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ABSTRACT

Let F be an algebraically closed field of zero characteris-
tic, a polynomial ¢ € F[Xi,...,X,] have a multiplicative
complexity r and fi,..., fr € F[X1,...,Xy] be some poly-
nomials of degrees not exceeding d, such that ¢ = fi =
-+ = fx = 0 has a finite number of roots. We show that
the number of possible distinct vectors of multiplicities of
these roots is small when r,d and k are small. As technical
tools we design algorithms which produce Grobner bases and
vectors of multiplicities of the roots for a parametric zero-
dimensional system. The complexities of these algorithms
are singly exponential. We also describe an algorithm for
parametric absolute factorization of multivariate polynomi-
als. This algorithm has subexponential complexity in the
case of a small (relative to the number of variables) degree
of the polynomials.

INTRODUCTION

The main aim of this paper is to prove some new features
of polynomials which are easy to compute. Previously, the
only known characterizations were the bounds on the sizes
of polynomials vanishing on the variety of the coefficients of
polynomials which are easy to compute (see [BCS 97]).

Let F be an algebraically closed field of characteristic zero,
¢ € F[X1,... X,,] be a polynomial which is easy to compute,
i.e., having a multiplicative complexity r. Let fi,...,fx €
F[X1,...,X,] be some polynomials of degrees not exceeding
d, such that the system ¢ = f; = --- = fx = 0 has a finite
number of roots. We show (see Corollary, Section 3) that
the number of possible distinct vectors of multiplicities of
these roots is less than

(2r + d)O(n2(r2+knd)) )

To prove this bound we design (Theorem 1) an algorithm
having singly exponential complexity which produces a re-
duced Grobner basis for a parametric zero-dimensional sys-
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tem of polynomial equations.

The Grobner bases for zero-dimensional systems were inten-
sively studied, see [B 85, CGH 89, DGFS 89, FGLM 93,
Gi 89, GM 89, GH 93, K 89, KMH 89, Lak 91, Laz 81, T 78]
and others. The Grobner bases for parametric systems were
considered in [W 89], without addressing the complexity is-
sues.

In Theorem 2 an algorithm is described which, invoking The-
orem 1, partitions the space of the parameters of a system
of equations into constructive sets, such that under a spe-
cialization by any point from a given set, the vector of mul-
tiplicities of the roots of the system is the same (provided
the system has a finite number of roots). The algorithm
also finds vectors of multiplicities. The running time of the
algorithm 1s singly exponential. We mention that in the
univariate case (n = 1), an algorithm for parametric solv-
ing of equations (i.e., parametric computing of the GCD
of a family of univariate polynomials) was suggested in [G
87]. In Theorem 3 (Section 4) we describe an algorithm for
parametric absolute factorization of multivariate polynomi-
als. This algorithm has a subexponential complexity in the
case of a small (relative to the number of variables) degree
of the polynomials.

PARAMETRIC GROBNER BASIS OF A
ZERO-DIMENSIONAL IDEAL

Let Fi,...,Fs be polynomials in variables Xi,..., X, of
degrees at most d with variable pair-wise distinct coefficients
T1,...,Ts, which are considered as parameters. Thus,

7TS][X17 e 7Xn]7

1.

F e Z[T,...

where s < k(";d) < kn®. Let for a specialization of all pa-
rameters T1,...,7Ts in algebraically closed field F of char-
acteristic zero the corresponding system of equations fi =
-+ = fr = 0 have a finite number of roots in F". In [CGH
89, Lak 91] a Grobner basis (g1,... ,g-) for (fi,..., fx) was
constructed such that deg(gi) < d°™ (here and throughout
the paper we fix a certain computable monomial ordering,

for example deglex [BW 93]).

The aim of this section is to describe an algorithm for con-
structing a parametric Grébner basis for (F1, ... , Fi) and to
estimate the algorithm’s complexity, in particular to bound
the sizes of coefficients of the Grobner basis (which are ratio-



nal functions of T1,...,T%). In is known (see, e.g., [W 89])
that the existing algorithms for Grébnes basis construction
(for arbitrary dimension) can be parametrized. Complexity
bounds were not considered, but it is clear that straight-
forward bounds are doubly exponential in n even in zero-
dimensional case. Now we proceed to the description of the
algorithm.

Fix for a time being a specialization of the parameters
T1,...,Ts and introduce the algebra

A=F[X1,..., Xu)/ (1, s o)

The dimension dimg(A) coincides with the sum of mul-
tiplicities of all roots of fi <o = fr = 0 (see, eg.,
[ABRW 96, Ro 99]), therefore, due to the Bézout’s inequal-
ity, dimg(A) < d" (see, e.g., [H 83]). Observe that for any
i, 1 <1 < n there exists a polynomial ¢; € F[X,] such that
deg(q:) < dimp(A) and ¢; € /(f1,... , fx). If we require g;
to be monic and of the minimal possible degree, then such
g; 1s unique. According to the Effective Nullstellensatz [FG
90] for any 7, 1 < i < n there exist polynomials hj;, 1 < 7 <k
of degrees deg(h;) < d°™ and 1 < d°™ such that

@@= Y hifj

1<5<k

(1)

Consider the following polynomials with indeterminate co-
efficients: monic @;, 1 < ¢ < n in variables X; respec-
tively; and H;, 1 < 3 <k, all in variables Xi,..., X, such
that deg(@:) = &; < dotm deg(H;) = 8 < d°  where
d; > ldeg(q:), B > deg(hy). Consider

