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Abstract

We prove Q(n?) complexity lower bound for the general model
of randomized computation trees solving the Knapsack Problem, and
more generally Restricted Integer Programming. This is also the first
nontrivial lower bound for randomized computation trees. The method
of the proof depends crucially on the new technique for proving lower
bounds on the border complexity of a polynomial which could be of

independent interest.



0 Introduction

We prove for the first time nonlinear complexity lower bounds for random-
ized computation trees (RCT's) (see e.g. [MT82], [S83]) recognizing languages
like unions of hyperplanes (i.e. linear arrangements) or intersections of half-
spaces (polyhedra). As an application we prove a quadratic lower bound on
RC'T's solving the knapsack problem, or more general, the restricted integer
programming.

Obtaining general lower bounds for randomized computations was an
open question for a long time (see e.g. [M85a, b, ¢] and [KV88]). Only re-
cently, a nonlinear lower bound was proven in [GKMS96] for a weaker model
of randomized d-decision trees (d-RDT's), in which the testing polynomials
have degrees at most d (for 2-dimensional case the lower bound was proven
in [GK93| and for the generic arrangements a lower bound was proved in
[GK94]). In particular, for d-RDT's in [GKMS96] the lower bound €2(n logn)
was proven for the Element Distinctness Problem (i.e. whether all the num-
bers 1, ..., &, are pairwise distinct), and the lower bound Q(n?) was proved
for the Knapsack problem. Usually, the bound d on the degree in d-RDT
is small enough, and the main difficulty while considering RCT" is that the
degree of testing polynomials in principle could be exponential in the depth.
Therefore, we develop in the present paper a new method for obtaining com-
plexity lower bounds for RC'T’s.

The method developed in the present paper is not applicable to the ele-
ment distinctness problem. In [BKL93], [GKMS96] a linear depth RCT was
constructed for a similar problem (permutation problem) beating its deter-
ministic Q(n logn)? lower bound [B83]). This example shows that the still
open problem of complexity of an RC'I" for the element distinctness problem
is quite delicate.

We also mention that a linear % lower bound for an RCT recognizing the

arrangement (J;<;<,{X; = 0} or the “orthant” N;<;<,{X; > 0} was proved



in [GKMS96]. For a stronger model of randomized analytic decision trees
(RADT) a complexity upper bound O(log”n) for testing M;<;<,{X; > 0}
was proven in [GKS96] (for deterministic analytic decision trees the exact
complexity bound n was proved in [R72], [MPR94]). Besides, in [GKS96] for
RADT a sublinear lower bound Q(n'/?) was proved for the union of orthants
U{0:X; > 0, 1 <i < n} where 0; € {—1,1} and the number of negative
among o; is divided by a fixed ¢ such that g # 2¢ for any s.

For deterministic models of the computation and decision trees several
methods for obtaining complextity lower bounds were developed earlier.
The “topological” methods based on the number of connected components
([SY82], [B83]), or more general, on the sum of Betti numbers ([BLY92],
[Y94]), provide the lower bound €2(n?) for the knapsack problem and the
lower bound Q(nlogn) for the distinctness or the permutation problem. The
already mentioned example from [BKL93] shows that these “topological”
bounds cannot be directly extended to RCT'.

For testing a polyhedron (to which the topological methods are not ap-
plicable), the differential-geometric method (involving the curvature) for ob-
taining complextity lower bounds for deterministic computations was devel-
opped in [GKV96], which provides ©(log N) lower bound for decision trees
(see also [GKV95]) and Q(log N/ loglog N) for computation trees, where N
is the number of all faces of the polyhedron.

We now briefly describe the content of the paper. In section 1 we intro-
duce the notion of the border complezity, for the similar notations cf. [S90]
[B79] [BCLRT9], of a polynomial and prove a lower bound on it which is of
independent interest, in terms of the number of connected components.

In section 2 we prove the main theorem which provides a complexity lower
bound for RCT testing an arrangement or a polyhedron. For that purpose
we use some tools (in particular, the tree of flags) from [GKMS96], but the
proof differs from the one in [GKMS96] since the degree of RCT's could be

exponential as we already mentioned.



In section 3 as an application of the main theorem we give a complexity
quadratic lower bound Q(n?logj) for RCT testing the Restricted Integer

Programming

Ln,j = U {CLX = ]_}

a € {0,...j—1}n

(which is an arrangement consisting of j” hyperplanes). Notice that for
j = 2 this problem coincides with the Knapsack Problem. In particular, in
section 3 we give a lower bound j2") on the number of faces of L, ; (and
thereby, on the number of the connected components of the complement of
L, j, which was also ascertained in [YI65], [M85b], [GKMS96], and [DLT78]).
Moreover, in section 3 we provide a stronger lower bound on the number
of faces of subarrangements of L, ; (under a subarrangement we understand
the restriction of a subset of hyperplanes from L, ; on a face of L, ;). The
analogue of this bound for subarrangements of the distinctness problem is
wrong, that is why we cannot get a nonlinear complexity lower bound for
RCT, solving the distinctness problem.

In the last section 4 we state the complexity lower bound for the de-
terministic computation trees recognizing a polyhedron under less restrictive
conditions than for the randomized computation trees as in the theorem from

section 2.

1 Lower bound on the border complexity

We start now with the technical development leading to the crucial lower
bound on the border complexity of a polynomial.

Let Hy,...,H,_, C IR"™ be hyperplanes such that their intersection
I' = H Nn---N H, ;, has the dimension dim I' = k. Fix arbitrary
coordinates Zy,...,Z in I'. Then treating Hy,..., H,_, as the coordi-
nate hyperplanes of the coordinates Yi,...,Y,_x, one gets the coordinates
Ziyeo s Ly Y1, ..., Y in R™.



