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ABSTRACTLet F be an algebraically closed �eld of zero characteris-tic, a polynomial ' 2 F[X1; : : : ;Xn] have a multiplicativecomplexity r and f1; : : : ; fk 2 F[X1; : : : ;Xn] be some poly-nomials of degrees not exceeding d, such that ' = f1 =� � � = fk = 0 has a �nite number of roots. We show thatthe number of possible distinct vectors of multiplicities ofthese roots is small when r; d and k are small. As technicaltools we design algorithms which produce Gr�obner bases andvectors of multiplicities of the roots for a parametric zero-dimensional system. The complexities of these algorithmsare singly exponential. We also describe an algorithm forparametric absolute factorization of multivariate polynomi-als. This algorithm has subexponential complexity in thecase of a small (relative to the number of variables) degreeof the polynomials.
INTRODUCTIONThe main aim of this paper is to prove some new featuresof polynomials which are easy to compute. Previously, theonly known characterizations were the bounds on the sizesof polynomials vanishing on the variety of the coe�cients ofpolynomials which are easy to compute (see [BCS 97]).Let F be an algebraically closed �eld of characteristic zero,' 2 F[X1; : : :Xn] be a polynomial which is easy to compute,i.e., having a multiplicative complexity r. Let f1; : : : ; fk 2F[X1; : : : ;Xn] be some polynomials of degrees not exceedingd, such that the system ' = f1 = � � � = fk = 0 has a �nitenumber of roots. We show (see Corollary, Section 3) thatthe number of possible distinct vectors of multiplicities ofthese roots is less than(2r + d)O(n2(r2+knd)):To prove this bound we design (Theorem 1) an algorithmhaving singly exponential complexity which produces a re-duced Gr�obner basis for a parametric zero-dimensional sys-
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tem of polynomial equations.The Gr�obner bases for zero-dimensional systems were inten-sively studied, see [B 85, CGH 89, DGFS 89, FGLM 93,Gi 89, GM 89, GH 93, K 89, KMH 89, Lak 91, Laz 81, T 78]and others. The Gr�obner bases for parametric systems wereconsidered in [W 89], without addressing the complexity is-sues.In Theorem 2 an algorithm is described which, invoking The-orem 1, partitions the space of the parameters of a systemof equations into constructive sets, such that under a spe-cialization by any point from a given set, the vector of mul-tiplicities of the roots of the system is the same (providedthe system has a �nite number of roots). The algorithmalso �nds vectors of multiplicities. The running time of thealgorithm is singly exponential. We mention that in theunivariate case (n = 1), an algorithm for parametric solv-ing of equations (i.e., parametric computing of the GCDof a family of univariate polynomials) was suggested in [G87]. In Theorem 3 (Section 4) we describe an algorithm forparametric absolute factorization of multivariate polynomi-als. This algorithm has a subexponential complexity in thecase of a small (relative to the number of variables) degreeof the polynomials.
1. PARAMETRIC GRÖBNER BASIS OF A

ZERO-DIMENSIONAL IDEALLet F1; : : : ; Fk be polynomials in variables X1; : : : ;Xn ofdegrees at most d with variable pair-wise distinct coe�cientsT1; : : : ; Ts, which are considered as parameters. Thus,Fi 2 Z[T1; : : : ; Ts][X1; : : : ;Xn];where s � k�n+dd � � knd. Let for a specialization of all pa-rameters T1; : : : ; Ts in algebraically closed �eld F of char-acteristic zero the corresponding system of equations f1 =� � � = fk = 0 have a �nite number of roots in Fn. In [CGH89, Lak 91] a Gr�obner basis (g1; : : : ; gr) for (f1; : : : ; fk) wasconstructed such that deg(gi) < dO(n) (here and throughoutthe paper we �x a certain computable monomial ordering,for example deglex [BW 93]).The aim of this section is to describe an algorithm for con-structing a parametricGr�obner basis for (F1; : : : ; Fk) and toestimate the algorithm's complexity, in particular to boundthe sizes of coe�cients of the Gr�obner basis (which are ratio-137



nal functions of T1; : : : ; Ts). In is known (see, e.g., [W 89])that the existing algorithms for Gr�obnes basis construction(for arbitrary dimension) can be parametrized. Complexitybounds were not considered, but it is clear that straight-forward bounds are doubly exponential in n even in zero-dimensional case. Now we proceed to the description of thealgorithm.Fix for a time being a specialization of the parametersT1; : : : ; Ts and introduce the algebraA = F[X1; : : : ;Xn]=(f1; : : : ; fk):The dimension dimF(A) coincides with the sum of mul-tiplicities of all roots of f1 = � � � = fk = 0 (see, e.g.,[ABRW 96, Ro 99]), therefore, due to the B�ezout's inequal-ity, dimF(A) � dn (see, e.g., [H 83]). Observe that for anyi, 1 � i � n there exists a polynomial qi 2 F[Xi] such thatdeg(qi) � dimF(A) and qi 2p(f1; : : : ; fk). If we require qito be monic and of the minimal possible degree, then suchqi is unique. According to the E�ective Nullstellensatz [FG90] for any i; 1 � i � n there exist polynomials hj; 1 � j � kof degrees deg(hj) � dO(n) and l � dO(n) such thatqli = X1�j�k hjfj: (1)Consider the following polynomials with indeterminate co-e�cients: monic Qi; 1 � i � n in variables Xi respec-tively; and Hj; 1 � j � k, all in variables X1; : : : ;Xn, suchthat deg(Qi) = �i � dO(n), deg(Hj) = � � dO(n), where�i � l deg(qi), � � deg(hj). ConsiderQi = X1�j�kHjFj (2)as a system of linear equations of the size not exceedingdO(n2) in the indeterminate coe�cients of Qi;Hj. Observethat for any specialization of the parameters T1; : : : ; Ts withdim((f1; : : : ; fk)) = 0, the linear system (2) has a root overF. Conversely, if (2) has a root over F then the ideal(f1; : : : ; fk) is zero-dimensional. Applying the procedurefrom [H 83] (see also [CG 84, G 88, G 90]), for solvingparametric systems of linear equations by Gaussian elim-ination, to the linear system (2), we get the constructivesubset V � Fs of all parameters from Fs such that for anyv 2 V the specialization of (2) by v has a root in Fn. Wealso get a partition of V into constructive setsV = [1���N V�:The algorithm describes each set V� by a system of polyno-mial equations and inequations (relations with 6=)B(�)1 = � � � = B(�)M� = 0; B(�)M�+1 6= 0; (3)where B(�)j 2 Z[T1; : : : Ts]. For each V� the algorithm pro-duces the (uniform) solution of the linear system (2) in thefollowing form. Firstly, a particular solution of (2) as a vec-tor of rational functions fR(�)0� g� from Q(T1; : : : ; Ts); sec-ondly a basis of solutions of the homogeneous linear sys-tem corresponding to (2), as a vector of rational functionsfR(�);�g� from Q(T1; : : : ; Ts), where  ranges from 1 to thedimension of the space of the solutions of this homogeneoussystem.