Qi: Z HJFJ

1<5<k

(2)

as a system of linear equations of the size not exceeding
d°™) in the indeterminate coefficients of Qi, H;. Observe
that for any specialization of the parameters 71,... ,7Ts with
dim((f1,..., fx)) =0, the linear system (2) has a root over
F. Conversely, if (2) has a root over F then the ideal
(f1,---, fr) is zero-dimensional. Applying the procedure
from [H 83] (see also [CG 84, G 88, G 90]), for solving
parametric systems of linear equations by Gaussian elim-
ination, to the linear system (2), we get the constructive
subset V' C F*® of all parameters from F*® such that for any
v € V the specialization of (2) by v has a root in F". We
also get a partition of V into constructive sets

V= U V.

1<a<N

The algorithm describes each set V,, by a system of polyno-
mial equations and inequations (relations with #)

Bia) :"':BJ(\Zl :OvBJ(\Zl-H # 0, (3)
where B](a) € Z[T1,...T:]. For each V, the algorithm pro-
duces the (uniform) solution of the linear system (2) in the
following form. Firstly, a particular solution of (2) as a vec-
tor of rational functions {Ré%)}g from Q(T1,...,T:); sec-

ondly a basis of solutions of the homogeneous linear sys-
tem corresponding to (2), as a vector of rational functions
{R(ﬁg}g from Q(T1,...,T:), where  ranges from 1 to the
dimension of the space of the solutions of this homogeneous

system.
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The following bounds hold [CG 84, C 84, G 84]. The number

of the constructive sets N and the number of polynomials
M., do not exceed do("2 S), the degrees

(e (e (e n2
deg(B!™), deg(Ry7)), deg(R\Y)) <d®™).

The running time of the algorithm for solving parametric

system (2) does not exceed qom*s),

Fix a. Abusing the notation, we denote by
Qi H; € Q(Th, ..., TH)[Xy,...

the polynomials from (2) corresponding to the particular

7X"]

solution {Ré‘;)},@. Fix for a time being a point from Vi,
denote by

aivﬁjvflwn 7fk S F[Xl,..

the specialization of @, Hj, F1, ..., Fy respectively, at this
point. The following argument is a slight modification of

the one from [CGH 89].

. Xo]

Take an arbitrary f € (fi,..., fx) with degy, (f) < deg(q:)
for any ¢, 1 < ¢ < n; note that any polynomial from the
reduced Grébner basisof (f1, ..., fx) (see [CLO 92, BW 93])
satisfies the latter bound. Then

f= Z Ajfi,
1<s<k
where A; € F[X1,...,X,]. Divide each A; by the family
Q,,...,Q, with the remainder. We get

Ay = Z @5]@‘ + Py,
1<e<n
where Sji, P; € F[X1,... , X,], and the degrees degx, (P;) <
81, degx, (Q;5;) < degx, 4;, (1 £ 1 < n). Plugging the ex-
pression for A; in the expression for f we get

f: Z PJfJ+S7

1<5<k

where S € (Q,...,Q,,). Hence, degx, (S) <& +d < dotm
1 <1 < n. Dividing S by the family Q,,...,Q, with
the remainder, we get S = Zl<i<n S:Q, for some S; €
F[Xi,...,X,], where degy (SiQ,) < degy, (S) < d°U,
1 <! < n. Plugging this expression for S in f, we obtain

f=> Pfi+ Y, SiQ. (4)

1<5<k 1<e<n

For a given fixed a consider the following matrix Mg, of
the size at most d°(™ with entries in F(Ti,...,T:). The
columns of M, correspond to all the monomials (in the de-
scending order with respect to the chosen monomial order-
ing) X" .- X", where m; < & +d, 1 <1 < n; each row
of M, corresponds to the expansion in the basis of these
monomials of either X"t ... X" F; or X" --- X" Q; for
all possible 1, j,mu, ..., mn such that m; +degy, (Fy), mi+
degXI(Q,') < o1 +d (cf. (4)).

Fix again a point from V. and denote the corresponding
specialization of M. by M,. Using elementary transfor-
mations of rows one can reduce M, to a following “stairs”

form (wij)i;. Let wiy, = -+ = wry, = 1 be the first



non-zero elements in the rows 1,...,r respectively, where
r = rank(Ma,), and g1 < -+ < pr. We also require that
wip, =0 forany i < j (L <, <r). Let xa) o x )
be the monomials corresponding to columns pi,... , g, of
M.,. Choose among them all the monomials X (o) guch
that X (#4) does not divide X ) forall 1 < 5 < r, j # Jo
and in addition degxl(X(“jD)) < deg(gi) for all 1 <1 < n.
Then the set of all polynomials corresponding to rows j such
that X (#i) was chosen above, constitutes the reduced Grob-
ner basis of (fi,..., fx), taking into the account that any
element of the reduced Grobner basis is contained in the

linear hull of the rows of Mg (see (4)).

