai,...,AL)is fulfilled for every set of matrices A,,..., Ag over
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K where F is the quotient field of K (cf. the theorem 1). It is
not difficult to show that under such condition K=F .
We define the direct sun A® B  of the matrices A,B as the

A Q
B
) is not an additive function relatively to the operation of
the direct sum of matrices over K for some (Dedekind) rings K .

Set, for example, K'—'ZN?], A= E—i 2 ,andA =A® ®A
2 5+ P

is the direct sum of P copies of A . Then ""}AP=P and there -
fore R(}K(Ap)<p+i by force of the item c) of the corollary 1.

From the other hand it can be easily seen that R?KO\)“Z . Mean-
while the author conjectures that the additivity of RQK is valid
tor the case when K=F[x, . x4] .

matrix . We demonstrate that R(}K (in distinction from

§2. Multiplicative complexity of a square free bilinear
form

We assume in the present paragraph that K=Kd=F[X1,...,Xd]
and A (with some indices or without them) is a square free mxh
matrix.,

LEMMA 3. ([10])R(3K(A)=m'u1{m+n— V-WW} where minimum
is taken over such paireg of matricesua\/ ,W with their entries in

F othat VAW =0 .

COROLLARY 2. R%(AieAa)-RQK(A‘)«*R%K(Aa) (cf. the example
at the and of §1).

drq) - _ d
set R(v) 51}4\21R%Kd(A) and R(7) ScliAPR (1) -

COROLLARY 3. Rd(mpza); Rd('Li) * Rd('l.z), R(1#2) > R +R (1,) .

LEMMA. 4. Rd(“L)<'L +[%‘] + [‘[‘:22-—]'] ++ <21 (if we denote by S

the L~ item of the considered sum then Sieg= [—52—_31 ) where the

number of the items in the sum equals to d-1 ( 1>!{, d=2, [€]
is the entiexr of € ).
This lemma can be ascertained (see [10]) by the induction on
d and T (the base of the induction consisting in the equality
Ra("l.)-'l, is valid by the item a) of the corollary 1).

coRoLIARY 4. R(1)= [%z]
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PHEOREM 2. fim B§L9=2 .

'L-.ao

The exigtence of the limit follows from the corollary 3, the
upper bound for the 1imit is a consequence of the lemma 4. We con-
struct a set of matrices {AS,’L}S,’L =1 such that "QAS,’&’

) F)) omi

- S+t-1
the matrix Ast is of the size<5+t 1);( ( " ) and Ast has
H t s 1)
. its entries in the ring K5+t-1"F[Xn---,X5++,-1] . ( (%) is
a bipomial coefficient). This construction will complete the proof
of the theorem because 2-
I%A‘b,b t oo

- Sy \T
Set 5x{ column As,‘ equal 0 (Xg,Xg_gse-y(-1) X,)
and {xt row Ai,t equal to (Xy,..,Xy)  for each 5,0 >1{ .Then
we define by recursion

Asit  Xsepol E

A5+1,t+1 - ‘
0 Asg gt

where E is the unity matrix.
REMARK, Observe that for every fixed P>i the matrices
[AS t }5+t p+ are the maps in Koszul complex of the ring
’ =

=Kp relatively to the set of elements {Xh'--x Xp} :

o.,K‘f‘_hf. KP...K(D Ape-t.y K(tp'*)...K"ﬁ‘_&L K'—0

In conclusion the author conjectures that for each regular

r Rgx(B) < oo.
ing K Sap % <
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