The following bounds hold [CG 84, C 84, G 84]. The numberof the constructive sets N and the number of polynomialsM� do not exceed dO(n2s), the degreesdeg(B(�)j ); deg(R(�)0� ); deg(R(�)� ) � dO(n2):The running time of the algorithm for solving parametricsystem (2) does not exceed dO(n2s).Fix �. Abusing the notation, we denote byQi;Hj 2 Q(T1; : : : ; Ts)[X1; : : : ;Xn]the polynomials from (2) corresponding to the particularsolution fR(�)0� g� . Fix for a time being a point from V�,denote by Qi;Hj ; f1; : : : ; fk 2 F[X1; : : :Xn]the specialization of Qi;Hj; F1; : : : ; Fk respectively, at thispoint. The following argument is a slight modi�cation ofthe one from [CGH 89].Take an arbitrary f 2 (f1; : : : ; fk) with degXi(f) � deg(qi)for any i; 1 � i � n; note that any polynomial from thereduced Gr�obner basis of (f1; : : : ; fk) (see [CLO 92, BW 93])satis�es the latter bound. Thenf = X1�j�kAjfj;where Aj 2 F[X1; : : : ;Xn]. Divide each Aj by the familyQ1; : : : ;Qn with the remainder. We getAj = X1�i�nQiSji + Pj;where Sji; Pj 2 F[X1; : : : ;Xn], and the degrees degXl(Pj) ��l, degXl(QiSji) � degXl Aj, (1 � l � n). Plugging the ex-pression for Aj in the expression for f we getf = X1�j�k Pjfj + S;where S 2 (Q1; : : : ;Qn). Hence, degXl(S) � �l+d � dO(n),1 � l � n. Dividing S by the family Q1; : : : ;Qn withthe remainder, we get S = P1�i�n SiQi for some Si 2F[X1; : : : ;Xn], where degXl(SiQi) � degXl (S) � dO(n),1 � l � n. Plugging this expression for S in f , we obtainf = X1�j�k Pjfj + X1�i�nSiQi: (4)For a given �xed � consider the following matrix M� ofthe size at most dO(n) with entries in F(T1; : : : ; Ts). Thecolumns ofM� correspond to all the monomials (in the de-scending order with respect to the chosen monomial order-ing) Xm11 � � �Xmnn , where ml � �l + d; 1 � l � n; each rowof M� corresponds to the expansion in the basis of thesemonomials of either Xm11 � � �Xmnn Fj or Xm11 � � �Xmnn Qi forall possible i; j;m1; : : : ;mn such that ml+degXl(Fj), ml+degXl(Qi) � �l + d (cf. (4)).Fix again a point from V� and denote the correspondingspecialization of M� by M�. Using elementary transfor-mations of rows one can reduce M� to a following \stairs"form (wij)i;j . Let w1�1 = � � � = wr�r = 1 be the �rst138