The algorithm applies the procedure for solving parametric
systems of linear equations by means of the Gaussian elim-
ination from [H83, CG 84, G 88, G 90] to the matrix Mg,
under the condition that the parameters Ti,..., T satisfy
(3). In the process of Gaussian elimination, a current pivot
is chosen in the left-most possible column. As a result, the
algorithm obtains a “stairs” form of M,. More precisely,

the algorithm outputs a partition of V, into constructive

sets
U Ve

1<v< N,

Va

Fach V,,, is defined by a system of polynomial equations
and inequations

Biayy) == BJ(\?:;), =0, BJ(\?::L),+1 ;é 0, (5)
For every v the algorithm

v

where B*") ¢ Z[Ty,... T.].
outputs the sequence “(11,) < +-- < pp, of the columns, such
that in MS;') = (wl(;)),'J the entries wl(:)l =1(1<i<r)
are the first non-zero elements in the rows 1,...,r,, where
ry, = rank(/\/(g’)). Fach entry wl(;), where 7 > p; and j #
for all I # 1, is given by the algorithm as rational function
from Q(T1,...,T:). Observe that all the rest of the entries

wl(;) vanish on V, ..

The following bounds hold (see [CG 84, C 84 G 84]). The

number of sets N, and the number of polynomials M, .
do not exceed do("QS)7 the degrees deg(B](a’y))7 deg(wl(;)) <

d°"*)  The running time of reducing MY to “stairs” form
does not exceed d°(™*?).
We summarize the results of this section in the following

theorem, which uses the notations introduced previously in
this Section.

THEOREM 1. There is an algorithm which for a system of
parametric polynomials

Fi,...,Fy € Z[T,... ,T5][X1,...,X5] produces the con-
structive subset V. C F* of all points v for which the special-
wzations f1,..., fu of F1,..., Fx generate zero-dimensional
tdeals. The algorithm produces the partition

v=U U

1<a<N 1<v< Ny

Va,u

into constructive sets defined by systems (5), and for each
Voo the algorithm outputs a family of polynomials

Gi,...,G, e Q(Th,... , T)[X1,..., X5] (being monic with
respect to the fized monomial ordering of X1,...,Xy) such
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that for any point v € V, , the specialization g1,... ,g9, €
F[X1,...,X,] of G1,...,G, at v is the reduced Grébner
basis for f1,..., fx. The degrees with respect to T1,... ,Ts

of all produced rational functions do not exceed do("Q), and
degx, . x,(Gi) < d°" for 1 < i < p < d°C). The

running time of the algorithm is less than qoms)

REMARK 1. Obuviously the theorem remains true if F is a
field with a positive characteristic, and

F; € GF(p)[T1,... ,T][X1, ..., Xy] for a prime number p.

2. VECTORS OF MULTIPLICITIES FOR
A PARAMETRIC SYSTEM

In what follows we adopt the notations from Theorem 1.
Fix some values of indices a,r. For any value of the param-
eters from V, . we construct in a usual way [BW 93] the
monomial basis and the multiplication tables for the alge-
bra A =F[X1,..., Xn]/(f1,--., fx), involving the Grobner
basis produced in Theorem 1. More precisely, the table rep-
resents the product of some two monomials from the basis
as a linear combination of elements of the basis with the
coeflicients being rational functions from Q(T1,...,Ts) of

degrees not exceeding d°"*) The running time of this con-

struction is less than d°(m"*).

Fix for a time being a specialization of the parameters
T1,...,Ts. Introduce indeterminates U, ... , U,. Following

[ABRW 96] (see also [Ro 99]), consider the map

U: AQU,... .Uy — A2 QU,... ,Uy),

which is the multiplication by the linear form

It follows from [ABRW 96] that all the roots of the character-
istic polynomial x(Z) of U are of the form & Uy +-- -+ &,Un
where (&1,...,&n) is aroot of fi = --- = fr = 0 and the
multiplicities of the respective roots & U; + - - - + &,U, and
(&1,...,&n) coincide. Note that deg,(x(Z)) = dim(.A). Let
ni be the vector (1,4,4%,... ,i""') € Q" for any 1 < i <
(n—1)d®™. Consider the multiplication map #f; : A — A
by the linear form X; + ¢ X5 + PXs 4+ i"_an, and
the characteristic polynomial (U/-Chow polynomial) x, (Z)
of U; (see [ABRW 96, Ca 89]). Then there exists the inte-
ger ig, 1 < ip < (n — 1)d®", such that the inner products
Nig (€1, ..., &n) are distinct for distinct roots (&1 ... , &) of
fi=- = fi =0 (cf. [CG 84]).

For each i, 1 < i < (n — 1)d*™ the algorithm constructs
the polynomial x,, € Q[Ti,...,T:][Z], and computes the
vector of multiplicities of its roots, as described below. The
degree degyp, 1 (X)) does not exceed a°*) and X7, can
be found in time not exceeding d°m*s) - Tor any 7, 1 <
j < deg,(xn,) the algorithm, using [G 90], computes the

GOD(Xis Xy -+ > X

. X»¢ ) representing it in the form

AP Z 4 A 7T 4 AT,

where A;i’]),... ,A(()m) € Q[T4,...,Ts] are some minors of
a relevant matrix, whose entries are coefficients of the poly-
nomials Xn,, Xn;,--- 7X£7],) of the sizes not exceeding do(")7



with degy, (A7) <d°C) and I < deg(A) — j. Note
that the polynomials A;w),... ,A(()l’]) are generalizations
of subresultants for the case of GCD of many polynomi-
als (rather than just two). Observe that the degrees of
GCD(Xnes Xogs» - - - 7X£7],)) for all j determine the multiplici-
ties of xy,-

The algorithm lists all the non-empty constructive sets W
of the form

{AS 4 5 m 0} C Vay C F°, (6)
where *;;m € {=,#}, using [H 83]. The number of the

sets does not exceed d°("”?) [H 83], the running time of the

listing is less than do’?) [CG 83].