For any polynomial f € R[Xy,...,X,]| rewrite it in the coordinates

f(Zy, ., Zk, Y1, ..., Yo k) and following [GKMS96], define its leading term
Im(f) = aZ" - .ZITleml YT

0 # a € R (with respect to the coordinate system Z,..., Z¢, Y1, ..., Y k)
as follows. First, take the minimal integer m,, ; such that ¥,"* occurs in
the terms of f. Consider the polynomial

f

My —k
Y, k

n—

Oi—éf(l):< >(Zla"'7Zk7}/17"‘7Y”k1’0)6

R[Z,..., 2 Y1, Yooi]

which could be viwed as a polynomial on the hyperplane H,,_,. Observe that
my_j depends only on H,_; and not on Zy,...,Z, Y1,...,Yu_k_1, since a
linear transformation of the coordinates Zi,..., Z,Y1,...,Y,_r_1 changes
the coefficients (being the polynomials from R[Z, ..., Zk, Y1,..., Y,k 1]) of
the expansion of f in the variable Y,_, and a coefficient vanishes identically
if and only if it vanishes identically after the transformation. Then f®) is
the coefficient of the expansion of f at the power Y,

Second, take the minimal integer m, j ; such that Y% ** occurs in
the terms of f(). In other words, Y,"%~" " is the minimal power of Y, ; ;
occurring in the terms of f in which occurs the power Y, ~*. There-
fore, my_k, mp_r_1 depend only on the hyperplanes H,_j, H,_r_1 and
not on Zy,..., 2, Y1,...,Y, ko, since (as above) a linear transformation
of the coordinates Zi,...,Z, Y1,...,Y, ko changes the coefficients (be-
ing the polynomials from R[Zy, ..., Zy, Y1,..., Y, k_o]) of the expansion
of f in the variables Y,_j, Y,_x_1 and a coefficient vanishes identically
if and only if it vanishes identically after the transformation. Denote by
0% f% ¢ R[Zy,...,ZY1,..., Yy 2] the coefficient of the expansion of
f at the monomial Y, ¥,"%~*. Obviously

o (LY Nz Zi, Y1, .Y,
f - Ymn,k,l ( Ly &kyL1y---, nfkf%o)
n—k—1
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One could view £ as a polynomial on the (n—2)-dimensional plane H,,_j N
ank;fl-
Continuing in the similar way, we obtain consecutively the (non-negative)

integers my_g, My_g_1,...,my and the polynomials
0 Y € R[Zi,.... Z Y1, .., Yooy

1 <1 < n—k, by induction on [. Herewith, ¥, " is the minimal
power of Y, ;41 occurring in the terms of f, in which occurs the monomial
Yk Ytk for each 1 < 1 < no— k. Notice that my,_g, ..., my_g—y
depend only on the hyperplanes H,,_, ..., H,_r_; and not on 2y, ..., Zy, Y1,
...,Y, 1. Then f® is the coefficient of the expansion of f at the mono-
mial ¥, 52 V™8 and

n

fo
D = (W) (Zyy. s 2 Y1, Yo k11, 0)
n—k—l
Thus, f® depends only on H, 4, ...,H, ,, and not on
Zy, .o Ze Yy, Y 1. One could view f® as a polynomial on
the (n — [)-dimensional plane H, ,N---N H, ;1. Continuing, we define
also m;c, e ,m’l.

Finally, the leading term Im(f) = aqull . Z,T;“ Y™ ... Y, """ is the min-
imal term of f in the lexicographical ordering with respect to the order-
ing 7, > -+ > Zy > Y, > --- > Y, ;. The leading term Im(f¥) =
ocZinl1 > -Z,zn;°}/1’rb1 <Yl we refer to this equality as the maintenance
property (see also [GKMS96]).

Denote by Var(f) = Varlu-Hwr)(f) the number of positive (i.e.
nonzero) integers among my, g,...,m;. As we have shown above, Var(f)
is independent from the coordinates Z,. .., Z of I'. Obviously, Var(f) co-
incides with the number of 1 < [ < n — k such that Y,_;_; | f®, the latter
condition is equivalent to that the variety {f() = 0} N(Hu—rN- - -NHp_p_i41)
contains the plane H,, y N ---N H, 41 N H, 4 ; (being a hyperplane in
Hy, xO--NHy pogg1)



It is convenient (see also [GKMS96]) to reformulate the introduced con-
cepts by means of infinitesimals. Namely for a real closed field F' (see e.g.
[L65]) we say that an element ¢ transcendental over F' is an infinitesimal
(relative to F) if 0 < ¢ < a for any element 0 < ¢ € F. This uniquely

induces the order on the field F(¢) of rational functions and further on the

real closure F'(g) (see [L65]).
One could make the order in F'(¢) clearer by embedding it in the larger
real closed field F((c'/>)) of Puiseux series (cf. e.g. [GV88]). A nonzero

Puiseux series has the form b = Y5, 5;e/%, where —oo0 < iy < 0o is an

integer, #; € F for every integer 7; 3;, # 0 and the denominator of the
rational exponents § > 1 is an integer. The order on F((c'/>)) is defined as
follows: sgn(b) = sgn(3;,). When iy > 1, then b is called an infinitesimal,
when ¢y < —1, then b is called infinitely large. For any not infinitely large
b we define its standard part st(b) = st.(b) € F as follows: when iy = 0,
then st(b) = f;,, when iy > 1, then st(b) = 0. In the natural way we extend
the standard part to the vectors from (F'((£Y/°°)))™ and further to subsets in
this space.

Now let ¢1 > g9 > ... > g,.9 > 0 be infinitesimals, where ¢; is
an infinitesimal relative to IR; in general ¢,;; is an infinitesimal relative
to R(ey,...,&;) for all 0 < i < n + 1. Denote the real closed field
R; = ]R(sl,’i. ,€i), in particular, Ry = R. For an element b € R, o for
brevity denote the standard part st;(b) = st., (st , - (sts,,,(b)---) € R;
(provided that it is definable).

Also we will use the Tarski’s transfer principle [T51]. Namely, for two

€i+1

real closed fields Fy C F a closed (so, without free variables) formula in the
language of the first-order theory of F) is true over F) if and only if this
formula is true over Fj.

