
Approximation and complexity II:iterated integrationDima Grigoriev�AbstractWe introduce two classes of real analytic functions W � U on aninterval. Starting with rational functions to construct functions in Wwe allow the application of three types of operations: addition, inte-gration and multiplication by a polynomial with rational coe�cients.In a similar way to construct functions in U we allow integration, ad-dition and multiplication of functions already constructed in U andmultiplication by rational numbers. Thus, U is a subring of the ringof Pfa�an functions [Kh].Two lower bounds on L1-norm are proved on a function f fromW(or from U , respectively) in terms of the complexity of constructingf .AMS classi�cation numbers 68Q25IntroductionThe well-known Liouvillean theorem states that ifp(a) = 0; a 6= 0; p = P0�i�m piX i; pi 2 Zthen one can bound from below the absolute value jaj of the algebraic numbera in terms of the complexity of the determining polynomial p.The question arises whether this phenomenon could be extended to solu-tions v of (ordinary) di�erential equations Q(v) = 0? It is known [B] that ingeneral one can't bound v for non-linear second-order (or higher) equations�IRMAR, Universit�e de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France1



Q(v) = 0. Thus, one ought consider solutions of either linear or �rst-orderequations.In the present paper we introduce two classes of real analytic functionsW � U on a �nite interval I. In both cases we start with rational functionswith rational coe�cients. To construct functions in W we allow the applica-tion of three types of operations: addition, integration and multiplication bya polynomial from Q[X]. Thereby, W is a di�erential Q[X]-module. Whilefor constructing functions in U we allow the application of integration andsubstitution of already constructed functions from U into a (multivariate)polynomial with rational coe�cients. Thereby, U is a di�erential Q[X]-algebra. Clearly, U is a subring of the ring of Pfa�an functions [Kh].Thus, each function f fromW (or from U , respectively) is constructed bymeans of a chain of operations (which involve arithmetic and integration) andone can de�ne the \complexity" of f as the complexity of a correspondingchain.In section 1 below we prove (theorem 1) a lower bound on the \separator"minx2I 0 jf(x)j for f 2 W and a suitable subinterval I 0 � I in terms of Iand of the complexity of the corresponding chain for f (in particular, thisprovides a lower bound on L1-norm maxx2I jf(x)j). Moreover, we providean upper bound on the number of roots of f (lemma 1) which is better thanthe bound from [Kh] established for the wider class of Pfa�an functions.It is worthwhile also to mention that in [Y] one can �nd a comprehensivesurvey on the bounds on the number of zeroes of solutions of diverse classesof di�erential equations.In section 2 we prove (theorem 2) a lower bound on minx2I 0 jf(x)j forf 2 U and a suitable subinterval I 0 � I again in terms of I and of thecomplexity of the chain for f under the assumption that in the chain eachapplication of integration introduces a function that is transcendental withrespect to the previously constructed functions in the chain. This assumptionof purely transcendental chains allows one to avoid introducing in a chainarbitrarily small constants (otherwise, no lower bound would be possible).Thus, in constructing U (andW ) we allow integration. It seems that if weallowed the introduction of the solutions of more general types of �rst-orderdi�erential equations (as e.g., in case of Pfa�an functions [Kh]) then resultsof a similar sort to ones in the present paper would fail, again because solvingsuch equations would allow the introduction of arbitrarily small constants ina chain. 2



In [G01] similar results were established for solutions of linear di�erentialequations on an interval.The picture becomes somewhat easier to study if instead of approximatingon an interval, asymptotic approximations on the real line (at in�nity) areconsidered since then introducing small constants is not a problem. In thissetting a lower bound on approximations in terms of the complexity for awider class (than the present class) of Pfa�an functions was obtained in[G93]. Besides, a lower bound for a wider class than in [G01] of compositionsof solutions of linear di�erential equations was established in [G92].One could also view the results of the paper as a trade-o� between ap-proximations and complexity. It would be interesting to understand moreabout this trade-o�. We mention that in this direction a lower bound wasproved in [CG] on the complexity of approximating algebraic computationtrees.It is worthwhile also to mention that in [K] a version of a di�erential ana-log of the Liouville's theorem was proposed in terms of bounds on valuations,while we study approximations in the L1-norm.1 Functions of linear-iterated integrationDenote by I � R a �nite closed interval of the length jIj such thatI � [�b; b]; b � 1 (1)and for a function g on I denote the L1-norm jjgjjI = maxx2I jg(x)j and the\separator" sepI(g) = minx2I jg(x)j = jjg�1jj�1.Let q0; : : : ; qt be real analytic functions on I, moreover q0 2 R(X).Wesay that q0; : : : ; qt constitute a (t; d)-chain of linear-iterated integration if foreach 0 � i � t�1 for appropriate polynomials p0;i; : : : ; pi;i 2 R[X] of degreesdeg(p0;i); : : : ;deg(pi;i) � d, we have for the derivativeq0i+1 = p0;iq0 + � � �+ pi;iqi (2)In such a case we sometimes simply say that qt is a (t; d)-chain. Clearly, a(t; d)-chain is a particular case of a Pfa�an chain [Kh] and thereby, qt is aPfa�an function. 3