non-zero elements in the rows 1; : : : ; r respectively, wherer = rank(M�), and �1 < � � � < �r. We also require thatwi�j = 0 for any i < j (1 � i; j � r). Let X(�1); : : : ;X(�r)be the monomials corresponding to columns �1; : : : ; �r ofM�. Choose among them all the monomials X(�j0 ) suchthat X(�j) does not divide X(�j0 ) for all 1 � j � r; j 6= j0and in addition degXi(X(�j0 )) � deg(qi) for all 1 � i � n.Then the set of all polynomials corresponding to rows j suchthat X(�j) was chosen above, constitutes the reduced Gr�ob-ner basis of (f1; : : : ; fk), taking into the account that anyelement of the reduced Gr�obner basis is contained in thelinear hull of the rows of M� (see (4)).The algorithm applies the procedure for solving parametricsystems of linear equations by means of the Gaussian elim-ination from [H83, CG 84, G 88, G 90] to the matrix M�under the condition that the parameters T1; : : : ; Ts satisfy(3). In the process of Gaussian elimination, a current pivotis chosen in the left-most possible column. As a result, thealgorithm obtains a \stairs" form of M�. More precisely,the algorithm outputs a partition of V� into constructivesets V� = [1���N� V�;� :Each V�;� is de�ned by a system of polynomial equationsand inequationsB(�;�)1 = � � � = B(�;�)M�;� = 0; B(�;�)M�;�+1 6= 0; (5)where B(�;�)i 2 Z[T1; : : : ; Ts]. For every � the algorithmoutputs the sequence �(�)1 < � � � < �(�)r� of the columns, suchthat in M(�)� = (w(�)ij )i;j the entries w(�)i�i = 1 (1 � i � r�)are the �rst non-zero elements in the rows 1; : : : ; r� , wherer� = rank(M(�)� ). Each entry w(�)ij , where j > �i and j 6= �lfor all l 6= i, is given by the algorithm as rational functionfrom Q(T1; : : : ; Ts). Observe that all the rest of the entriesw(�)ij vanish on V�;� .The following bounds hold (see [CG 84, C 84 G 84]). Thenumber of sets N� and the number of polynomials M�;�do not exceed dO(n2s), the degrees deg(B(�;�)j ); deg(w(�)ij ) <dO(n2). The running time of reducing M(�)� to \stairs" formdoes not exceed dO(n2s).We summarize the results of this section in the followingtheorem, which uses the notations introduced previously inthis Section.Theorem 1. There is an algorithm which for a system ofparametric polynomialsF1; : : : ; Fk 2 Z[T1; : : : ; Ts][X1; : : : ;Xn] produces the con-structive subset V � Fs of all points v for which the special-izations f1; : : : ; fk of F1; : : : ; Fk generate zero-dimensionalideals. The algorithm produces the partitionV = [1���N [1���N� V�;�into constructive sets de�ned by systems (5), and for eachV�;� the algorithm outputs a family of polynomialsG1; : : : ;G� 2 Q(T1; : : : ; Ts)[X1; : : : ;Xn] (being monic withrespect to the �xed monomial ordering of X1; : : : ;Xn) such

that for any point v 2 V�;� the specialization g1; : : : ; g� 2F[X1; : : : ;Xn] of G1; : : : ;G� at v is the reduced Gr�obnerbasis for f1; : : : ; fk. The degrees with respect to T1; : : : ; Tsof all produced rational functions do not exceed dO(n2), anddegX1;::: ;Xn (Gi) � dO(n) for 1 � i � � < dO(n2). Therunning time of the algorithm is less than dO(n2s).Remark 1. Obviously the theorem remains true if F is a�eld with a positive characteristic, andFi 2 GF(p)[T1; : : : ; Ts][X1; : : : ;Xn] for a prime number p.
2. VECTORS OF MULTIPLICITIES FOR

A PARAMETRIC SYSTEMIn what follows we adopt the notations from Theorem 1.Fix some values of indices �;�. For any value of the param-eters from V�;� we construct in a usual way [BW 93] themonomial basis and the multiplication tables for the alge-bra A = F[X1; : : : ;Xn]=(f1; : : : ; fk), involving the Gr�obnerbasis produced in Theorem 1. More precisely, the table rep-resents the product of some two monomials from the basisas a linear combination of elements of the basis with thecoe�cients being rational functions from Q(T1; : : : ; Ts) ofdegrees not exceeding dO(n2). The running time of this con-struction is less than dO(n2s).Fix for a time being a specialization of the parametersT1; : : : ; Ts. Introduce indeterminates U1; : : : ; Un. Following[ABRW 96] (see also [Ro 99]), consider the mapU : A
Q(U1; : : : ; Un) �! A
Q(U1; : : : ; Un);which is the multiplication by the linear formU1X1 + � � �+ UnXn:It follows from [ABRW 96] that all the roots of the character-istic polynomial �(Z) of U are of the form �1U1+ � � �+�nUnwhere (�1; : : : ; �n) is a root of f1 = � � � = fk = 0 and themultiplicities of the respective roots �1U1 + � � �+ �nUn and(�1; : : : ; �n) coincide. Note that degZ(�(Z)) = dim(A). Let�i be the vector (1; i; i2; : : : ; in�1) 2 Qn for any 1 � i �(n�1)d2n. Consider the multiplication map Ui : A �! Aby the linear form X1 + iX2 + i2X3 + � � � + in�1Xn, andthe characteristic polynomial (U -Chow polynomial) ��i (Z)of Ui (see [ABRW 96, Ca 89]). Then there exists the inte-ger i0; 1 � i0 � (n � 1)d2n, such that the inner products�i0 � (�1; : : : ; �n) are distinct for distinct roots (�1 : : : ; �n) off1 = � � � = fk = 0 (cf. [CG 84]).For each i; 1 � i � (n � 1)d2n the algorithm constructsthe polynomial ��i 2 Q[T1; : : : ; Ts][Z], and computes thevector of multiplicities of its roots, as described below. Thedegree degT1;::: ;Ts (��i) does not exceed dO(n2) and ��i canbe found in time not exceeding dO(n2s). For any j; 1 �j � degZ(��i ) the algorithm, using [G 90], computes theGCD(��i ; �0�i ; : : : ; �(j)�i ) representing it in the form�(i;j)l Z l +�(i;j)l�1 Zl�1 + � � �+�(i;j)0 ;where �(i;j)l ; : : : ;�(i;j)0 2 Q[T1; : : : ; Ts] are some minors ofa relevant matrix, whose entries are coe�cients of the poly-nomials ��i ; �0�i ; : : : ; �(j)�i of the sizes not exceeding dO(n),139