Tarski’s transfer principle implies that a semialgebraic set {f; >
0,.. s fke, = 0,fxye1 > 0,...,fk > 0} C F™, where the polynomi-
als f; € F[Xy,...,X,| have the degrees deg(f;) < d, has at most



(min{2k, (£)"}d™)°M) connected components (cf. [GV88]), relying on this
bound in case F' = R from [W68] (cf. also [BPR94]), which strenghtens the
result of [M64].

Another application of Tarski’s transfer principle is the concept of the
completion. Let Fy C Fy be real closed fields and ¥ be a formula (with
quantifiers and, perhaps, with n free variables) of the language of the first-
order theory of the field F;. Then ¥ determines a semialgebraic set V' C F}".
The completion V%) C FI is a semialgebraic set determined by the same
formula ¥ (obviously, V' C VU%). Tarski’s transfer principle entails, in
particular, that the number of connected components of V' is the same as the
one of V) (cf. [GV8S]).

One could easily see that for any point (z1,...,2;) € ]RﬁJr2 such that
FOR) (21, ..., z) # 0 (we utilize the introduced above notations) the follow-

ing equality for the signs
o™ ..ol Fsgn (f(”_k)(zl, ce zk)) =
sgn (7(21, ooy Pk O1Ek43y - - - 7Un—k5n+2)) (1)

holds for any oy,...,0, € {—1,1}. For any 1 < ¢ < n — k such that
m; = 0 (1) holds also for o; = 0, agreeing that 0° = 1. Moreover, the
following polynomial identity holds:

(2, Zy€hass - En
f(”‘k)(Zl,...,Zk):stk+2<f Z Sl Tk *2)> 2)
ki3 "En+2

For a family of hyperplanes Hi,...,H,, C R" let S = Ui<j<,,H; be
an arrangement, by By (Hy,..., H,) we denote the number of connected
components of the complement R" — S.

Following e.g. [S90] we define the complexity s = C(f) of a polyno-
mial f € R[Xy,...,X,] as the length of the shortest straight-line pro-
gram which computes f. Recall that the latter is a sequence of operations
u, = Xi,...,u, = X,, then for every n < j < s +n u; = @ © u,,, where

for each ¢ = 1,2 either u;, = u;, with j; < j or 4;, € R and either © = X
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or ® = +. To every u; by recursion on j one attaches in the natural way a
polynomial U; € R[X},. .., X,] (the value of u;). The straight-line program
computes f if Usy,, = f.

Observe that one could consider also the division ® = / and the resulting
rational functions, but since we deal only with the signs of the testing func-
tions in the computation trees (see below), we could consider separately the
computations of the numerators and denominators of the rational functions
by means of the straight-line programs without the divisions.

For a polynomial g € R[Zy,. .., Z;] its border complexity C(g) (cf. [S90])
is the minimal C(f) where f € R[X},...,X,] for a certain n > k such that
g = f"®) for suitable coordinates Zi,..., Zy, Yi,...,Yn_k, which we treat
as the linear forms in Xi,..., X,,. Actually, one could literally extend the
concept of the border complexity to the polynomials with the coefficients
from an arbitrary field.

The main result of this section is the following lower bound on the border

complexity.

Proposition: Let for a polynomial ¢ € R[Z,..., Z;] its border com-
plexity C'(g) < s. Assume that Hy,...,H, C R* are pairwise distinct
hyperplanes such that the corresponding linear functions Ly, | g, 1 <i <m

(where the zero set of Ly, is H;). Then By(Hy, ..., Hy,) < 206%k),

Remark: In fact, one could formulate the proposition in a stronger set-
ting as follows (the proof goes through literally). For a polynomial g with
the border complexity less than s, the number of the connected components
in the complement in IR* of the set {g = 0} of zeroes of g does not exceed
9O0(s+k)

Proof: Let w; = X;, 1 < @ < n; u; = 45 © 45, n+1 <
j < n+ s be a straight-line program which computes a certain polyno-
mial f € R[Xy,...,X,] such that ¢ = f(®*) for suitable coordinates

Z1yeo oy Ziey Y1, .., Yok (we utilize the introduced above notations). Ex-
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press X; = agi)Zl 4+ e+ a,(:)Zk + ﬂfi)Yl + .. -ﬂfﬁkYn_k, 1 < i < n, where
oz;-i),ﬁ](-i) € R. Remind that by f(Z1,...,Z, Y1,...,Y, &) we denote the
polynomial f in the coordinates 7, ..., Zx, Y1, ..., Y, k.

Due to (2) for any point (z1,...,2) € RY we have
_,z,,,.,Z,E yeeesyE
g(Zl, .. 'JZk‘) = St2 (f( 1 mlk k+§nn_k TL+2)> (3)
Ck+3 """ Ent2

Denote u, = agi)zl 4+ -+ oz,(f)zk + ﬂfi)sﬂg + -+ ﬂﬁflksnﬁ, 1< <n.

Introduce a new variable Z, and two semialgebraic sets

kt-s+1
Yy = { (20 215+ oy Zhy Ung1s - - Upgs) € Ro 5T
uj =y ©uy,n+1<j<n+s,
where for each ¢ = 1,2 either
o y
ay = uj, when 1 < 5, < n
and 4, = uj, when n < j; <
!/
Ji
the straight-line program which

Jj, or u. € IR according to

computes f;

un+s 2 2
(( my . mnflc) - 51) +
€kt3” " "Ent2

1.2
(23+Z%+...—|—Z§—6—1) <62},

1
V:{(Z'O;Zh...,zk)GRIf+1292(21;...,Zk)261;z3+z%+...+zzzg_}
1

Denote by [] : ]Rﬁi;“ — ]bej;; the linear projection along the coordinates
Upi1y .-+, Upss. The linear projection [T : V= [](V) is an isomorphism of the
semialgebraic sets, since the projection

2

- 2
H(V) = {(20,21, .)€ Rﬁié : ((f(zly...,zk;€k+;’;:n._.k. ,€n+2)> _61) n

mi
€k+3 " "Ent2

1
(z§+zf+---+zﬁ—8—)2<52}
1

12



!

and the inverse mapping is given by the polynomial mapping u; = a;l O aj,,

n+1<j<n+s.