First we prove an upper bound on the number #(g) of the roots of gin I (in fact, this would give the same bound on the number of the rootson the whole real line, provided that the functions fqig0�i�t; g were analyticon the whole real line as well). We note that this bound is stronger (beingpolynomial rather than exponential) than the bound [Kh] which is valid forthe wider class of Pfa�an functions.Lemma 1 Let g = X0�j�t vj;1qj;1 + � � �+ X0�j�t vj;Nqj;N (3)where for every 1 � l � N the functions q0;l; : : : ; qt;l form a (t; d)-chain, herethe polynomials vj;l 2 R[X];deg(vj;l) � d. Then #(g) � O(Nt2d2), providedthat g 6� 0.Proof. We express the rational function q0;l =dq0;l=q0;l where the numera-tor and the denominator dq0;l; q0;l have the degrees deg(dq0;l);deg(q0;l) � d.By induction on s = 1; : : : ; t denoting S = (d+1)+(2d+1)+� � �+(sd+1)one can represent the derivativeg(S) = X1�j�t�s vj;1;sqj;1 + q0;1;s + � � �+ X1�j�t�s vj;N;sqj;N + q0;N;sfor suitable vj;l;s 2 R[X]; q0;l;s =gql;s=(q0;l)S wheredeg(vj;l;s) � minfSd; (t� j + 1)dg;deg(gql;s) � O((sd)2);see (2).Finally, putting s = t; T = (d+ 1) + (2d+ 1) + � � �+ (td+ 1) we get thatg(T ) 2 R(X) and taking into account the Rolle's theorem #(g) � #(g(T ))+Twhen g(T ) 6� 0 or otherwise we have #(g) � T � 1, we conclude with thelemma. 2From now on we assume that the functions q0 2 Q(X); p0;i; : : : ; pi;i 2Q[X] determining a chain, have rational coe�cients. When q0 = bq0=q0 wherebq0; q0 2 Z[X] one says that the height h(q0) � h if the absolute values ofall the integer coe�cients of bq0; q0 do not exceed h. Thus, we say that a(t; d)-chain q0; : : : ; qt is (t; d; h)-chain (we suppose that h � 2) if4



h(q0); h(pj;i) � h; 0 � i � t� 1; 0 � j � i (4)Denote byWt theQ[X]-module generated by functions satisfying (t; d; h)-chains for all possible d; h � 0. Evidently, W0 = Q(X).Using (2), (4) one can by induction on s estimateh(vj;l;s); h(q0;l;s) � (hsd)O((s2+t)d2)Therefore, at the end of induction one getsg(T ) 2 Q(X); h(g(T )) � (htd)O(t2d2N). Let us suppose that g(T ) 6� 0. Due to lemma 1 there exists a subintervalI0 � I; jI0j = jIjO(Nt2d2) (5)which contains no roots of the derivatives g; g(1); : : : ; g(T+1) (in case wheng(T+1) � 0 we require instead that g; g(1); : : : ; g(T ) have no roots in I0).The following lemma is similar to lemma 2 from [G01] (cf. also lemma 4in section 2 below) with the di�erence that instead of L1-norm we estimatehere the \separator".Lemma 2 Assume that the derivatives g; g(1); : : : ; g(T+1) have no roots in I0(in case when g(T+1) � 0 we require that g; g(1); : : : ; g(T ) have no roots in I0).Then there exists a subinterval IT � I0 of the length jIT j = jI0jT+1 such thatsepI0(g(T )) � sepIT (g(T�j)) T + 1jI0j !j ; 0 � j � TProof. Suppose that one has already produced (by recursion on j) closedsubintervals I0 � I1 � � � � � Ij with the lengths jIlj = jI0jT+1�lT+1 such thatsepI0(g(T )) � sepIl(g(T�l)) T + 1jI0j !l ; 0 � l � j < TDenote by a1 = jg(T�j�1)(x1)j; a2 = jg(T�j�1)(x2)j the values of the func-tion jg(T�j�1)j at the endpoints of the interval Ij = [x1; x2]. If a1 < a25