with degT1 ;::: ;Ts(�(i;j)m ) � dO(n2) and l � deg(A) � j. Notethat the polynomials �(i;j)l ; : : : ;�(i;j)0 are generalizationsof subresultants for the case of GCD of many polynomi-als (rather than just two). Observe that the degrees ofGCD(��i ; �0�i ; : : : ; �(j)�i ) for all j determine the multiplici-ties of ��i .The algorithm lists all the non-empty constructive sets Wof the form f�(i;j)m �i;j;m 0g � V�;� � Fs; (6)where �i;j;m 2 f=; 6=g, using [H 83]. The number of thesets does not exceed dO(n2s) [H 83], the running time of thelisting is less than dO(n2s) [CG 83].Each of the constructive sets W determines the degrees withrespect to Z of GCD(��i ; �0�i ; : : : ; �(j)�i ), and thereby thevectors of multiplicities of all ��i . The algorithm �ndsamong vectors of multiplicities the one with the maximalnumber of components, which is the vector of multiplicitiesof the roots of f1 = � � � = fk = 0 for any specializationfrom W . We summarize the results of this section, usingTheorem 1, in the following theorem.Theorem 2. There is an algorithm, which for a system ofparametric polynomialsF1; : : : ; Fk 2 Z[T1; : : : ; Ts][X1; : : : ;Xn]produces a constructive subset V � Fs of all points v forwhich the specializations f1; : : : ; fk of F1; : : : ; Fk respectively,generate zero-dimensional ideals. The algorithm produces apartition V = [1���NW�into constructive subsets of the form (6). For every �; 1 �� � N the vector of multiplicities of the roots is the samefor a specialization f1 = � � � = fk = 0 by any point w 2W�.The algorithm �nds such vector of multiplicities for everyW�. The number N of sets does not exceed dO(n2s), thedegrees of the polynomials de�ning W� is less than dO(n2),and the running time of the algorithm is bounded by dO(n2s)Remark 2. The algorithm from the theorem can be modi-�ed to express the solutions of a parametric polynomial sys-tem via primitive element using the \Shape Lemma" (see,e.g., [KP 94, GH 93]). More precisely, the algorithm pro-duces a partition of W� into constructive sets W�;� . Eachset W�;� is equipped with a linear combination 1X1+ � � �+nXn where 1 � i � dO(n) and rational functionsp1; : : : ; pn 2 Q(T1; : : : ; Ts)[Z]. Herewith, for any v 2 W�;�the set of all roots of the specialization f1 = � � � = fk = 0of F1 = � � � = Fk = 0 by v coincides with the set of points(p1(v)(�); : : : ; pn(v)(�)) where � runs over all distinct rootsof the characteristic polynomial �(v)[Z] of the linear multi-plicationmap by the element 1X1+� � �+nXn in the algebraA. The number of setsW�;� does not exceed dO(n2s), the de-grees degZ(pi);degZ(�) � d2n;degT1 ;::: ;Ts (pi),degT1 ;::: ;Ts (�) � dO(n2). The running time of the algorithmis less than dO(n2s).

Remark 3. In the case when the polynomials F1; : : : Fk arehomogeneous in X0;X1; : : : ;Xn one can prove a projectiveversion of Theorem 1. Namely, the algorithm produces apartition V =[� V � � Fsof the constructive set V of points in Fs for which the spe-cializations f1 = � � � = fk = 0 of F1 = � � � = Fs = 0 have�nite numbers of roots in the projective space Ps(F). Foreach V � the algorithm, using [Laz 81], constructs a polyno-mial R� 2 Q[T1; : : : ; Ts; U0; U1; : : : ; Un] such that for anyspecialization by a point from V �, the polynomial R� con-verts to U-resultant of the system f1 = � � � = fk = 0. Both,the degrees of polynomials de�ning V � and deg(R�) do notexceed dO(n). The running time of the algorithm is less thandO(ns).Remark 4. One can also prove a projective analogue ofTheorem 2. Namely, the algorithm partitions V into atmost dO(ns) constructive sets V � such that the specializa-tions f1 = � � � = fk = 0 of F1 = � � � = Fk = 0 by all pointsfrom V � have the same vector of multiplicities of their roots.The degrees of polynomials de�ning V � do not exceed dO(n)and the running time of the algorithm is bounded by dO(ns).
3. APPLICATION TO POLYNOMIALS

WHICH ARE EASY TO COMPUTEIn this section we consider a multivariate analogue of theconstruction of Strassen and Schnorr (see [BCS 97]).Fix a point � = (�1; : : : ; �n) 2 Fn and introduce the algebraB = F[X1; : : : ;Xn]=(X1 � �1; : : : ;Xn � �n)D+1:Consider the class C(�)r;D;n � B of the elements with mul-tiplicative complexity not exceeding r. According to (anatural generalization of) the Representation Theorem ofStrassen and Schnorr [BCS 97], the class C(�)r;D;n can be rep-resented as a union of 2r subsets each of which is an imageof a polynomial map de�ned by the formula� = XjIj�D	I(�)(X � �)I; (7)where I is a multi-index, polynomials	I 2 F[�1; : : : ;�(r+1)2+1], and the degrees deg(	I) � (2r�1)jIj+ 2.Consider the grid � = f0; 1; : : : ; 22r+2gn � Fn. Obviously,any polynomial of the degree at most 22r+2 can't vanishat all the points from �. Consider now the class Cr;D;n �F[X1; : : : ;Xn] of polynomials � such that deg(�) � D, andthe multiplicative complexity not exceeding r. For an arbi-trary � 2 Cr;D;n consider a straight-line program with mul-tiplicative complexity at most r which computes �. Thereexists a point from � at which all intermediate rational func-tions in the program are de�ned (and are di�erent fromzero). Therefore, Cr;D;n � [�2� C(�)r;D;n :Our aim is to estimate the number of possible distinct mul-tiplicities vectors for the intersections of hypersurfaces � =0; � 2 Cr;D;n with several hypersurfaces of small degrees.140