Then V' C [I(V) because of (3).

Furthermore, st;(IT(V)) = V; the left side is definable since for any point
(20,---,2k) € II(V) the square of its euclidean norm ||z,,...,2||* = 22 +
et 2l < i + sé < i + 1. By the same reason lemma 1 from [GV88] states
that the number N3 of the connected components of V' does not exceed the
number Ny of the connected components of [[(V), the latter coincides with
the number of the connected components of V since it is isomorphic to [T(V).

We claim that for any connected component W C R¥ (which is an open
set in the euclidean topology) of the component R*—{¢g = 0} and an arbitrary
point wy € W on the boundary, there exists a point (zy, ..., 2x) € ) -
R (

R” from the completion T as we have seen above from Tarski’s transfer
principle, the connected components W of the complement are in the bijective
correspondence with their completions w5 W, being the connected
components of the complement {g = 0}(]R1) in R¥, the number of these
connected components we denote by Np) such that ¢*(zy,...,2;) = £, and
sto(z1, ..., 2k) = wp (cf. lemma 3 from [GV88]). Indeed, pick out an arbitrary
point w € W. Taking into account that wy € 8(W(R1)), so g(wg) = 0, and
0 < ¢*(w) € R we conclude that ¢g* attains on Ry any intermediate
value from R; between 0 and ¢g?(w) (using Tarski’s transfer principle), in

particular, ;. Now take a point w, € Ry

being the nearest to wy such
that g?(w,) = &, (its existence follows again from Tarski’s transfer principle).
It suffices to prove that sto(w;) = wp. Suppose the contrary. Then there
exists 0 < r € R such that for any point w, € W) with the distance
||wo — wy|| < r the inequality ¢g*(wz) < £, holds. Since wy € OW there exists
a point wz € W such that ||wy — ws|| < 7, then 0 < ¢g*(w3) € R and we get
a contradiction with the supposition, and that proves the claim.
Furthermore, since wy € RF and sto(zy,...,2) = wy, there exists 0 <

r1 € R such that the norm |[|zy,. .., z;|| < 71, a fortiori |2y, ..., 2]|* < i

13



Consider a semialgebraic set
%: {(Zla"'azk) E]}'{’lbC :gZ(Zla"'JZk) :61}

Denote by N; the number of the connected components of Vy containing a

point wy with the square of the euclidean norm |Jw,|* < i The proved
above claim states that the number N, does not exceed Nj, taking into

account that
o< (R {g=03) " = Rt~ (g = 0

On the other hand, By(H;, ..., Hy) < Ny, since Mi<ij<m Ly, | g (evidently,
in every connected component, being an open set in the euclidean topology,
of the complement of the arrangement (]Rk — Ui<i<m Hl) D (]Rk —{g= 0}),
there exists a point at which g does not vanish).

Obviously, N; is less than or equal to the number N, of the connected

components of the set

1
VlZVgﬂ{(zl,...,zk)ele:||z1,...,zk||2§6—}
1

In its turn V; = [o(V), where [], : R¥ — R is the projection along the
coordinate Z,. Hence Ny < Nj.

Gathering the obtained chain of inequalities By(Hy,..., H,) < Ny <
N; < Ny < N3 < Ny for the numbers of the connected components, we con-
clude that By(H, ..., Hy,) does not exceed the number of connected com-
ponents of V. The latter is less than 20¢+%) according to [W68] and Tarski’s
transfer principle (see above).

The proposition is proved.

2 Lower bounds for randomized computation

trees

Recall (see e.g. [B83]) that in the computation tree (C'T) testing polyno-

mials are computed along paths using the elementary arithmetic operations.
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In particular, for a testing polynomial f; € R[X],..., X,] at the level i (as-
suming that the root has the zero level) we have C(f;) <i. Under RCT (cf.
[MT82], [S83], [M85a,b,c]) we mean a collection of CT' T' = {7, } and a prob-
abilistic vector p, > 0, >, Po = 1 such that 7}, is chosen with the probability
Po- The main requirement is that for any input RCT gives a correct output
with the probability 1 — v > % (77 is called the error probability of RCT).
For a hyperplane H C IR" by H™ C R" denote the closed halfspace
{Ly > 0}, where Ly is a certain linear function with the zero set H. For a
family of hyperplanes Hy, ..., H,, the intersections S* = Ny<;<,, H;' is called
. 1s called k-face of ST
if dim ' = dim(I' N ST) = k. By ¢,(S*) we denote the number of k-faces

of S*. Similary (and even simpler) for the arrangement S = Ui<;<;n H; its

a polyhedron. An intersection I' = H;, N ---N H; _

k-face is any k-dimensional intersection of the form I' = H; N--- N H; _
By ¢x(S) we denote the number of k-faces of S.

Now we are able to formulate the main result of this paper.

P

Theorem: Let there exist positive constants ¢y, ¢s, ¢3, ¢4 such that e3(1—
¢1) < ¢z and an arrangement S = S = Uj<j<p, H; or a polyhedron § = S* =

Mi<i<mH; satisfy the following properties:
1. ¢[cln] (8) > Q(mczn);

2. for any k-face I' of § with k& > ¢in and any subfamily H;,..., H;,
of Hy,...,Hy with at least ¢ > m® hyperplanes such that H; 5 I
for each 1 < j < ¢ and the hyperplanes H; NT',...  H; NI in I" are
pairwise distinct, the number of the connected components BSF)(Hi1 N
[,..., H;,NI') of the complement in I of the arrangement U <<, (H;; N

') is greater than Q(m®").
Then for any RCT recognizing S, its depth is greater than Q(nlogm).

Before proceeding to the proof of the theorem, we need some preparation.