Each of the constructive sets W determines the degrees with
respect to Z of GCD(xn;, X7, - - - ,Xﬁ,{)), and thereby the
vectors of multiplicities of all x,,. The algorithm finds
among vectors of multiplicities the one with the maximal
number of components, which is the vector of multiplicities
of the roots of f; o= fr 0 for any specialization
from W. We summarize the results of this section, using

Theorem 1, in the following theorem.

THEOREM 2. There is an algorithm, which for a system of
parametric polynomials

Fi,..., Fx EZ[Th ,TS][Xl,... 7Xn]

produces a constructive subset V. C F° of all points v for
which the specializations f1, ..., fr of F1, ... , Fx respectively,
generate zero-dimensional ideals. The algorithm produces a

partition
v= |J W
1<a<N

into constructive subsets of the form (6). For every a, 1 <
a < N the vector of multiplicities of the roots is the same
for a specialization fi = --- = fr, =0 by any point w € W,.
The algorithm finds such vector of multiplicities for every
Wa. The number N of sets does not exceed do("QS), the

n2

degrees of the polynomials defining W is less than d°! ),

n2s)

and the running time of the algorithm is bounded by d°!

REMARK 2. The algorithm from the theorem can be modi-

fied to express the solutions of a parametric polynomzeal sys-
tem via primitive element using the “Shape Lemma” (see,
e.g., [KP 94, GH 93]). More precisely, the algorithm pro-
duces a partition of Wy into constructive sets Wy .. Fach
set Wa o ts equipped with a linear combination 1 X1 +--- +
YnXn where 1 < v < d°™ and rational functions

Piy---,pn € Q(Th,...,T:)[Z]. Herewith, for any v € Wa,,
the set of all roots of the specialization f1 = --- = fr, =0
of F1 = --- = Fi, = 0 by v coincides with the set of points

(p1(v)(8),. .. ,pn(v)(9)) where 8 runs over all distinct roots
of the characteristic polynomial x(v)[Z] of the linear multi-
plication map by the element v1 X14- - -+vnXn in the algebra
A. The number of sets W, ., does not exceed do("QS), the de-
grees deg; (p:), degz(x) < d*", degr,  r,(pi),

degr 7. (x) < d°™*) . The running time of the algorithm

is less than d°(™°9)
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REMARK 3. In the case when the polynomials Fy, ... Fy are

homogeneous in Xo, X1,...,Xn one can prove a projective
version of Theorem 1. Namely, the algorithm produces a
partition

V:UVacFS

of the constructive set V of points in F* for which the spe-
cializations fi = - = fr =0 of F1 = --- = F, = 0 have
finite numbers of roots in the projective space P*(F). For
each Vo the algorithm, using [Laz 81], constructs a polyno-
mial Rg € Q[T1,...,Ts,Uo, Ui, ... ,Uy] such that for any
specialization by a point from V4, the polynomial Ry con-
verts to U-resultant of the system f1 = --- = fr = 0. Both,
the degrees of polynomials defining Vo and deg(Ra) do not
exceed d°0)

dO(ns) )

The running time of the algorithm is less than

REMARK 4. One can also prove a projective analogue of
Theoremn 2. Namely, the algorithm partitions V into at
most d°™) constructive sets V., such that the specializa-
tions fr =+ = fr =0 of F1 = --- = Fx, = 0 by all points
from V o have the same vector of multiplicities of their roots.
The degrees of polynomials defining Ve do not exceed d°
and the running time of the algorithm is bounded by d°™®.

3. APPLICATION TO POLYNOMIALS
WHICH ARE EASY TO COMPUTE

In this section we consider a multivariate analogue of the
construction of Strassen and Schnorr (see [BCS 97]).

Fix a point ¢ = ({1, ...
B=F[Xi,...,Xa]/(Xi = C1,...

Consider the class Cﬁ%,n C B of the elements with mul-
tiplicative complexity not exceeding r. According to (a

natural generalization of) the Representation Theorem of

Strassen and Schnorr [BCS 97], the class Ci% ,, can be rep-
resented as a union of 2" subsets each of which is an image

of a polynomial map defined by the formula

o= )" U(ANX =),

I1<D

.Cn) € F™ and introduce the algebra
X — Co) "t

(7)

where [ is a multi-index, polynomials
U, € F[A1,... ;A 41)241], and the degrees deg(W) < (2r—
D]+ 2.

Consider the grid Z = {0,1,...,2?"t?}" C F". Obviously,
any polynomial of the degree at most 22772 can’t vanish
at all the points from =. Consider now the class Cr p,n C
F[X1,...,X,] of polynomials ¢ such that deg(¢) < D, and
the multiplicative complexity not exceeding r. For an arbi-
trary ¢ € Cr p,n consider a straight-line program with mul-
tiplicative complexity at most r which computes ¢. There
exists a point from = at which all intermediate rational func-
tions in the program are defined (and are different from
zero). Therefore,

Cr,D,n C U Cifg,n
CEE

Our aim is to estimate the number of possible distinct mul-
tiplicities vectors for the intersections of hypersurfaces ¢ =
0, ¢ € Cy p,n with several hypersurfaces of small degrees.



