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Abstract

We introduce two classes of real analytic functions W C U on an
interval. Starting with rational functions to construct functions in W
we allow the application of three types of operations: addition, inte-
gration and multiplication by a polynomial with rational coefficients.
In a similar way to construct functions in U we allow integration, ad-
dition and multiplication of functions already constructed in U and
multiplication by rational numbers. Thus, U is a subring of the ring
of Pfaffian functions [Kh].

Two lower bounds on L.,-norm are proved on a function f from W
(or from U, respectively) in terms of the complexity of constructing

f.
AMS classification numbers 6825

Introduction

The well-known Liouvillean theorem states that if

p(a) = O,Cl 7£ pr = Zogigmpinapi cZ
then one can bound from below the absolute value |a| of the algebraic number
a in terms of the complexity of the determining polynomial p.

The question arises whether this phenomenon could be extended to solu-
tions v of (ordinary) differential equations Q(v) = 07 It is known [B] that in
general one can’t bound v for non-linear second-order (or higher) equations
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Q(v) = 0. Thus, one ought consider solutions of either linear or first-order
equations.

In the present paper we introduce two classes of real analytic functions
W C U on a finite interval I. In both cases we start with rational functions
with rational coefficients. To construct functions in W we allow the applica-
tion of three types of operations: addition, integration and multiplication by
a polynomial from Q[X]. Thereby, W is a differential Q[X]-module. While
for constructing functions in U we allow the application of integration and
substitution of already constructed functions from U into a (multivariate)
polynomial with rational coefficients. Thereby, U is a differential Q[X]-
algebra. Clearly, U is a subring of the ring of Pfaffian functions [IKh].

Thus, each function f from W (or from U, respectively) is constructed by
means of a chain of operations (which involve arithmetic and integration) and
one can define the “complexity” of f as the complexity of a corresponding
chain.

In section 1 below we prove (theorem 1) a lower bound on the “separator”
min,p |f(2)| for f € W and a suitable subinterval ' C [ in terms of [
and of the complexity of the corresponding chain for f (in particular, this
provides a lower bound on L.,-norm max,es |f(x)]). Moreover, we provide
an upper bound on the number of roots of f (lemma 1) which is better than
the bound from [Kh] established for the wider class of Pfaffian functions.
It is worthwhile also to mention that in [Y] one can find a comprehensive
survey on the bounds on the number of zeroes of solutions of diverse classes
of differential equations.

In section 2 we prove (theorem 2) a lower bound on min, p |f(x)| for
f € U and a suitable subinterval I' C I again in terms of I and of the
complexity of the chain for f under the assumption that in the chain each
application of integration introduces a function that is transcendental with
respect to the previously constructed functions in the chain. This assumption
of purely transcendental chains allows one to avoid introducing in a chain
arbitrarily small constants (otherwise, no lower bound would be possible).

Thus, in constructing U (and W) we allow integration. It seems that if we
allowed the introduction of the solutions of more general types of first-order
differential equations (as e.g., in case of Pfaffian functions [Kh]) then results
of a similar sort to ones in the present paper would fail, again because solving
such equations would allow the introduction of arbitrarily small constants in
a chain.



In [GO1] similar results were established for solutions of linear differential
equations on an interval.

The picture becomes somewhat easier to study if instead of approximating
on an interval, asymptotic approximations on the real line (at infinity) are
considered since then introducing small constants is not a problem. In this
setting a lower bound on approximations in terms of the complexity for a
wider class (than the present class) of Pfaffian functions was obtained in
[G93]. Besides, a lower bound for a wider class than in [G01] of compositions
of solutions of linear differential equations was established in [G92].

One could also view the results of the paper as a trade-off between ap-
proximations and complexity. It would be interesting to understand more
about this trade-off. We mention that in this direction a lower bound was
proved in [CG| on the complexity of approximating algebraic computation
trees.

[t is worthwhile also to mention that in [K] a version of a differential ana-
log of the Liouville’s theorem was proposed in terms of bounds on valuations,
while we study approximations in the L.,-norm.