then put x0 = x1 + jI0jT+1 and the subinterval Ij+1 = [x0; x2]. Otherwise, ifa1 > a2 then put x0 = x2 � jI0jT+1 and the subinterval Ij+1 = [x1; x0]. Wehave sepIj+1(g(T�j�1)) = jg(T�j�1)(x0)j since g(T�j�1) is monotone and has noroots in the interval Ij+1 � I0 (whence jg(T�j�1)j is monotone in the sameinterval as well). Observe that a1 6= a2, indeed, otherwise g(T�j) would vanishidentically on the interval Ij. Hencejg(T�j�1)(x0)j � sepIj (g(T�j))(jIjj � jIj+1j)because g(T�j�1) is monotone and has no roots in the interval Ij � Ij+1 � I0.Thus, sepIj+1(g(T�j�1)) � sepIj(g(T�j)) jI0jT + 1which completes the proof of the recursive hypothesis for j + 1. Settingl = j = T we get lemma 2. 2We represent g(T ) = f1=f2 for f1; f2 2 Z[X] such that h(f1); h(f2) �h(g(T )). Denote an integera2 = d2jI0j�1e � maxf1; O(Nt2d2)jIj g(cf. (5) and lemma 2). In case when a2 � 2 there exists a pair of rationalpoints a = a1a2 ; a0 = a1+1a2 2 I0; a1 2 Z, consider a subinterval I 00 = [a; a0].In case when a2 = 1 we take integers a < a0 to be such that the intervalI 00 = [a; a0] is the maximal subinterval of I0 with integer endpoints. In bothcases we have jI 00j � jI0j=4. Thenjf2(a)j; jf2(a0)j � jjf2jjIT � (htdb)O(Nt2d2)(see (1), (2), (3), (4)) andjf1(a)j; jf1(a0)j � a�O(Nt2d2)2(see (2), (3)). We apply lemma 2 to the interval I 00 = [a; a0] � I0 and concludethat for a certain subinterval 6



I 0T � I 00; jI 0T j = jI 00jT + 1 � jI0j4(T + 1)we havesepI 0T (g) O(Nt2d2)jIj !T � sepI 00(g(T )) = minfjg(T )(a)j; jg(T )(a0)jg �(hNtdb)�O(Nt2d2)minf1; jIjO(Nt2d2)!O(Nt2d2)gThis implies the following theorem.Theorem 1 Assume that g is a (t; d; h)-chain on an interval I � [�b; b], theconditions (1), (2), (3), (4) and g(T ) 6� 0. Then there exists a subintervalI 0 � I with the length jI 0j � jIjO(Nt2d2) such thatsepI 0 (g) �  jIjhNtdb!O(Nt2d2)We note that without any condition on the derivatives of g the lowerbound in theorem 1 would fail since e.g., when t = 1; g = g1 and an equationg01 = 0 as a chain, one could take as g an arbitrarily small constant.Obviously, the same bound as in theorem 1 holds a fortiori, for the L1-norm jjgjjI � sepI 0 (g) (the similar remark concerns also theorem 2 in section2).2 Functions of iterated integrationNow we consider an extension of the class of functions Wt from the previoussection. We de�ne a sequence of analytic on I real functions fgig1�i�t; g ofiterated integration by recursion on i. Namely,g0i = pi(X; g1; : : : ; gi�1); g = pt+1(X; g1; : : : ; gt) (6)where the rational functions pi 2 Q(X)[Y1; : : : ; Yi�1]; 1 � i � t+ 1. In otherwords, one is allowed, in particular, to integrate at a current step the product7