Fix a point � 2 Fn. Consider a specialization� 2 F[X1; : : : ;Xn] of � from (7) with respect to a pointfrom F(r+1)2+1.In what follows we use the notations from Sections 1 and2. One can apply the algorithms from Sections 1 and 2 topolynomials �; F1; : : : ; Fk. We apply Theorem 2 to elementsof the set C(�)r;D;n � B which are treated as the polynomialsin X1 � �1; : : : ;Xn � �n of degrees at most D.Corollary 1. The number of possible distinct vectors ofmultiplicities of the roots of any system � = f1 = � � � =fk = 0, where �; f1; : : : ; fk 2 F[X1; : : : ;Xn] with deg(�) �D; deg(fi) � d; (1 � i � k), multiplicative complexity of �at most r, does not exceed(D+ d)O(n2(r2+k(d+nd ))) � (D+ d)O(n2(r2+knd));provided that � = f1 = � � � = fk = 0 has a �nite number ofroots.Remark 5. Note that the number of roots of � = f1 =� � � = fk = 0 does not exceed (D + nd)n according to theB�ezout inequality (see [H 83]), thus the a priori number ofthe partitions of this number is exponential in (D + nd)n,which considerably exceeds the bound from the Corollary 1for small values of r and d.Remark 6. Obviously, D � 2r .Remark 7. In case n = 1 we conclude, in particular, thatfor each D there exists a vector of multiplicitiesm1; : : : ; mlwith m1 + � � � + ml = D such that the multiplicative com-plexity of any polynomial (X�a1)m1 � � � (X�al)ml for arbi-trary roots a1; : : : ; al is greater than 
(pD= logD) (in factalmost all vectors of multiplicities satisfy this bound).Remark 8. The bound from Corollary becomes meaning-ful, for example, for d = 2 and r being polynomial in n logD.
4. PARAMETRICABSOLUTEFACTORING

OFPOLYNOMIALS OFSMALL DEGREELet G 2 Z[T1; : : : ; Ts][X1; : : : ;Xn] be a polynomial withdegrees degX1;::: ;Xn (G) � d;degT1 ;::: ;Ts (G) � �;and bit-sizes of integer coe�cients not exceeding L. Herevariables T1; : : : ; Ts are considered as parameters. In thissection we describe an algorithm for parametric factoring ofG over F.We call a vector � = (�1; : : : ; �n) 2 Zn+ (d; n)-separating iffor all vectors j = (j1; : : : ; jn) 2 Zn+ such that j1+� � �+jn �d the inner products �j are pair-wise distinct.LetN = �n+dn �2(n�1)+1. Then there exists a prime numberp such that N < p � 2N . Consider an (N � n)-matrix Dwhose (i; j)-entry is the residue r; 0 � r � p�1 of ij modulop, where 1 � i � N , 0 � j � n � 1.Lemma 1. At least one of the rows of the matrix D is(d; n)-separating.

Proof. Suppose, contrary to the claim of the lemma, thatfor any row � of D there exist two distinct vectors j =(j1; : : : ; jn); j0 = (j01; : : : ; j0n) 2 Zn+ such that j1+ � � �+ jn �d; j01+ � � �+j0n � d and �j = �j0. Observe that each (n�n)-minor of D is non-zero being a Vandermonde determinantmodulo p (cf. [GKS 90]). It follows that for each pair ofdistinct vectors j; j0 as above, there exist at most n�1 rows� such that �j = �j0. The obtained contradiction provesthe lemma.Fix the row � of D satisfying Lemma 1. Consider the�n+dn �� n-matrix E whose (i; k)-entry is i�k , where 1 � i ��n+dn �; 1 � k � n.Lemma 2. For any polynomial 0 6� g 2 F[X1; : : : ;Xn] ofthe degree not exceeding d, there exists a row � of E suchthat g(�) 6= 0.Proof. Consider the �n+dn �� �n+dn �-matrix F whose (i; j)-entry is i�j , where 1 � i � �n+dn � and j = (j1; : : : ; jn) 2Zn+, j1 + � � � + jn � d. Lemma now follows from the non-singularity of F (see [PS 64]).Let the polynomial g 2 F[X1; : : : ;Xn] have the degree d1 �d. Let ĝ 2 F[X1; : : : ;Xn] be the leading homogeneous formof degree d1 of g. For any row � = (�1; : : : ; �n) of E considerthe non-singular linear transformation of the coordinatesX1 �! �1X1; Xi �! Xi + �iX1; (7)where 2 � i � n. Applying this transformation to g weobtain the polynomial g�. Note that the coe�cient at themonomial Xd11 of g� equals to ĝ(�1; : : : ; �n). Then, accord-ing to Lemma 2, there exists a row � of E such that thecorresponding polynomial g� contains the monomial Xd11 .We call a polynomial from F[X1; : : : ;Xn] monic (in X1),if the coe�cient at the highest power of X1 belongs to F.Note that g� is monic.The algorithm performs the transformation (7) of G for thevarious rows � of the matrix D and the various rows � of thematrix E. For a �xed � denote the result of the transforma-tion by G� . The algorithm partitions the space Fs of theparameters into the constructive sets V such that all special-izations g of G� by the points from V are of the same degreed1 and are monic. W.l.o.g. we assume that the coe�cientat Xd21 of G� is 1 (dividing G� by this coe�cient).The number of sets V does not exceed �n+dn �O(1). Eachset V is de�ned by a system of polynomial equations andinequations of degrees at most � in variables T1; : : : ; Ts. Fordeciding the non-emptiness of these sets, the algorithm usesthe procedure from [C 84, G 84], whence the running timeof the algorithm at this stage is bounded by �L�s�n+dn ��O(1),taking into the account that the bit-size of �j is bounded by�n+dn �O(1).Fix for a time being a set V . The algorithm reduces theabsolute factorization of G� to the absolute factorizationof a separable polynomial. Namely, note that for any spe-cialization g of G� (by the points from V ), the polynomial141