First we fix the canonical representation of k-face I' in two cases: namely,
of S and of ST, respectively (see [GKMS96]). In the case of S take the

15



maximal %, < m such that H; , D TI', then the maximal ¢,_;_; such that

H; O I' and dim(H;, _, N H; ) = n — 2 (obviously i, x 1 < i, k)

n—k—1 n—k—1
and so on we produce the indices 4,y > t,_g—1 > -+ > i; such that I' =
H; ., N---NH;. As the representation of I' we take the flag of planes:
Hinfk D) Hinflc N Hin#%l D) Hinik MN---N Hi1 =1TI.

Now consider the case of ST. W.l.o.g. one could assume that dim ST = n.
Under a hyperplane of a [-dimensional polyhedron we mean a (I — 1)-plane
which is (I — 1)-face of the polyhedron. W.l.o.g. one could assume that all
hyperplanes Hy, ..., H,, are hyperfaces of S™.

Take the maximal ¢, < m such that H; , D I'. Denote the polyhedron
St = H; _.NS*. Obviously, I'is its k-face and dim S = n—1. By H; denote
the family of all hyperplanes H; such that H; D I" and (H;,_, NH;) is a hyper-
face of S (thereby, it is (n — 2)-face of ST). Then H, C {Hi,..., H; , 1}
because of the choice of i,,_;. Since S is a convex polyhedron, any of its
faces is an intersection of some of its hyperfaces, in particular, any of its face
I'; which contains I' C I'y, could be represented as ['y = H; _, N (ﬂHiGHII H;)
for a suitable subfamily H, C H,.

Assume that by recursion on [ it is already produced a sequence of indices
Ik > > lp_pi41, 1 <1 <n—k—1suchthat H;  N-- .mHin—k—l]_+l
l)-face of S* for every 1 < l; < I. Denote ') = H; _ N---NH;,_, ,,, and the
polyhedron S}t = ' NS*. In addition, a family H, C {Hy,...,H;,_, ,,,—1}
is produced such that for any H; € H; TW N H; contains I' and is a hyperface

is (n—

n—k

of S;", and vice versa any hyperface of S;' has the form T N H; for a certain
H; € H;. Hence any face I'y D I of S;" has the form I'; = ' N (N, en Hi)
for a suitable subfamily H; C H,.

To carry out the recursive step, take as 7,,_,_; the maximal index such that
H; ., €M (obviously, i, t ; < iy g 441). Then THD =TO N H,
hyperface of S;" (and thereby is (n—[—1)-face of ST). Denote the polyhedron
Sf_’H =H; ., N Sf’. Take as H;.1 the family of all H; € H,; such that
YN H; is a hyperface of S, (evidently, TtV N H; S T since H;, H; €

is a

Ck—1)
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H;). Due to the choice of i,,__; we have H;yy C {Hy,..., H; , -1}

It remains to prove that for any hyperface I'y of Sfjrl such that I'y, D T,
there exists H; € H;, for which 'y = 'Y N H;. According to the property
of H; there exist H;,Hj, € H; such that 'y = ' N H; N H;,. Since
I 5 Ty and dim Y = dim Ty +1 = n—1— 1, either Ty = T N H;,
or Ty = I+ n Hj, is valid. In the former case H; € H;y, in the latter
case Hj, € H;1. This completes the recursive step.

Thus, at the end of recursion we obtain a flag, which we treat as the

claimed canonical representation of the k-face I':

Hinfk D) Hinflc N Hin#%l DEERND] Hinfk n---N Hi1 =T

such that for each 1 <! <k H; , N---NH, is (n — [)-face of ST (the
recursion on [ implies that dim(H;, ,N---NH;, , . )=n—1).

Fix k-face I' of S, where either S = S or § = S*. Let H; _
H, NH, . >->H_
described above. For a family of polynomials fi,..., f, € R[X,..., X,] we
define Var(")(f1, ..., f,) to be the number of the variables among Y1, ..., Y, 4
(we utilize the notations introduced in section 1) which occur in at least
one of Im(f1),...,lm(fs), where H; ..., H

In—k

k n—k—I+1

D)
N---NH; =1 be aflag which represents I' as

k

n—k k

are the coordinate hyper-
planes of the coordinates Yi,...,Y,, k, respectively. Since Im(f,---fs) =
Im(fy) - --Im(f,) we get that Varf-Hi (£ f) = Var®(fy - f,) =
Var®(fi, ..., fs).

For any C'T T; we denote by Var®(1}) = Vari-in-) (T} the maxi-
mum of Var®(f,--- f,) taken over all the paths of T}, where fi,..., f, are
testing polynomials along the path.

The following lemma was proved in [GKMS96].

Lemma 1: Let 7' = {71, } be an RCT recognizing

a) an arrangement S = Uj<;<,, H; such that [' = Micj<n kH;; is k-face of
S, or

17



b) a polyhedron S* = ﬂlgigme such that for each 1 < [ < n — &k
Mi<j<n—kHi; is (k41 = 1)-face of ST (denote I' = Ny<jcn_rH;,)

k) for a fraction of % of all T,’s.

Remark: Notice that the conditions in a), b) are fulfilled if H; , D
H; . NH, D>-+DH; ,

tation of I" in both cases of S and S* (see above).

k

N N---N H; =T is the canonical flag represen-

Proof of Lemma 1: Choose the coordinates Zy,..., 2, Yy, ..., Y, &

such that Z;,...,Z; are the coordinates in I' and H; ,..., H; are the

n—k
coordinate hyperplanes of Yj,..., Y, _, respectively (cf. section 1), which

satisfy the following properties. The origin (0,...,0) of this coordinates
———

system Zi,...,Z, Y1,..., Y,k does not lie in angf [-face with [ < k and

besides, in the case b) (0,...,0) belongs to the polyhedron S*. Also we

require that for any testing polynomial f from any CT T, f*=%) (0,...,0) #
—_———

k

0 holds (recall that f*=% # 0 depends only on H;,,..., H; see section

1).

n—k?

a) Consider the point E = (0,...,0,6k43,...,6442) and the points
——’
k
0 :
Ez( ) = (0,...,0, 8543, -+ s Ektit1, 0, Exqigss - - -, Eng2), 1 <4 < m— k. Then
k

the point £ ¢ S (because of the choice of the origin of the coordinates system
Ziyo o Ze Ve, Y p)and E® € 8,1 <i<n—k.