of functions produced at previous steps. Clearly, the produced ring Ut of allfunctions of the form g contains Wt, and on the other hand being a subringof the ring of Pfa�an function [Kh].Any rational function p 2 Q(X)[Y1; : : : ; Yt] we write in a form p̂=p wherethe polynomials p̂ 2 Z[X;Y1; : : : ; Yt]; p 2 Z[X] are relatively prime. Weassume thatdeg(pi) = maxfdeg(p̂i);deg(pi)g � d; h(pi) = maxfh(p̂i); h(pi)g � h; (7)h � 2; 1 � i � t+ 1.Also we suppose thatjjgijjI �M; 1 � i � t;M � 1 (8)and that each complex root of the denominator pi lies at a distance at least1 from the interval I; 1 � i � t+ 1, hencejpij is greater or equal to 1 everywhere on I (9)We observe that the latter conditions provide upper bounds on the func-tions involved in computations with the sequence, and one could interpret thetheorem in this section as a lower bound on functions of iterated integrationby means of their upper bounds.We make an assumption that the sequence fgig1�i�t (see (6)) is purelytranscendental, i.e. gi+1 is algebraically independent over the �eld Fi =R(X; g1; : : : ; gi) for all 0 � i < t. We note that Fi is a di�erential �eld. Thecondition of fgig1�i�t being purely transcendental is similar to the conditionin the algorithm due to Risch [R] and allows one to avoid introducing in asequence (6) functions being arbitrarily small constants which would preventlower bounds on the functions of iterated integration on I.The following lemma enables us to eliminate a transcendental integral.Lemma 3 Let F be a di�erential �eld. Assume that u is algebraically inde-pendent over F , besides that its derivative u0 2 F , and that F (u) has the samesub�eld of constants as F has. Consider g = p(u) 2 F [u];degu(p) = n anddenote the polynomials pi(u) 2 F [u] to be such that the derivative g(i) = pi(u)for i � 0. Then gcd(p; p1; : : : ; pn) 2 F .8



Proof. We argue by induction on n. The base of induction is evident. Forthe inductive step consider the leading term of p = wun + � � � where w 2 F .First, f � w0g�wg0 6= 0 since otherwise g = cw for a certain constant c andthereby, u is algebraic over F . Denote the derivatives f (i) = ri(u) 2 F [u]; i�0. Obviously, degu(r0) < deg(p0) = n and deg(ri) � deg(r0); i � 0. On theother hand, f (i) = X0�j�i ij!(w(i+1)g(i�j) �w(i�j)g(j+1)); i � 0;therefore gcd(p0; : : : ; pn) divides gcd(r0; : : : ; rn�1) in the polynomial ring F [u].This implies the inductive step since gcd(r0; : : : ; rn�1) 2 F by the inductivehypothesis. 2Observe that the condition of conserving the sub�eld of constants will beful�lled in our situation because we consider the functions on the interval Iand the sub�eld coincides just with R.In course of the procedure described below a certain family � � Ut offunctions is constructed. Later on we bound from above the total numberN0 of the roots of the functions from � and now we �x a subinterval J � Iof length jJ j = jIj=(N0 + 1) which does not contain any such root.At the �rst step we represent the function g = q(gt) where the coef-�cients of the (univariate) polynomial q belong to the (di�erential) ringKt�1 = Q(X)[g1; : : : ; gt�1] � Ft�1. Then g(i) = qi(gt) for suitable poly-nomials qi(gt) 2 Kt = Kt�1[gt]; 0 � i � d. Consider G = gcd(q; q1; : : : ; qd)in the ring Q(X; g1; : : : ; gt�1)[gt] being de�ned up to a factor from Qt�1 =Q(X; g1; : : : ; gt�1). Then G belongs to Ft�1 = R(Qt�1) according to lemma3, in other words, deggt(G) = 0, therefore, G 2 Qt�1 since gcd does notchange when the �eld of the coe�cients is extended Qt�1 � Ft�1.The subresultant theorem (see e.g., [L]) states that one can choose G insuch a way that G = A0q +A1q1 + : : :+Adqd 2 Kt�1 (10)where the coe�cients of the (univariate) polynomials A0; : : : ; Ad 2 Kt�1[gt]are appropriate subminors of the Sylvester matrix A of the family of the(univariate) polynomials q; q1; : : : ; qd. More precisely, the usual Sylvester9