g=GCD(g; @g=@X1) is separable. The algorithm computesthe GCD(g; @g=@X1) (treating g as a polynomial in X1)parametrically, using the subresultant algorithm [Co 67].Namely, the algorithm constructs the minors of the Sylvestermatrix for G� and @G�=@X1, and partitions the set V intoconstructive subsets Vd2 . For each set Vd2 the algorithm pro-duces a polynomial �d2Xd21 +�d2�1Xd2�11 +� � �+�0, where�j 2 Z[T1; : : : ; Ts][X2; : : : ;Xn], 0 � j � d2. Each special-ization �d2(v) of �d2 by the points v 2 Vd2 is a non-zeroelement of F[X1; : : : ;Xn]. The specialization �d2(v)Xd21 +� � � +�0(v) coincides with the GCD(g; @g=@X1) in the ringF(X2; : : : ;Xn)[X1]. Since g is monic, the polynomial �d2(v)divides �j(v) for all 0 � j � d2 � 1 in F[X2; : : : Xn], due tothe Gauss Lemma.The algorithm computes the quotients �j=�d2 paramet-rically. Namely, the coe�cients of the quotients are theunique solutions of the suitable systems of linear equationswith coe�cients in Z[T1; : : : ; Ts] (provided that v 2 Vd2 ).As a result, the algorithm produces a monic polynomialXd21 + �̂d2�1Xd2�11 + � � �+ �̂0, where�̂j 2 Q(T1; : : : ; Ts)[X2; : : : ;Xn], 0 � j � d2 � 1. For anypoint v 2 Vd2 the specialization Xd21 + �̂d2�1(v)Xd2�11 +� � � + �̂0(v) coincides with the GCD(g; @g=@X1) in the ringF[X1; : : : ;Xn].The algorithm computes the quotient g=GCD(g; @g=@X1)parametrically (cf. computing of �j=�d2 above). Namely,the coe�cients of the quotient are unique solutions of suit-able systems of linear equations with coe�cients inZ[T1; : : : ; Ts] (provided that v 2 Vd2 ). Thus, the algorithmprovides a polynomialH = Xd1�d21 +�d1�d2�1Xd1�d2�11 + � � �+ �0;where �j 2 Q(T1; : : : ; Ts)[X2; : : : ; Xn], 0 � j � d1�d2� 1.For any point v 2 Vd2 the specializationH(v) = Xd1�d21 + � � �+�0(v)coincides with g=GCD(g; @g=@X1) in the ring F[X1; : : : ;Xn].We now estimate the complexity of the just described stageof the algorithm. The number of distinct sets Vd2 does notexceed d1 � d. Each Vd2 is de�ned by a system of poly-nomial equations and inequations of degrees not exceedingO(�d) since the size of the Sylvester matrix involved is O(d).For the same reason the degrees of �j; �̂j and �j with re-spect to T1; : : : ; Ts also are bounded by O(�d). The degreeswith respect to X2; : : : ;Xn of the minors of the Sylvestermatrix do not exceed O(d2), and therefore, the degrees of�j; �̂j and �j also do not exceed O(d2). The running timeof the algorithm on this stage is less than�L(�d)s n + d2n !�O(1);since the non-emptiness of Vd2 is decided using [C 84, G 84]in time (L(�d)s)O(1). Denote byD 2 Q(T1; : : : ; Ts)[X2; : : : ;Xn] the discriminant of the poly-nomial H with respect to X1. Recall that for any v 2 Vd2the specialization D(v) 2 F[X2; : : : ;Xn] of D is non-zero.Observe that degX2;::: ;Xn (D) � O(n3),degT1 ;::: ;Tn (D) � O(�d2).

Fix for a time being a point v 2 Vd2 . The algorithm com-putes the matrix D, and for each row of D it produces thematrix E (as described above, see Lemmas 1, 2), replac-ing d by O(d3) and n by n � 1 respectively. Due to Lem-mas 1, 2, there exists a row (�2; : : : ; �n) in one of thesematrices E such that 0 6= D(v)(�2; : : : ; �n) 2 F. Denoteby Ĥ 2 Q(T1; : : : ; Ts)[X1; : : : ;Xn] the result of the linearchange of variablesX2 �! X2 � �2; : : : ;Xn �! Xn � �nin H, and by h 2 F[X1; : : : ;Xn] the specialization Ĥ(v).Note that h is monic. The discriminant of the univariatepolynomial h(X1; 0; : : : ; 0) 2 F [X1] coincides withD(v)(�2; : : : ; �n), which does not vanish.Hence h(X1; 0; : : : ; 0) is separable.The algorithm partitions the set Vd2 into constructive sub-sets. Each such constructive subset W stems from a cer-tain vector (�2; : : : ; �n) considered above such that for anyv 2 W we have D(v)(�2; : : : ; �n) 6= 0. As before, the algo-rithm makes these sets W to be disjoint. The number ofthe sets W in Vd2 is less than �n+dn �O(1). Each W is de�nedby a system of equations and inequations of degrees O(�d2)with respect to T1; : : : ; Ts, since D is the determinant of amatrix of a size of O(d). The bounds on the degrees of Ĥwith respect to T1; : : : ; Ts and X1; : : : ;Xn are similar to theones for H. The running time of the algorithm at this stageis �L(�d)s n + d3n !�O(1):Fix for a time being the set W and the corresponding poly-nomial Ĥ. Our next goal is to describe a parametric versionof a quadratic Hensel lifting which we will apply below toĤ (see [Ga 84, GK 85, Kal 85]).For any point v 2 W consider the absolute factorizationh = h1 � � �hm. The algorithm retrieves this factorizationfrom the corresponding univariate factorizationh1(X1; 0; : : : ; 0) � � �hm(X1; 0; : : : ; 0)using the parametric Hensel lifting described below. Thealgorithm considers one by one all the partitions(r1; : : : ; rm) of the di�erence d1�d2 for diverse m i.e., r1 �r2 � � � � � rm and r1 + � � � + rm = d1 � d2. Fix one suchpartition (r1; : : : ; rm).Introduce new variables Yi;j , where 1 � i � m, 0 � j �ri � 1. The algorithm will perform the Hensel lifting of thefactorization of the productĤ(X1; 0 : : : ; 0) = Y1�i�m Ĥi(X1); (8)where Ĥi(X1) = Xri1 +Yi;ri�1Xri�11 + � � �+Yi;0. The resultof the Hensel lifting of (8) is a product of power seriesĤ = Y1�i�mHi; (9)where Hi = XjJj�0 a(i)J XJ ;142