Fix a point ( € F". Consider a specialization

¢ € F[Xi1,...,X,] of ® from (7) with respect to a point
from F(r+D°+1,

In what follows we use the notations from Sections 1 and
2. One can apply the algorithms from Sections 1 and 2 to
polynomials @, Fy,..., Fir. We apply Theorem 2 to elements
of the set Cﬁ%,n C B which are treated as the polynomials
in X1 —¢i,...,Xn— (, of degrees at most D.

COROLLARY 1. The number of possible distinct vectors of
multiplicities of the roots of any system ¢ = f1 = --- =
fe =0, where ¢, f1,..., fr € F[X1,...,X,] with deg(¢) <
D, deg(fi) <d, (1 <1< k), multiplicative complexity of ¢
at most r, does not exceed

(1)4_d)o<n2uﬂ+k(dt")» < ([)4_d)o<n2u2+kn%>

)

provided that ¢ = f1

roots.

-++ = fr = 0 has a finite number of

REMARK 5. Note that the number of roots of ¢ = f1 =
«+o = fr. = 0 does not exceed (D + nd)” according to the
Bézout inequality (see [H 83]), thus the a priori number of
the partitions of this number is exponential in (D + nd)",
which considerably exceeds the bound from the Corollary 1
for small values of r and d.

REMARK 6. Obviously, D <27,

REMARK 7. In case n = 1 we conclude, in particular, that
for each D there exists a vector of multiplicities my, ..., my
with m1 + -+ + my = D such that the multiplicative com-
plezity of any polynomial (X —ay)™ -+ (X —a;)™ for arbi-
trary roots ay, ... ,a; is greater than Q(\/D/log D) (in fact

almost all vectors of multiplicities satisfy this bound).

REMARK 8. The bound from Corollary becomes meaning-
ful, for example, for d = 2 and r being polynomial in nlog D.

4. PARAMETRICABSOLUTE FACTORING

OF POLYNOMIALS OF SMALL DEGREE
Let G € Z[Ty,...,T:][X1,...,Xxn] be a polynomial with

degrees
degxl,... X (G) <d, deng,... Ts (G) <6,

and bit-sizes of integer coefficients not exceeding L. Here
variables T1,...,T; are considered as parameters. In this

section we describe an algorithm for parametric factoring of

G over F.

We call a vector 3 = (B1,...,8n) € Z} (d,n)-separating if
for all vectors j = (j1,...,jn) € Z7} such that j1+---+jn <
d the inner products 37 are pair-wise distinct.

Tet N = (":d)2(n—1)—|—1. Then there exists a prime number
p such that N < p < 2N. Consider an (N x n)-matrix D
whose (i, 7)-entry is the residue r, 0 < r < p—1 of i/ modulo
p, where 1<: < N, 0<73<n—1.

LEMMA 1. At least one of the rows of the matriz D is
(d, n)-separating.
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PRrROOF. Suppose, contrary to the claim of the lemma, that
for any row (3 of D there exist two distinct vectors j =
(j17"' 7jn)7 j/ = (]{7 7];7,) S Zr-li such that ]1+ +]n S
d, j1+---+7n, <dand 85 = B5'. Observe that each (n x n)-
minor of D is non-zero being a Vandermonde determinant
modulo p (cf. [GKS 90]). It follows that for each pair of
distinct vectors j, j' as above, there exist at most n — 1 rows
3 such that 85 = B3'. The obtained contradiction proves
the lemma. [

Fix the row B of D satisfying Lemma 1. Consider the
(":d) x n-matrix £ whose (i, k)-entry is i®* | where 1 <1 <

(", 1<k <n.

LEMMA 2. For any polynomial 0 Z g € F[X1,...,Xx] of
the degree not exceeding d, there exists a row & of £ such

that g(&) # 0.

Proor. Consider the ("Zd) X ("Zd)—matrix F whose (1, j)-
entry is +7, where 1 < i < (":d) and j = (J1,...,Jn) €
ZY, j1+ -+ jn < d. Lemma now follows from the non-
singularity of F (see [PS 64]). O

Let the polynomial g € F[X1,..., X,] have the degree d; <
d. Let § € F[X1,...,X,] be the leading homogeneous form
of degree d; of g. For any row ¢ = (&1,...,&n) of £ consider
the non-singular linear transformation of the coordinates

X1 —)51)(17 X,—)X,-F&Xl, (7)

where 2 < ¢ < n. Applying this transformation to g we
obtain the polynomial g¢. Note that the coefficient at the
monomial del of g¢ equals to §(&1,...,&n). Then, accord-
ing to Lemma 2, there exists a row & of £ such that the
. . . . dq
corresponding polynomial g¢ contains the monomial X*.

We call a polynomial from F[X1,...,X,] monic (in Xi),
if the coefficient at the highest power of X; belongs to F.
Note that g is monic.