Easy counting yields that there is a fraction of % of all T,)’s that give
the correct outputs for E and for at least (1 —2v)?*(n — k) many among EY,
1 << n—k. Take such 7,, and some 1 < iy < n — k for which 7, gives
the correct output.

Denote by fi,..., fs the testing polynomials along the path in T, fol-
lowed by the input E. We claim that Y;, occurs in one of the leading terms

Im(f1),...,lm(fs) (thereby, Y;, occurs in Im(fi--- fs) = Im(f1)---Im(fs),

18



see above).
Suppose the contrary. Let Im(f;) = Z{nll e ZRYPM YR then

mi, = 0 by the supposition. Then (1) from section 1 implies that
sgn(fl(E(O))) = sgn(fl(n_k)(O, ...,0)) # 0 because of the choice of the ori-
——

()
k
gin of the coordinates system Zi,..., 72, Y1,..., Y, r. By the same token
sgn(fi(E)) = sgn(fl(n_k)(O,...,O)). Therefore, EZ-((?) satisfies all the tests
——

along the path under considergtion in 7, followed by the input £, hence the
output of Ty, for the input EZ((? ) is the same as for the input F, so incorrect,
that contradicts the choice of g.

b) First we show that E € S*. Take any hyperplane H, = {k1Z; +
et Kk Zy + YT+ oo+ BukYa ok + 0 =0}, 1 <1 < m given by a
linear function Ly, with the coefficients «;, 3; € IR. We need to show that
Ly, (E) > 0. Let 0 < jo < n— k be the uniquely defined index such that
Bo=...=Bj,-1 =0, Bj, #0 (ifall By = ... = fy—x =0 then Ly, (E) = 0).
We prove that (3, > 0, this would entail that sgn(Ly,(E)) = sgn(8j,) > 0.
Pick out an arbitrary point v,_;, = (0,...,0, gl ,yj(-O"*jO), 0,...,0) €

—_—

k
(Hi,n...NH;.  )NS*t)—H,; . Then yj(-O"*jO) # 0, therefore yj(-gfj(’) >0
since v,,—j, € ST. Hence 0 < sgn Ly, (vn—j,) = sgn(Bj, - y](-g_jo)), this implies
that sgn(f3;,) > 0. Thus £ € S*.

Notice that the points
B = (0,5 0,643y - - - s Ekpitls —Ektit2s Ehtit3s - -1Eng2) € ST, 1 <0 <
n—k.

The rest of the proof is similar as in a), with replacing the role of the
points E\” by E{Y. In a similar way if m;, = 0 then sgn(fl(Ei(j))) =
sgn(fl("fk)(O, ...,0)) = sgn(fi(E)) # 0 again because of (1) from section 1.

—_—

jo+1 Jo*

k
Lemma 1 is proved.

An analogue of lemma 2 from [GKMS96] is the following lemma.

Lemma 2: Let S = S or § = ST satisfy the condition 2. of the the-
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orem. Assume that CT 7" for some constant ¢ > 0, satisfies the inequality
Var®™(T") > ¢(1 — ¢;)n for at least M [c;n]-faces T' of S. Then the depth
t of 1" fulfils either ¢t > Q(n logm) or M < O(3tm—ctest0)l=c)n) " where a

constant 4 > 0 could be made as close to zero as desired.

The proof of lemma 2 differs from the proof of the analogous lemma 2 from
[GKMS96] proved for d-decision trees, in which the degrees of the testing
polynomials do not exceed d, rather than computation trees (considered in
the present paper), in which the degrees of the testing polynomials could be
exponential in the depth ¢ of CT. Therefore the main tool in the proof of
lemma 2 is the lower bound on the border complexity from the proposition
(see section 1).

Before proving lemma 2 we show how to deduce the theorem from lemmas

1

1 and 2. Consider RCT {7,,} recognizing S with error probability v < 3.

Denote k = [¢yn]. Lemma 1, condition 1. of the theorem and counting imply
the existence of T}, such that the inequality Var(")(T,,) > (1—27)?(n—k) is
true for M = 2%1_72;’)9(771@”) k-faces I' of S. Apply lemma 2 to CT 7" =T,
with ¢ = (1 —2v)%2. If t > Q(n logm) the theorem is proved, else since

the error probability v could be made a positive constant as close to zero as
desired at the expence of increasing by a constant factor the depth of RCT
[M85a,c|, take v such that (1 — ¢+ 0) < %(;_cl) Then lemma 2 entails
that ¢ > Q(n logm), which proves the theorem. Thus, it remains to prove

lemma 2.

Proof of lemma 2: To each k-face [' of § satisfying the inequality
Var®™(T") > ¢(n — k), we correspond a path in 7" with the testing poly-
nomials fi,..., fs € R[Xy,..., X,] such that Var® (f, --- £,) > Var®(T").
Denote f = f;--- fs. Consider a canonical representation of I' by a flag (see

above)

Hin—k D) Hin—k N Hin—lc—l D...0 Hin—k N...N Hi1 =TI

Fix this path of 7" for the time being and consider all k-faces I' to which
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corresponds this path. We arrange the representing flags of all these k-faces
in a tree 7 which we call the tree of flags (cf. the proof of lemma 2 from
[GKMS96]). 7 has a root with the zero level, each its path has the same
length n — & (such trees are called regular), some of its vertices are labeled.

We construct 7 by induction on the level of its vertices. The base of induc-
tion. For each k-face I' to which corresponds the fixed path of T”, construct a
vertex, being a son of the root of 7, and to this vertex (of level 1) attach the
hyperplane H; _, (we utilize inroduced above notations). Thus, to different
sons of the root different hyperplanes are attached. We label the constructed
vertex if and only if Y, 4| f (the latter means that the linear function or the
variable Y,,_}, gives a contribution into Var®(f)). Besides, we assign to the
constructed vertex the polynomial f) € R[Zy,..., Zy, Y1,..., Y r_1] (see
section 1).