matrix is associated to a pair of polynomials, but one can directly extend itto a family of polynomials (see [G90]).The size of the matrix A is bounded by O(deg(q) + deg(q1) + : : : +deg(qd)) � O(d2) (see [L], [G90]). Each entry of A written as a certainfunction r(X; g1; : : : ; gt�1) 2 Kt�1 can be bounded as follows: deg(r) �O(d2); h(r) � (hd)O(d) (see (7)). Therefore,deg(Ai) � O(d4); h(Ai) � dO(d4+t)hO(d3); jjAijjI � dO(d4+t)hO(d3)MO(d4)(the latter inequality invokes (8), (9)). Hence deg(G) � O(d4); h(G) �dO(d4+t)hO(d3).The following lemma was proved as lemma 2 [G01] (we use the notationsintroduced in lemma 2 from section 1).Lemma 4 Assume that the derivatives g; g(1); : : : ; g(T+1) have no roots in I0(in case when g(T+1) � 0 we require that g; g(1); : : : ; g(T ) have no roots in I0).Then there exists a subinterval IT � I0 of the length jIT j = jI0jT+1 such thatjjg(j)jjIT � jjgjjI0  T + 1jI0j !j ; 0 � j � TLemma 4 implies that there exists a subinterval J1 � J; jJ1j = jJ j=(d+1)such that jjg(j)jjJ1 � jjgjjJ  d+ 1jJ j !j ; 0 � j � d.We include the functions g; g(1); : : : ; g(d) into the family � and thereby, im-pose the condition that g; g(1); : : : ; g(d) have no roots in J (cf. the discussionon �; J above). Due to that and to (10) we getjjGjjJ1 � jjgjjJ maxf1; d+ 1jJ j !dgdO(d4+t)hO(d3)MO(d4) (11)Thus, we have carried out one step of the procedure, constructed G andthereby, eliminated gt. 10



After t such steps we achieve by recursion a rational function L 2 Q(X)and nested subintervals J � J1 � : : : � Jt such thatdeg(L) � d4t; h(L) � hd5t ; jJtj � jJ jd5t ; jjLjjJt � jjgjjJ(Mh)d6t maxf1; jJ j�d5tg(because of (11)).The family � consists of O(d4t) functions each having at most dO(4t) roots(on I) due to [Kh] since one can view (6) as a Pfa�an chain, therefore, thetotal number N0 of roots of the functions from � does not exceed dO(4t),hence jJ j � jIjdO(4t) ;�nally jjLjjJt � jjgjjI(Mh)O(d6t)maxf1; jIj�d5tg(see (11)).Similar to the end of section 1 there exists a rational pointa = a1=a2 2 Jt; a1 2 Z; 0 < a2 = djJtj�1e:In a similar way we represent L = L1=L2; L1; L2 2 Z[X] and we getjL1(a)j � a�deg(L1)2 � minf1; jIjd5t!O(d4t)g;jL2(a)j � h(L2) deg(L2)bdeg(L2) � hd5t bd4t(see (1), (7)). As jL1(a)=L2(a)j � jjLjjJt we conclude thatjjgjjI � (Mh)�d6t b�d4t minf1; jIjd5tg = Btaking into account (11).Moreover, one can estimate an interval J 0 � I such that jg(x)j � B=2 forany x 2 J 0. Indeed (see (6)),g0 = @pt+1@X + @pt+1@g1 p1(X) + � � �+ @pt+1@gt pt(X; g1; : : : ; gt�1)11



Therefore, jjg0jjI � h2d(Mt)O(d) due to (7), (8), (9). Now take a pointx0 2 I at which jg(x0)j = B0 � B. Then for any point x 2 I such thatjx� x0j � B02h2d(Mt)O(d)we have jg(x)j � B0=2.Thus, the following theorem is proved.Theorem 2 If g satis�es a purely transcendental iterated integration se-quence (6) and the bounds (1), (7), (8), (9), then there exists a subintervalJ 0 � I; jJ 0j � (Mhb)�O(d6t )minf1; jIjd5tgsuch that sepJ 0 (g) � (Mhb)�O(d6t )minf1; jIjd5tgIn conclusion let us formulate a conjecture that an upper bound on thenumber of roots of a function from the class Ut should be better than theone from [Kh].AcknowledgementsThe author would like to thank the anonymous referees for valuable remarks.References[B] R.Bellman. Stability theory of di�erential equations, McGraw-Hill, 1953.[CG] F.Cucker, D.Grigoriev. Complexity lower bounds for approximationalgebraic computation trees, J. Complexity, 1999, 15, 4, p. 499{512.[G90] D.Grigoriev. Complexity of factoring and GCD calculating of ordinarylinear di�erential operators, J.Symbolic Comput., 1990, 10, p. 7{37.[G92] D.Grigoriev. Deviation theorems for solutions of linear ordinary di�er-ential equations and applications to parallel complexity of sigmoids, St.PetersburgMath. J., 1995, 6, 1, p. 89{106. 12
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