1 Functions of linear-iterated integration

Denote by I C R a finite closed interval of the length || such that

I C[=b,0,b>1 (1)

and for a function g on I denote the L..-norm ||g||; = max,er |g(2)] and the
“separator” sepy(g) = minger |g(x)] = |lg~! ]|~

Let qo,...,q: be real analytic functions on [, moreover ¢o € R(X).We
say that qo,...,q constitute a (¢, d)-chain of linear-iterated integration if for
each 0 < ¢ <t —1 for appropriate polynomials po, ..., p;; € R[X] of degrees
deg(po;), - .., deg(pii) < d, we have for the derivative

qz/'+1 = Posiqo+ -+ Piagi (2)

In such a case we sometimes simply say that ¢ is a (¢, d)-chain. Clearly, a
(t,d)-chain is a particular case of a Pfaffian chain [Kh] and thereby, ¢ is a
Pfaffian function.



First we prove an upper bound on the number #(g) of the roots of ¢
in I (in fact, this would give the same bound on the number of the roots
on the whole real line, provided that the functions {¢;}o<i<t, ¢ were analytic
on the whole real line as well). We note that this bound is stronger (being
polynomial rather than exponential) than the bound [Kh] which is valid for
the wider class of Pfaffian functions.

Lemma 1 Let

9= D viadia ot X viNgy (3)
0<;<t 0<;<t
where for every 1 <1 < N the functions qoy, ..., q form a (t,d)-chain, here

the polynomials v;; € R[X],deg(v;;) < d. Then #(g) < O(Nt*d?), provided
that g # 0.

Proof. We express the rational function go; = 4o.1/Go; where the numera-
tor and the denominator g, Go; have the degrees deg(do;), deg(gos) < d.
By inductionon s = 1,...,t denoting S = (d+1)4+(2d+1)+---+(sd+1)

one can represent the derivative

9= D vinsta F ot DD NN F o

1<j<i—s 1<j<t-5

for suitable v;;, € R[X], qo1s = @s/(G01)° where

deg(vj,s) < min{Sd, (t — j + 1)d}, deg(qrs) < O((sd)?),

see (2).

Finally, putting s =¢t,T = (d+ 1)+ (2d+ 1)+ --- + (td + 1) we get that
g'T) € R(X) and taking into account the Rolle’s theorem #(g) < #(¢")+T
when ¢(T) 2 0 or otherwise we have #(g) < T' — 1, we conclude with the
lemma. O

From now on we assume that the functions ¢ € Q(X),po,...,pi; €
Q[X] determining a chain, have rational coefficients. When ¢y = ¢o/Go where
Go,Go € Z[X] one says that the height h(gy) < h if the absolute values of
all the integer coefficients of ¢y, G do not exceed h. Thus, we say that a
(t,d)-chain qo,...,q is (t,d, h)-chain (we suppose that h > 2) if
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Denote by W; the Q[X]-module generated by functions satisfying (¢, d, h)-
chains for all possible d,h > 0. Evidently, Wy, = Q(X).

Using (2), (4) one can by induction on s estimate

h(v0,6)s B(Go,s) < (hsd)OU+DT)

Therefore, at the end of induction one gets

g(T) e Q(X),h(g(T)) < (htd)O(t2d2N)

Let us suppose that ¢(™) % 0. Due to lemma 1 there exists a subinterval

1]
Iyc I,y = ———— 5
0o C 7|0| O(thdg) ()
which contains no roots of the derivatives g, ¢, ..., g™ (in case when
gT*tY) = 0 we require instead that ¢, ¢, ..., ¢!T) have no roots in Iy).

The following lemma is similar to lemma 2 from [GO1] (cf. also lemma 4
in section 2 below) with the difference that instead of L.,-norm we estimate
here the “separator”.

Lemma 2 Assume that the derivatives g, ¢, ..., ¢"tY) have no roots in Iy
(in case when ¢"Y) = 0 we require that g, g™, ..., ¢'T) have no roots in Iy).