a(i)J 2 Q(T1; : : : ; Ts)(Y1;1; : : : ; Ym;rm�1)[X1];herewith degX1 (a(i)J ) � ri � 1 for jJ j � 1, a(i)0 = Ĥi, andXJ = Xj22 � � �Xjnn .We view (8) as a base of the recursion in the Hensel lift-ing. As a recursion hypothesis for the recursion step l weassume that the algorithm had already constructed all thecoe�cients a(i)J for jJ j � 2l � 1. In particular, all Hi aremonic.Consider a multi-index I with 2l � jIj � 2l+1 � 1. Then (9)yields a equation for a(i)J ; 1 � i �m of the following form:a(1)J Ĥ2 � � � Ĥm+a(2)I Ĥ1Ĥ3 � � � Ĥm+a(m)I Ĥ1 � � � Ĥm�1+A = B:(10)Here A = Pa(k)K A(k)K ; 1 � k � m; K � I (� denotes anatural partial order on the set of multi-indices), jKj � 2l;A(k)K is a polynomial of a degree at most m� 1 in a(i)J withjJ j � 2l � 1; B is a polynomial of a degree not exceeding min a(i)J with jJ j � 2l � 1, and B is linear in the coe�cient atXJ of Ĥ.Arguing by induction, one shows that each system of theform (10) for all multi-indices K � I has the unique solutionin a(k)K ; 1 � k �m under the condition degX1(a(k)K ) � ri�1.Therefore, the degrees of A and B with respect to X1 donot exceed d1 � d2 � 1. It follows that there exist uniquea(1)I ; : : : ; a(m)I satisfying (10) such that degX1 (a(i)I ) � ri �1; 1 � i � m.The algorithm solves recursively systems of the form (10) ac-cording to increasing multi-indices with respect to the par-tial order � and �nds the solutions a(i)I ; 1 � i � m. TheHensel lifting terminates when 2l+1 exceedsdegX2;::: ;Xn(Ĥ) � O(d2) (see above).Introduce the truncated power seriesĤi = X0�jJj�2l+1�1 a(i)J XJ 2Q(T1; : : : Ts)(Y1;1 ; : : : ; Ym;rm�1)[X1; : : : ;Xn]:The algorithm should verify the equalityĤ = Y1�i�m Ĥi: (11)More precisely, using quanti�er elimination [CG 84], the al-gorithm �nds the constructive subset Wr1 ;::: ;rm � W of allthe points v 2 W such that there exist y1;1; : : : ; ym;rm�1 2F with the specialization of (11) by v and y1;1; : : : ; ym;rm�1is true.Order all the partitions (r1; : : : ; rm) in an arbitrary orderconsistent with the decrease ofm. The algorithm follows thisordering and replaces each next Wr1 ;::: ;rm by subtractingfrom it the union of Wr01 ;::: ;r0m for all previous partitions(r01; : : : ; r0m) in the ordering. These new constructive setsconstitute a partition of W , we keep for them the samenotations Wr1 ;::: ;rm .