Now assume by induction on [ that | < n — k levels of T are already
constructed. Consider any vertex v of 7 at [-th level. To the vertex v leads
the partially labeled path (from the root), to whose vertices the beginning

elements of a flag are attached successively:

n—k n—k n—k-1 k n—k—l+1
Finally, the polynomial f) € R[Z1,..., Zy, Y1, ..., Yo_p_i] is assigned to the
vertex v. Recall (see section 1) that f() is defined on (n — [)-plane I';.
Besides, v is either labeled or not labeled.

Thus, to different vertices at the level [ are attached the different begin-
nings of flags.

At the inductive step we construct the sons of v. Namely, for any k-face I'
with the same beginning (4) of its representing flag consider the next element
of its flag, letitbe ''NH; _, .
H; ., and assign the polynomial f“*Y € R[Zy,...,Z5, Y1, .., Yo k_i_1.
We label this vertex if and only if Y,,_;_|f) (recall that due to the main-

tainance property, see section 1, the latter condition means that the linear

Construct a son of v to which we attach I'; N

form or the variable Y;,_;_; gives a contribution into Var((f)).
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This completes the inductive construction of 7. The leaves (or paths)
of T correspond bijectively to k-faces of S to which the fixed path of T'
corresponds. To each leaf (or path) of 7 which corresponds to k-face I' the

flag representing I' H; _, D H; _, N H; O>...0H;, N...NH;; =11s

n—k—1 k

attached along the path (which is partially labeled).

Now we proceed to estimating the number of leaves of 7. For a vertex
v consider all its labeled sons (we utilize the introduced above notations).
Each labeled son corresponds to a hyperplane H; such that the linear func-

O where Lr,ng, is a certain linear function on (n — [)-plane I'y

tion Ly, g,
with the zero set I'y N H;, being a hyperplane in I'y, and to different sons
correspond different hyperplanes ['y N H;. Consider the family H of all such
hyperplanes H;. First assume that it contains at least m® hyperplanes. Then
the condition 2. of the theorem implies that the number of the connected
components b = B ({H; N Ty} g,ex) of the complement in Ty of the ar-
rangement U,y (H; N I'1) is greater than Q(m®™). On the other hand the
proposition (see section 1) entails that b < 206F7=0 < 200+n) " taking into
account that the complexity C(f) = C(f1--- fs) < 2s—1. This provides the
lower bound on the depth of 7", namely, ¢ > s > Q(nlogm), that proves
lemma 2. Thus, we can assume that any vertex v of 7 has less than m®
labeled sons. Besides the labeled sons, each vertex could have at most m
unlabeled sons. Furthermore, due to the maintenance property, along each
path of T at least ¢(1 — ¢;)n vertices are labeled (see the inductive step
above).

To estimate the number of leaves in 7 introduce an auxiliary magnitude
M(R, Q) to be the maximal possible number of the leaves in a regular tree
(actually, we could stick with subtrees of T, so they are partially labeled)
with the length of any path equal to R and with at most ) unlabeled vertices
along the path. One can assume w.l.o.g. that Q@ < R < m (if Q@ > R then
set M(R,Q) = 0, the inequality R < m holds since we consider the subtrees
of T, and to each path of 7 a flag of the length at most m is attached).
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Considering such a tree and its subtrees with the roots being the sons (both
unlabeled and labeled) of the root of the tree, we get the following inductive

inequality:
M(R,Q) <m-M(R-1,Q—-1)+m*M(R—-1,Q)

For the base of induction, obviously M(0,0) = 1. By induction on R we
obtain the bound M (R, Q) < -m® - m(+E for arbitrary 6, > 0 and a
suitable 5 > 0.

Substituting R = n — [ein], @ = (1 — ¢)(n — [ein]), we conclude that
the number of the leaves of T is less than O(m(l=9(—cnt(es+d)l=c)n) for
arbitrary 6 > 0.

To complete the proof of lemma 2 it remains to notice that the tree of
flags T was constructed for a fixed path of CT T'; there are at most 3!
paths of 77. On the other hand, every k-face I' of S, satisfying the inequality
Var®(T") > ¢(1 — ¢;)n, corresponds to one of the leaves of a tree of flags

constructed for one of the paths of 7'. Hence the number of such k-faces
M < O(3t . m(l_c+c3+5)(1—c1)n)‘

3 Quadratic complexity lower bound for
RCTs solving the restricted integer pro-

gramming
The restricted integer programming is the arrangement

L= U {ex=1}cR"

a€{0,...,j—1}m

of m = j" hyperplanes for some j > 2 (see e.g. [M85b]). For j =2 L, is
the knapsack problem.

As an application of the theorem we prove the following corollary.
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Corollary: For any RCT solving the restricted integer programming

L, ;, its depth is greater than Q(n?logj).

To check the conditions 1., 2. of the theorem first take % < ¢ <1. Any
k = [cin]-face T of L, j can be given by n—k linear equations g1, ..., g, of
the form aX = 1 from L, ;. If other linear equations ¢i,...,g, , from
the family L, ; give the same k-face [' then their linear hulls coincide:
L(g1, - n-k) = L(G1, -+ In)-

Take a prime j < p < 2j. Let us show that the linear hull £(g1, ..., gn &)
contains at most p”~* linear equations from the family L, ;. Consider the
linear equations from (L(gi,...,9n—k) N Ly ;) mod p (we treat the linear
equations as their vectors of the coefficients). Then the results are pairwise
distinct vectors, they constitute a family F C ]FZ“, choose among the ele-
ments from F a basis over IF,,, it contains at most n — k elements (otherwise,
the preimages of F prior taking modp would be linear independent as well).
All the vectors from F are the linear combinations over IF, of the elements of
the basis, therefore, F contains at most p"~* elements, thus the cardinality
\L(g1y- -y Gnk) N Lnj| = |F| < pF.