Then there exists a subinterval It C Iy of the length |I1| = T|I_|°_|1 such that

T+1
| Io]

7
SWh@”USSWH@“ﬂU( ),OSJST

Proof. Suppose that one has already produced (by recursion on j) closed

subintervals Iy D I1 D --- D [; with the lengths |[;| = |Io T;_Il_l_l such that

T4+1
| o]

[
SWh@”UsSqm@”4n( ),OSJSJ<T

Denote by a; = g7~ (21)|, a3 = [¢'T=77(24)| the values of the func-
tion |¢(T=7=Y| at the endpoints of the interval I; = [z1,25]. If a1 < ay
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then put ¢ = x; + T|I—_|°_|1 and the subinterval [;4; = [xg,23]. Otherwise, if
a; > ay then put To = To —T|I_|°_|1 and the subigterval i1 = [21,20]. We
have sepy ,, (g T=71)y = |g{T=3=D ()] since ¢'T=9=Y) is monotone and has no

roots in the interval I;;; C Iy (whence |¢(T=7=Y| is monotone in the same
interval as well). Observe that a; # as, indeed, otherwise ¢ =7 would vanish

identically on the interval I;. Hence

g7 o)l = sepr, (6" ) (L] = [Lj4a])

because g(T_j_l) is monotone and has no roots in the interval I, — I;1; C I.
Thus,
(T=j=1)) (7—i)y Lol
sepryy (9 ) 2 seprlgn e

which completes the proof of the recursive hypothesis for 5 + 1. Setting
[ =7 =T we get lemma 2. O

We represent ¢(T) = f,/f, for fi, f» € Z[X] such that h(f1),h(fs) <
h(g™). Denote an integer

O(Nt%i?)}
1]
(cf. (5) and lemma 2). In case when as > 2 there exists a pair of rational

a—la;l—l € Iy,ay, € Z, consider a subinterval I, = [a,a'].

as = [2|Io|™"] < max{l,

points ¢ = Z—;,a/ =
In case when a; = 1 we take integers @ < @' to be such that the interval

I, = [a,a'] is the maximal subinterval of I, with integer endpoints. In both
cases we have |I)| > |Io|/4. Then

|f2(a)|, |f2(a/)| < ||f2||IT < (htdb)O(Nt2d2)
(see (1), (2); (3), (4)) and

|fl(6l)|7 |f1(a/)| > az—O(Nt2d2)

see (2), (3)). We apply lemma 2 to the interval I, = [a,a’] C I, and conclude
(see (2), pply 0 = la,
that for a certain subinterval



Ll 1ol
T+1 = 4T+1)

Iy C lo, |17] =

we have

O(N12dH)\ * _ ,
sepy, (9) (%) > sepy (91) = min{|g"(a)], |¢"(a)[} >

L [| O(N#2d?)
hNtdb)= ) min{1 |
( ) mln{ Y O

(Ne2d2) ;

This implies the following theorem.

Theorem 1 Assume that g is a (t,d, h)-chain on an interval I C [=b,b], the
conditions (1), (2), (3), (4) and g7 2 0. Then there exists a subinterval
I' C I with the length |1'| > % such that

|[| O(N2d?)
’ >
sepr(9) = (hNtdb)

We note that without any condition on the derivatives of g the lower
bound in theorem 1 would fail since e.g., when ¢t = 1, ¢ = ¢; and an equation
g, = 0 as a chain, one could take as g an arbitrarily small constant.

Obviously, the same bound as in theorem 1 holds a fortiori, for the L..-
norm ||g||; > sep,(g) (the similar remark concerns also theorem 2 in section

2).

2 Functions of iterated integration

Now we consider an extension of the class of functions W; from the previous
section. We define a sequence of analytic on [ real functions {g¢;}1<i<¢, g of
iterated integration by recursion on ¢. Namely,

!

G =pi(X,01,. ., 9i-1),9 = Pes1(X, 91, -, gt) (6)

where the rational functions p; € Q(X)[Y1,...,Yi1],1 <i <t + 1. In other
words, one is allowed, in particular, to integrate at a current step the product
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of functions produced at previous steps. Clearly, the produced ring U; of all
functions of the form ¢ contains W;, and on the other hand being a subring
of the ring of Pfaffian function [Kh].