The algorithm performs the transformation (7) of G for the
various rows 3 of the matrix D and the various rows £ of the
matrix £. For a fixed € denote the result of the transforma-
tion by G¢. The algorithm partitions the space F* of the
parameters into the constructive sets V' such that all special-
izations g of G¢ by the points from V are of the same degree
d; and are monic. W.l.o.g. we assume that the coefficient
at X2 of G is 1 (dividing G¢ by this coefficient).

n+dy O(1)
The number of sets V' does not exceed ( j; ) . Each
set V is defined by a system of polynomial equations and
inequations of degrees at most § in variables 71, ... ,T.. For
deciding the non-emptiness of these sets, the algorithm uses
the procedure from [C 84, G 84], whence the running time

of the algorithm at this stage is bounded by (L(sS (":d))o(l),
taking into the account that the bit-size of &; is bounded by
(n-l— d) o(1) .

Fix for a time being a set V. The algorithm reduces the
absolute factorization of G¢ to the absolute factorization
of a separable polynomial. Namely, note that for any spe-
cialization g of G¢ (by the points from V'), the polynomial



g/GCD(g,dg/8X,) is separable. The algorithm computes
the GCD(g,38g/8X,) (treating g as a polynomial in X;)
parametrically, using the subresultant algorithm [Co 67].
Namely, the algorithm constructs the minors of the Sylvester
matrix for G¢ and 8G¢ /98X, and partitions the set V into
constructive subsets Vg, . For each set Vg, the algorithm pro-
duces a polynomial Ad2X1d2 —|—Ad2_1X1dQ_1 +---4+Aop, where
A; € Z[Th, ..., T:][Xz2,... ,Xxn], 0 < 7 < d2. Each special-
ization Ag,(v) of Ag, by the points v € Vg, is a non-zero
element of F[X1,... ,X,]. The specialization AdQ(v)de2 +
-+ + Ag(v) coincides with the GCD(g, 8g/8X1) in the ring
F(X2,...,Xn)[X1]. Since gis monic, the polynomial Ag,(v)
divides Aj(v) for all 0 < j < d; — 1 in F[X>,... X,], due to

the Gauss Lemma.

The algorithm computes the quotients A;/Ag4, paramet-
rically. Namely, the coefficients of the quotients are the
unique solutions of the suitable systems of linear equations
with coeflicients in Z[T1,...,T] (provided that v € Vg,).
As a result, the algorithm produces a monic polynomial
de2 + AdQ_lelQ_l + . 4+ Ao, where

A; € Q(Th,... , TH[X2,... ,Xs], 0 < j <ds — 1. For any
point v € Vg, the specialization de2 + Ad2_1(U)X1d2_1 +
o4 Ao(v) coincides with the GCD(g, 9g/8X1) in the ring
F[Xi,...,X,]

The algorithm computes the quotient g/GCD(g, dg/0X1)
parametrically (cf. computing of Aj/Ag, above). Namely,
the coefficients of the quotient are unique solutions of suit-
able systems of linear equations with coefficients in

Z[Ty,...,T.] (provided that v € Vg,). Thus, the algorithm

provides a polynomial
Ho= X% 4 gy gy X771 4 A,
where A; € (Q(T‘l7 7T5)[X27... 7Xn]7 0<y3<d —dy—1.

For any point v € Vg, the specialization
H(v) = X" 7% 4 4 Do(v)
coincides with g/GCD(g, 8g/8X1 ) in the ring F[ X1, ...

We now estimate the complexity of the just described stage
of the algorithm. The number of distinct sets Vg, does not
exceed di < d. Each Vg, is defined by a system of poly-
nomial equations and inequations of degrees not exceeding
O(4d) since the size of the Sylvester matrix involved is O(d).
For the same reason the degrees of Ay, A] and A; with re-
spect to 11, ..., T, also are bounded by O(dd). The degrees
with respect to Xs,..., X, of the minors of the Sylvester
matrix do not exceed O(d2)7 and therefore, the degrees of
Ay, Aj and A; also do not exceed O(d?). The running time
of the algorithm on this stage is less than

<L(5d)s (" J;CF) > O(l),

since the non-emptiness of Vg, is decided using [C 84, G 84]
in time (L(5d)5)o(1). Denote by

D eQ(Th,...,T:)[Xz2,...,Xy] the discriminant of the poly-
nomial A with respect to X;. Recall that for any v € Vg,
the specialization D(v) € F[X2,...,Xy] of D is non-zero.
Observe that degy x (D)< O(n’),

deng,... T (D) < O(5d2)~

7X"]
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Fix for a time being a point v € Vy,. The algorithm com-
putes the matrix D, and for each row of D it produces the
matrix £ (as described above, see Lemmas 1, 2), replac-
ing d by O(d®) and n by n — 1 respectively. Due to Lem-
mas 1, 2, there exists a row (&2,...,¢&) in one of these

matrices £ such that 0 # D(v)(&2,...,&) € F. Denote

by H € Q(Th,...,T)[X1, ..., X,] the result of the linear
change of variables
X2 —)X2—€2,... ,Xn —>Xn_€n

in H, and by h € F[Xi,...,Xs] the specialization H(U)
Note that h is monic. The discriminant of the univariate
polynomial h(X1,0,...,0) € F[X] coincides with
D(v)(&2,. .. ,&n), which does not vanish.

Hence h(X1,0,...,0) is separable.