Fix for a time being a set Wr1 ;::: ;rm . Observe that for anyv 2 Wr1 ;::: ;rm the specialization of the equations (11) by vand every y1;1; : : : ; ym;rm�1 satisfying (11) is the absolutefactorization of Ĥ(v) = h.Recall that for any point v 2Wr1 ;::: ;rm there exist �1; : : : ; �m2 Z+ such thatg(X1;X2 + �2; : : : ;Xn + �n) = Y1�i�m�Ĥi(v)��i : (12)The algorithm looks over all possible vectors (�1; : : : ; �m) 2Zm+ such that �1+� � �+�m = d1. For each vector (�1; : : : ; �m)the algorithm produces and tests non-emptiness of the con-structive set W (�1 ;::: ;�m) � Wr1;::: ;rm of pointsv 2Wr1 ;::: ;rm for which there exist the elementsy1;1; : : : ; ym;rm�1 2 F such that (12) holds, and also repre-sents these elements as described in the paragraph. Observethat the sets W (�1 ;::: ;�m) form a partition of Wr1 ;::: ;rm , andfor each v 2 W (�1 ;::: ;�m) there is a �nite set of the solu-tions y1;1; : : : ; ym;rm�1, due to the Gauss Lemma. The al-gorithms applies to the system of equations (12) the proce-dure from Theorems 1, 2 and the Remark 2. As a result,a parametric Gr�obner basis for (12) will be computed (seeTheorem 1), as well as the vectors of multiplicities (see The-orem 2) of the roots of (12). The algorithm produces a parti-tion of the set W (�1 ;::: ;�m). Fix for a time being an elementU of the partition. The algorithm produces a primitive el-ement 1;1Y1;1 + � � � + m;rm�1Ym;rm�1, rational functionsp1;1; : : : ; pm;rm�1 2 Q(T1; : : : Ts)[Z], and the characteristicpolynomial � 2 Q(T1; : : : ; Ts)[Z] of the linear multiplicationmap by the primitive element in the algebra A, such that forany v 2 U the specializations p1;1(v)(�); : : : ; pm;rm�1(v)(�)run over all solutions y1;1; : : : ; ym;rm�1 of (12) when � runsover all roots of the polynomial �(v)(Z).Now we estimate the complexity of the algorithm. The al-gorithm looks through all 2O(d) partitions (r1; : : : ; rm) ofthe di�erence d1 � d2. Then the algorithm, recursively onl, for each multi-index J such that jJ j = 2l+1 � 1 solves theunion of the linear systems of the form (10) for all I � Jand jIj � 2l. The sizes of the matrices of systems (10) donot exceed�22ld�O(1). For J such that jJ j � 2l+1 � 1 the degreesdegT1 ;::: ;Ts (a(i)J ) � �22ldl��O(1);degY1;1;::: ;Ym;rm�1 (a(i)j ) � �22ldl�O(1):Therefore, degT1 ;::: ;Ts (Ĥi) � (2d�)O(1);degY1;1;::: ;Ym;rm�1 (Ĥi) � 2O(d);where 1 � i �m. The running time of the Hensel lifting ofĤi does not exceed �L�s2ds2d2�n+d2n ��O(1).Then the algorithm applies quanti�er elimination to (11)and produces constructive subsets Wr1 ;::: ;rm . The numberof sets is less than (2d2�)O(s). Each subset is de�ned by asystem of polynomial equations and inequations of degreesat most (2d2�)O(1). The running time of this application ofquanti�er elimination does not exceed �L�s2d2s�n+d2n ��O(1).143



After that the algorithm applies the machinery from Sec-tions 1, 2 to the system (12), and produces the constructivesets U and the representations of the solutionsy1;1; : : : ; ym;rm�1 via 1;1Y1;1 + � � �+ m;rm�1Ym;rm�1, thecharacteristic polynomial �, and the rational functionsp1;1; : : : ; pm;rm�1. The number of sets U does not exceed2O(d3s). Each set U is de�ned by a system of polynomialequations and inequations of degrees not exceeding(�2d3 )O(1). The degrees of rational functionsdegT1;::: ;Ts (pi;j); degT1;::: ;Ts (�) � (�2d3 )O(1);degZ(�); degZ(pi;j) � 2O(d3);where 1 � i � m, 1 � j � rm � 1. The running time of thisstage of the algorithm is less than �L�s2d3s�n+d2n ��O(1).We summarise the results of this section in the followingtheorem, using the notations from the beginning of this sec-tion.Theorem 3. There is an algorithm which for a paramet-ric polynomial G 2 Z[T1; : : : ; Ts][X1; : : : ;Xn] produces thepartition of Fs into the constructive sets. For each of thesesets U the algorithm outputs a family of polynomialsG1; : : : ;Gm 2 Q(T1; : : : ; Ts)[Z][X1; : : : ;Xn];the vector of exponents (�1; : : : ; �m) 2 Zm+ , and a polyno-mial � 2 Q(T1; : : : ; Ts)[Z].For any point v 2 U and each root � of the specialization�(v) of � by v the absolute factorization of the specializationG(v) of G by v is given by the formulaG(v) = Y1�i�m(Gi(v)(�))�i ;moreover, every polynomial Gi(v)(�) 2 F[X1; : : : ;Xn] isseparable, 1 � i � m. Herewith, the number of elementsU of the partition is less than �2d3s�n+dn ��O(1), each U isde�ned by a system of polynomial equations and inequationsof degrees not exceeding (�2d3 )O(1). The degreesdegZ(Gi); degZ(�) � 2O(d3);degT1 ;::: ;Ts (Gi); degT1 ;::: ;Ts (�) � (�2d3)O(1);where 1 � i �m.The running time of the algorithm is less than�L�s2d3s n + d3n !�O(1):Remark 9. The diverse roots � of �(v) correspond to per-mutations of the factors Gi(v) (with some values of the ex-ponents �i) in the absolute factorization.Remark 10. The complexity of the algorithm described inTheorem 3, for �; s and d considerably less than n, is of themagnitude nd3 , being subexponential in the size of the inputnd.Remark 11. Since the number of possible vectors of de-grees degX1;::: ;Xn (Gi) and the exponents �i in the absolutefactorization could be exponential in d, the complexity is nec-essarily exponential in d.

5. FURTHER RESEARCH1. Theorem 2 provides an algorithm for solving paramet-ric systems of polynomial equations, having �nite num-ber of roots, which also computes the multiplicities ofthe roots. In [C 84, G 84] an algorithm was constructedfor �nding irreducible components of polynomial sys-tems in singly exponential time. It would be inter-esting to design an algorithm with singly exponentialcomplexity for �nding absolutely irreducible compo-nents of parametric polynomial systems.2. In the Corollary 1 the number of possible vectors ofmultiplicities of roots of a system of polynomials whichare easy to compute was bounded. A di�cult problemis to describe explicitly the set of all realisable vectorsof multiplicities, or at least to indicate a concrete vec-tor not contained in this set. This might shed a lighton algebraic complexity lower bounds problem.
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