Any rational function p € Q(X)[Y1,...,Y;] we write in a form p/p where
the polynomials p € Z[X,Y],...,V;],p € Z[X] are relatively prime. We
assume that

deg(pi) = max{deg(p;), deg(pi)} < d,h(pi) = max{h(pi),h(pi)} < h, (7)

h>21<i<t+1.
Also we suppose that

lgillr < M, 1 <0<, M > 1 (8)

and that each complex root of the denominator p; lies at a distance at least
1 from the interval 1,1 <7 <t 41, hence

|p;| is greater or equal to 1 everywhere on [ (9)

We observe that the latter conditions provide upper bounds on the func-
tions involved in computations with the sequence, and one could interpret the
theorem in this section as a lower bound on functions of iterated integration
by means of their upper bounds.

We make an assumption that the sequence {g;}1<i<: (see (6)) is purely
transcendental, i.e. g¢;11 is algebraically independent over the field F; =
R(X,q1,...,¢:;) for all 0 <u < t. We note that F; is a differential field. The
condition of {g;}1<i<¢ being purely transcendental is similar to the condition
in the algorithm due to Risch [R] and allows one to avoid introducing in a
sequence (6) functions being arbitrarily small constants which would prevent
lower bounds on the functions of iterated integration on [.

The following lemma enables us to eliminate a transcendental integral.

Lemma 3 Let F' be a differential field. Assume that u is algebraically inde-
pendent over F, besides that its derivative v’ € F, and that F(u) has the same
subfield of constants as F' has. Consider g = p(u) € Flu],deg,(p) = n and
denote the polynomials p;(u) € F[u] to be such that the derivative g = p;(u)
fori>0. Then ged(p,p1,...,pn) € F.



Proof. We argue by induction on n. The base of induction is evident. For
the inductive step consider the leading term of p = wu™ + --- where w € F.
First, f = w'g —wg # 0 since otherwise ¢ = cw for a certain constant ¢ and
thereby, u is algebraic over F'. Denote the derivatives f() = r;(u) € F[u],i >
0. Obviously, deg,(ro) < deg(po) = n and deg(r;) < deg(rg),¢ > 0. On the
other hand,

O = Z (Z) (w(i+1)g(i—j) _ w(i—f)g(f“)),i > 0,
0<j<i \J

therefore ged(po, . . ., p,) divides ged(ro, . .., r,—1) in the polynomial ring F'u].

This implies the inductive step since ged(rg,...,r—1) € F by the inductive

hypothesis. O

Observe that the condition of conserving the subfield of constants will be
fulfilled in our situation because we consider the functions on the interval [
and the subfield coincides just with R.

In course of the procedure described below a certain family A C U; of
functions is constructed. Later on we bound from above the total number
Ny of the roots of the functions from A and now we fix a subinterval J C [
of length |.J| = |I]/(No + 1) which does not contain any such root.

At the first step we represent the function ¢ = ¢(g:) where the coef-
ficients of the (univariate) polynomial ¢ belong to the (differential) ring
Koy = Q(X)[g1,..-,9i-1] C Fi_y. Then ¢ = ¢i(g;) for suitable poly-
nomials ¢;(¢:) € K¢ = Ki-1]g:),0 < @ < d. Consider G = ged(q,q1,---,qq)
in the ring Q(X, ¢1,...,¢9:1-1)[g:] being defined up to a factor from Q;—; =
Q(X,91,...,91—1). Then G belongs to Fi_; = R(Q:-1) according to lemma
3, in other words, deg, (G) = 0, therefore, G € Q;_; since ged does not
change when the field of the coefficients is extended Q;_; C F;_;.