The algorithm partitions the set Vg, into constructive sub-
sets. Each such constructive subset W stems from a cer-
tain vector (€2,...,&n) considered above such that for any

v € W we have D(v)(&2,...,&n) # 0. As before, the algo-
rithm makes these sets W to be disjoint. The number of

the sets W in Vg, is less than ("Zd)o(l). Each W is defined

by a system of equations and inequations of degrees O(5d2)
with respect to T1,...,Ts, since I} is the determinant of a
matrix of a size of O(d). The bounds on the degrees of H
with respect to 71, ... ,7s and X1,... , X, are similar to the
ones for H. The running time of the algorithm at this stage

<L(5d)s (" J;d3> > o

Fix for a time being the set W and the corresponding poly-
nomial H. Our next goal is to describe a parametric version
of a quadratic Hensel lifting which we will apply below to
H (see [Ga 84, GK 85, Kal 85]).

For any point v € W consider the absolute factorization
h = hi---hm. The algorithm retrieves this factorization
from the corresponding univariate factorization

hi(X1,0,...,0) - hm(X1,0,...,0)

using the parametric Hensel lifting described below. The
algorithm considers one by one all the partitions
(r1,...,rm) of the difference d; — d> for diverse m i.e., r; <
ro <.+ <rpmandry+---4+rym =d —dz. Fix one such
partition (ri,...,7rm).

Introduce new variables Y; ;, where 1 < ¢ < m, 0 < 3 <
r; — 1. The algorithm will perform the Hensel lifting of the
factorization of the product

0= [ Hox),
1<i<m

where FI,‘(Xl) =X —|—Y,‘7Tl_1X1T’_1 + -4+ Yio. The result
of the Hensel lifting of (8) is a product of power series

H= H Hi,

1<i<m

2.

[71=0

H(X,,0... (8)

©)

where

H, a) X7,



) e Q(Ty,...

herewith degy, (a(f)) <ri—1for |J| > 1, a(()i)
X7 = X2 Xin,

7Ts)(Yi,17 e 7Ym,rm—1)|:X1]7

= FI,‘, and

We view (8) as a base of the recursion in the Hensel lift-
ing. As a recursion hypothesis for the recursion step ! we
assume that the algorithm had already constructed all the
coefficients a(j) for |J| < 2" — 1. In particular, all H; are

monic.

Consider a multi-index I with 2' < || < 2"%! —1. Then (9)
()

vields a equation for a3, 1 < ¢ < m of the following form:

Hmn1+A=B.

(10)
Here A = Za&?)A%), 1<k <m, K <1 (< denotes a
natural partial order on the set of multi-indices), || > 2;

A(k)

K
|J] < 2! —1; B is a polynomial of a degree not exceeding m
in a(;) with |J| < 2" =1, and B is linear in the coefficient at

X7 of H.

D By Fta® T - Blotal™ B -

is a polynomial of a degree at most m — 1 in a(;) with

Arguing by induction, one shows that each system of the
form (10) for all multi-indices /' < I has the unique solution
in a&?), 1 <k < m under the condition degy, (a&?)) <r;,—1.
Therefore, the degrees of A and B with respect to X; do
not exceed di — dz2 — 1. It follows that there exist unique
a(Il),... ,a(Im) satisfying (10) such that degy, (a(Il)) < r;—
1,1<i<m.

The algorithm solves recursively systems of the form (10) ac-
cording to increasing multi-indices with respect to the par-

tial order < and finds the solutions a(Ii), 1 <3 < m. The
Hensel lifting terminates when 2'*! exceeds

degy, VXn(fAI) < O(d2) (see above).

Introduce the truncated power series

2

0<|I]<2i+1 —1

H =

Q(11, ..
The algorithm should verify the equality

= 1[ #.

More precisely, using quantifier elimination [CG 84], the al-
gorithm finds the constructive subset W, . .. C W of all
the points v € W such that there exist y1,1,... ,Ym,rm—1 €
F with the specialization of (11) by v and y1 1, ...
is true.

TV, Yo - X155 Xl

(11)

y Ym,rm —1

Order all the partitions (ry,...,rm,) in an arbitrary order
consistent with the decrease of m. The algorithm follows this
ordering and replaces each next W, . .. by subtracting
from it the union of Wr’l,... - for all previous partitions
(ri,...,rm) in the ordering. These new constructive sets
constitute a partition of W, we keep for them the same
notations W,

Tl Tm e
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Fix for a time being a set W, .. ;.. Observe that for any
v € Wy, ... r, the specialization of the equations (11) by v
and every yi,1,...,Ym,rn,—1 satisfying (11) is the absolute
factorization of H(U) = h.

Recall that for any point v € W, .
€ Zy4 such that

rm there exist K1,... ,Km

g( X1, X2+ &y, Xnt&n) = H (7—11(0)) (12)
1<i<m

The algorithm looks over all possible vectors (kK1,... ,5m) €

Z7 such that k1+- - -+Km = d1. For each vector (k1,... ,Km)

the algorithm produces and tests non-emptiness of the con-
structive set W51 mm) — Wey,... rm of points

ve W, .. ., for which there exist the elements

Yi1,--- s Ymrm—1 € F such that (12) holds, and also repre-
sents these elements as described in the paragraph. Observe
that the sets W1 5m) form a partition of Wy, . . . and
for each v € W1 %m) there is a finite set of the solu-
tions Y1,1,. .- ,Ym,rm—1, due to the Gauss Lemma. The al-
gorithms applies to the system of equations (12) the proce-
dure from Theorems 1, 2 and the Remark 2. As a result,
a parametric Grobner basis for (12) will be computed (see
Theorem 1), as well as the vectors of multiplicities (see The-
orem 2) of the roots of (12). The algorithm produces a parti-
tion of the set W1+ %m) Fix for a time being an element
U of the partition. The algorithm produces a primitive el-
ement v1,1Y1,1 4+ -+ + Ym,rm—1 Ym,rm —1, rational functions
P11y s Pmrm—1 € Q(T1,...T:)[Z], and the characteristic
polynomial x € Q(T1,...,Ts)[Z] of the linear multiplication
map by the primitive element in the algebra .4, such that for
any v € U the specializations p1,1(v)(9),... ,Pm,rm—1(v)(9)
run over all solutions y1,1,... ,Ym,r, —1 of (12) when 8 runs
over all roots of the polynomial x(v)(Z2).