Any (n — k)-tuple of the linearly independent linear equations from L, ;
provides a k-face. Therefore, any k-face is provided by less or equal to

(P"k> < p R < (2f = 1) R

n—=kJ) — -
number of (n — k)-tuples because of the shown above. On the other hand,
denote by I;, 1 < [ < n the number of linearly independent [-tuples from
L, ;. Obviously, I, = j® — 1. By induction on [ for | < n — 1 we have

I(i"— l .
I > % again because of the shown above. Hence,

L>0G"-1DG"—p) (" =0 =P Hs >

" =DGE" = 20" = @) 0" = 2Ty >

4 (1 14 (27) + (2])2 et (2j)l1> 1
]n
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()

If | < % we have ((233_);;]1,1 < %, ie. I} > Q(’li,l) Substituting [ = n — k, we

conclude that the number of k-faces ¢y (Ly, ;) is greater than

0 (j(1—61—(51)n2 ) >0 (j((1—cl)(2c1—1)—61)n2)
@) ) =

for arbitrary 6; > 0. Thus, to satisfy the condition 1. in the theorem one

can take ¢o = (1 —¢1)(2¢; — 1) — 45.

To justify the condition 2. in the theorem take any k;-face I' of L, ;
where k; > k given by n — k; linear equations g1, ..., g, 4, from L, ;, and
besides, ¢ > j*" linear equations hy,...,h, from L, ;. Take a certain 0 <
¢5 < 1 which will be specified later. Denote ks = [czn]. There are (qu) >
Q(jc5(c3*5)”2) ko-tuples from hy, ..., h, for arbitrary § > 0. If two ko-tuples
iys ooy by,

a subset of I'), the linear hulls coincide:

and hy,, ..., by, give the same face in T' (i.e. a face of L, ;, being

E(gla---:gnfklahila-"ahikz) = £(gl,...,gn,kl,hll,...,hlkz)

(cf. above). Therefore, for any face in I' there are at most (pnfkﬁkz) <

ko =
(2j)es(n—katesm)n guch ko-tuples (since the latter linear hull contains at
most p" **k2 linear equations from L, ;, see above).  Furthermore,
(2j)cs(n—kitesmn < j2es(l—ertes)n®  Thys, the number of faces in T

of the subarrangement S0 = U, (I N {h; = 0}) is greater than
QO (jcs(c3—6—2+2c1—2cs)n2)_

Now take ¢3 = 3, then the requirement ¢3(1—c¢;) < ¢ is fulfilled for small
enough 6; > 0. Since ¢3 — 2 + 2¢; > 0, one could choose ¢5 > 0 and § > 0
small enough to provide ¢, = ¢5(c5 — 6 — 2 4 2¢; — 2¢5) > 0.

Thus, we have proved so far that the number of faces in I' in the subar-
rangement ST is greater than (™). Take any 0 < ¢4 < ¢,. The required

bound 2. of the theorem on the number of the connected components of the
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complement in I" of the subarrangement ST B ("N {h, = 0},...,I'N{h, =
0}) > Q(j™") (and thereby the corollary) follows from the following general
remark (this can be deduced also from [B92], but for the sake of selfcontainess

we give a short and elementary proof of it).

Remark: For any arrangement S = U;<;<,, Hi CRR" and 0 <k <n —1
the number of k-faces in the arrangement ¢x(S) < By(Hy, ..., Hp).

Proof: Intersecting S with a generic (n — k)-plane, we reduce the remark
to the case k = 0.

Thus £ = 0. Choose a generic hyperplane H and shift it parallel to
itself. When it contains a vertex v of S we show that there “appears” a new
(in other words, not yet swept) connected component of the complement
R" — S with a vertex v and situated completely on one side of H. Indeed,
let v = Ny<j<, Hi; for some H; ..., H;, . Take the coordinates system with
the coordinate hyperplanes H; ,...,H; . Let H have an equation in these
coordinates ay X1+ - -4+, X, = 0, each a; # 0,1 <14 < n, since H is generic.
Then the “orthant” {a;X; > 0;1 < i < n} (which is situated completely on
one side of H) contains a connected component of the complement R" — S
with a vertex in v.

So, to each vertex v of S corresponds a connected component of the
complement R"™ — S. In addition, to the first (in the order of shifting H)
vertex vy corresponds also at least one more connected component situated
in the “orthant” {o;X; < 0;1 < i < n} (so on the other side of H) with a

vertex in vy, this implies the strict inequality in the remark.

4 Lower bound on the complexity of deter-

ministic computation trees

For CT T" which recognizes either an arrangement & = S or a polyhedron

S = ST given by the hyperplanes Hy,..., H,,, we can give the similar com-
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plexity lower bound Q(log V) as in the theorem, where N is the number of

k-faces of S, without the restriction N > m®™ imposed in the theorem.

Theorem 2: Let C'T' 1" with the depth ¢ recognize S with N k-faces,
and S satisty the following condition. For any ki-face [' of § with &k > &
and any subset H; ,..., H; with s > Nes/(n=k) for a certain ¢z < 1 such that
the planes H;, NI',..., H;, NI are pairwise distinct from I', the number of
connected componets of the complement in I' of the arrangement B(()F)(Hil N

I,...,H;,NI') > N for a suitable ¢, > 0. Then ¢t > Q(log V).

The proof follows the proof of the theorem with considerable simplifica-
tions. Namely, in lemma 1 one states that Var)(T") = n — k. In lemma 2
we have either the bound 2! > N or the bound N < 3!N® due to the
estimation M (n — k,0) < N,

Notice that the Theorem 2 in case of an arrangement & = S follows
from [SY82], [B83] without the condition in the Theorem 2. In case of a
polyhedron & = S* a weaker complexity lower bound (log N/ loglog N)
was proved in Theorem 2 from [GKV96] without the condition of Theorem
2.

5 Open Problem

We were not able to prove any superlinear lower bound or a linear upper
bound on the Element Distinctness(cf. [M85a], [GKMS96]) for randomized
computational trees. Note that the corresponding lower bound for random-
ized decision trees is Q(n logn), [GKMS96].
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