The subresultant theorem (see e.g., [L]) states that one can choose G in
such a way that

G=Aqg+Aqn+ ...+ Aygqs € K14 (10)

where the coefficients of the (univariate) polynomials Ao, ..., Ay € Ki_1]g:]
are appropriate subminors of the Sylvester matrix A of the family of the
(univariate) polynomials ¢,qi,...,qs. More precisely, the usual Sylvester



matrix is associated to a pair of polynomials, but one can directly extend it
to a family of polynomials (see [G90]).

The size of the matrix A is bounded by O(deg(q) 4+ deg(q1) + ... +
deg(qq)) < O(d?) (see [L], [G90]). Each entry of A written as a certain
function r(X,g1,...,¢1—1) € Ki_1 can be bounded as follows: deg(r) <
O(d*), h(r) < (hd)?D (see (7)). Therefore,

deg(AZ) < O(d4),h(A2) < dO(d‘l-I—t)hO(d?’)7 ||Az||l < dO(d4+t)hO(d3)MO(d4)

(the latter inequality invokes (8), (9)). Hence deg(G) < O(d*),h(G) <
JO(d* +1) [, O(d®)

The following lemma was proved as lemma 2 [GO1] (we use the notations
introduced in lemma 2 from section 1).
(T+1) have no roots in I,
(in case when g =0 we require that g, g™, ..., g7 have no roots in Iy).

Then there exists a subinterval It C Iy of the length |I1| = T|I_|°_|1 such that

Lemma 4 Assume that the derivatives g, ¢, ... ¢
T41)

4 T4+1Y ,
1971 < il (L) o<

Lemma 4 implies that there exists a subinterval J; C J, [1| = |J|/(d+1)
such that

d+1

i
— ] 0=y <d
)

1991, < ||g||J(

We include the functions ¢, g™, ..., ¢'? into the family A and thereby, im-
pose the condition that g, ¢V, ..., ¢'¥ have no roots in J (cf. the discussion
on A, .J above). Due to that and to (10) we get

d+1\° O(d*+1) 1, 0(d%) 4 yO(d*)
1G]l < flglls max{1, Bvin td R M (11)

Thus, we have carried out one step of the procedure, constructed G and
thereby, eliminated ¢;.
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After ¢ such steps we achieve by recursion a rational function L € Q(X)
and nested subintervals J D J; D ... D J; such that

/1

L < gl max(1, 171"}

deg(L) < d,h(L) < b™ || 1| >

(because of (11)).

The family A consists of O(d4t) functions each having at most d°*") roots
(on I) due to [Kh] since one can view (6) as a Pfaffian chain, therefore, the
total number Ny of roots of the functions from A does not exceed d°("),
hence

1]
|J| — do 4t)7
finally

L1 < Mgl (MR max{1, 117}
(see (11)).
Similar to the end of section 1 there exists a rational point
a = al/ag - Jt,al - Z,O < dg = HJt|_1—‘.
In a similar way we represent L = Li/Lo, L1, Ly € Z[X] and we get

()] = a3 " %nmﬁl(;g ),

|Lo(a)] < h(Ly) deg(Ly)beeE2) < " pi*
(see (1), (7). As |L1(a)/La(a)| < ||L||s we conclude that

lgllr > (MA)= 6= min{1, 1"} = B

taking into account (11).
Moreover, one can estimate an interval J' C I such that |g(z)| > B/2 for
any z € J'. Indeed (see (6)),

apt-l—l

, 0 9
S Dy P

X T oa
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Therefore, ||¢'||; < h2d(M1)°@D due to (7), (8), (9). Now take a point
xo € I at which |g(x¢)| = Bo > B. Then for any point « € I such that

B
| — 20| < 0
2h2d(Mt)0()

we have |g(x)| > Bo/2.
Thus, the following theorem is proved.

Theorem 2 If g satisfies a purely transcendental iterated integration se-
quence (6) and the bounds (1), (7), (8), (9), then there exists a subinterval

T C 1| > (Mhb)=04™) min{1, |11©"}
such that
sepy(g) > (MAb)=O) min{1, 1"}

In conclusion let us formulate a conjecture that an upper bound on the
number of roots of a function from the class U; should be better than the

one from [Kh].
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