Now we estimate the complexity of the algorithm. The al-
gorithm looks through all 299 partitions (ri,...,rm) of
the difference di — ds. Then the algorithm, recursively on
I, for each multi-index J such that |J| = 2'*! — 1 solves the
union of the linear systems of the form (10) for all I < J
and |I| > 2'. The sizes of the matrices of systems (10) do
not, exceed

(22 d)o(l). For J such that |J]| < 2% — 1 the degrees

deng,... Ts (a(Ji)) < (22ldl5)0(1)7
i l o(1
degyl,l,... Y, (C’E )) < (22 dl) ( )'

Y rm —1
Therefore,

deng,... Ts (7:[@) < (2d5)o(1)7

degyl,l,... Yo, v —1 (7:[@) < 20(d)7

where 1 <1 < m. The running time of the Hensel lifting of
#; does not exceed (L552d52d2 ("-I;ldQ))O(l).

Then the algorithm applies quantifier elimination to (11)
and produces constructive subsets W, . ... The number

of sets is less than (2d25)o(5). Each subset is defined by a
system of polynomial equations and inequations of degrees

at most (2d25)o(1). The running time of this application of

quantifier elimination does not exceed ([/552612S ("";ldQ) ) om,



After that the algorithm applies the machinery from Sec-
tions 1, 2 to the system (12), and produces the constructive
sets U and the representations of the solutions

Y1y sy Ymrm—1 Via Y11 Y11 + -+ Ym,rp —1 Ym,rm —1, the
characteristic polynomial y, and the rational functions

P, -- The number of sets U does not exceed
90(d%s)

7pm,rm—1~
Each set U is defined by a system of polynomial
equations and inequations of degrees not exceeding

(52d3)o(1). The degrees of rational functions

3
degr, .z, (piy), degr 1 (x) < (82%)°0,

deg 5 (x); deg 5 (pi ) <297,
where 1 <1< m, 1< j <ry — 1. The running time of this
2
stage of the algorithm is less than (L552d35("‘|;ld ))O(l).

We summarise the results of this section in the following
theorem, using the notations from the beginning of this sec-
tion.

THEOREM 3. There is an algorithm which for a paramet-
ric polynomial G € Z[Th,... ,Ts|[X1,... , Xn] produces the
partition of F*® into the constructive sets. For each of these
sets U the algorithm outputs a family of polynomials

Gi,... G € Q(Th, ..., TH[Z][X1,. .., Xnl,

the vector of exponents (K, ...
mial x € Q(T1,... ,T:)[Z].

For any pointv € U and each root 8 of the specialization
x(v) of x by v the absolute factorization of the specialization
G(v) of G by v is given by the formula

[T @Giwien™,

1<i<m

 km) € ZT, and a polyno-

G(v) =
moreover, every polynomial G;(v)(8) € F[Xi,...,X,] is
separable, 1 < ¢ < m. Herewith, the number of elements
U of the partition is less than (2d35(":d))o(1), each U is
defined by a system of polynomial equations and inequations
of degrees not exceeding (52d3)o(1) . The degrees

deg,(Gy), deg,(x) < 290,

3
deng,... ,Ts(Gi)7 deng,... Ts () < (52d )0(1)7

where 1 <1 < m.
The running time of the algorithm is less than

3\ ©O(1)
<L552d35 <n+d >> )
n

REMARK 9. The diverse roots § of x(v) correspond to per-
mutations of the factors G;(v) (with some values of the ex-
ponents k; ) in the absolute factorization.

REMARK 10. The complexity of the algorithm described in
Theorem 3, for 0, s and d considerably less than n, is of the

magnitude nda, being subexponential in the size of the input
d

n®.

REMARK 11. Since the number of possible vectors of de-
grees dethm X, (G,) and the exponents k; in the absolute
factorization could be exponential in d, the complexity is nec-
essarily exponential in d.
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FURTHER RESEARCH

1. Theorem 2 provides an algorithm for solving paramet-
ric systems of polynomial equations, having finite num-
ber of roots, which also computes the multiplicities of
the roots. In [C 84, G 84] an algorithm was constructed
for finding irreducible components of polynomial sys-
tems in singly exponential time. It would be inter-
esting to design an algorithm with singly exponential
complexity for finding absolutely irreducible compo-
nents of parametric polynomial systems.

2. In the Corollary 1 the number of possible vectors of
multiplicities of roots of a system of polynomials which
are easy to compute was bounded. A difficult problem
is to describe explicitly the set of all realisable vectors
of multiplicities, or at least to indicate a concrete vec-
tor not contained in this set. This might shed a light
on algebraic complexity lower bounds problem.
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