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AbstractWe prove 
(n2) complexity lower bound for the general modelof randomized computation trees solving the Knapsack Problem, andmore generally Restricted Integer Programming. This is also the �rstnontrivial lower bound for randomized computation trees. The methodof the proof depends crucially on the new technique for proving lowerbounds on the border complexity of a polynomial which could be ofindependent interest.
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0 IntroductionWe prove for the �rst time nonlinear complexity lower bounds for random-ized computation trees (RCT s) (see e.g. [MT82], [S83]) recognizing languageslike unions of hyperplanes (i.e. linear arrangements) or intersections of half-spaces (polyhedra). As an application we prove a quadratic lower bound onRCT s solving the knapsack problem, or more general, the restricted integerprogramming.Obtaining general lower bounds for randomized computations was anopen question for a long time (see e.g. [M85a, b, c] and [KV88]). Only re-cently, a nonlinear lower bound was proven in [GKMS96] for a weaker modelof randomized d-decision trees (d-RDT s), in which the testing polynomialshave degrees at most d (for 2-dimensional case the lower bound was provenin [GK93] and for the generic arrangements a lower bound was proved in[GK94]). In particular, for d-RDT s in [GKMS96] the lower bound 
(n logn)was proven for the Element Distinctness Problem (i.e. whether all the num-bers x1; : : : ; xn are pairwise distinct), and the lower bound 
(n2) was provedfor the Knapsack problem. Usually, the bound d on the degree in d-RDTis small enough, and the main di�culty while considering RCT is that thedegree of testing polynomials in principle could be exponential in the depth.Therefore, we develop in the present paper a new method for obtaining com-plexity lower bounds for RCT s.The method developed in the present paper is not applicable to the ele-ment distinctness problem. In [BKL93], [GKMS96] a linear depth RCT wasconstructed for a similar problem (permutation problem) beating its deter-ministic 
(n logn)2 lower bound [B83]). This example shows that the stillopen problem of complexity of an RCT for the element distinctness problemis quite delicate.We also mention that a linear n4 lower bound for an RCT recognizing thearrangement S1�i�nfXi = 0g or the \orthant" T1�i�nfXi � 0g was proved4



in [GKMS96]. For a stronger model of randomized analytic decision trees(RADT ) a complexity upper bound O(log2 n) for testing T1�i�nfXi � 0gwas proven in [GKS96] (for deterministic analytic decision trees the exactcomplexity bound n was proved in [R72], [MPR94]). Besides, in [GKS96] forRADT a sublinear lower bound 
(n1=2) was proved for the union of orthantsSf�iXi � 0; 1 � i � ng where �i 2 f�1; 1g and the number of negativeamong �i is divided by a �xed q such that q 6= 2s for any s.For deterministic models of the computation and decision trees severalmethods for obtaining complextity lower bounds were developed earlier.The \topological" methods based on the number of connected components([SY82], [B83]), or more general, on the sum of Betti numbers ([BLY92],[Y94]), provide the lower bound 
(n2) for the knapsack problem and thelower bound 
(n logn) for the distinctness or the permutation problem. Thealready mentioned example from [BKL93] shows that these \topological"bounds cannot be directly extended to RCT .For testing a polyhedron (to which the topological methods are not ap-plicable), the di�erential-geometric method (involving the curvature) for ob-taining complextity lower bounds for deterministic computations was devel-opped in [GKV96], which provides 
(logN) lower bound for decision trees(see also [GKV95]) and 
(logN= log logN) for computation trees, where Nis the number of all faces of the polyhedron.We now brie
y describe the content of the paper. In section 1 we intro-duce the notion of the border complexity, for the similar notations cf. [S90][B79] [BCLR79], of a polynomial and prove a lower bound on it which is ofindependent interest, in terms of the number of connected components.In section 2 we prove the main theorem which provides a complexity lowerbound for RCT testing an arrangement or a polyhedron. For that purposewe use some tools (in particular, the tree of 
ags) from [GKMS96], but theproof di�ers from the one in [GKMS96] since the degree of RCT s could beexponential as we already mentioned.5



In section 3 as an application of the main theorem we give a complexityquadratic lower bound 
(n2 log j) for RCT testing the Restricted IntegerProgramming Ln;j = [a 2 f0;:::;j�1gnfaX = 1g(which is an arrangement consisting of jn hyperplanes). Notice that forj = 2 this problem coincides with the Knapsack Problem. In particular, insection 3 we give a lower bound j
(n2) on the number of faces of Ln;j (andthereby, on the number of the connected components of the complement ofLn;j, which was also ascertained in [YI65], [M85b], [GKMS96], and [DL78]).Moreover, in section 3 we provide a stronger lower bound on the numberof faces of subarrangements of Ln;j (under a subarrangement we understandthe restriction of a subset of hyperplanes from Ln;j on a face of Ln;j). Theanalogue of this bound for subarrangements of the distinctness problem iswrong, that is why we cannot get a nonlinear complexity lower bound forRCT , solving the distinctness problem.In the last section 4 we state the complexity lower bound for the de-terministic computation trees recognizing a polyhedron under less restrictiveconditions than for the randomized computation trees as in the theorem fromsection 2.1 Lower bound on the border complexityWe start now with the technical development leading to the crucial lowerbound on the border complexity of a polynomial.Let H1; : : : ; Hn�k � IRn be hyperplanes such that their intersection� = H1 \ � � � \ Hn�k has the dimension dim � = k. Fix arbitrarycoordinates Z1; : : : ; Zk in �. Then treating H1; : : : ; Hn�k as the coordi-nate hyperplanes of the coordinates Y1; : : : ; Yn�k, one gets the coordinatesZ1; : : : ; Zk; Y1; : : : ; Yn�k in IRn. 6



For any polynomial f 2 IR[X1; : : : ; Xn] rewrite it in the coordinatesf(Z1; : : : ; Zk; Y1; : : : ; Yn�k) and following [GKMS96], de�ne its leading termlm(f) = �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k0 6= � 2 IR (with respect to the coordinate system Z1; : : : ; Zk; Y1; : : : ; Yn�k)as follows. First, take the minimal integer mn�k such that Y mn�kn�k occurs inthe terms of f . Consider the polynomial0 6� f (1) =  fY mn�kn�k ! (Z1; : : : ; Zk; Y1; : : : ; Yn�k�1; 0) 2IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�1]which could be viwed as a polynomial on the hyperplane Hn�k. Observe thatmn�k depends only on Hn�k and not on Z1; : : : ; Zk; Y1; : : : ; Yn�k�1, since alinear transformation of the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k�1 changesthe coe�cients (being the polynomials from IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�1]) ofthe expansion of f in the variable Yn�k, and a coe�cient vanishes identicallyif and only if it vanishes identically after the transformation. Then f (1) isthe coe�cient of the expansion of f at the power Y mn�kn�k .Second, take the minimal integer mn�k�1 such that Y mn�k�1n�k�1 occurs inthe terms of f (1). In other words, Y mn�k�1n�k�1 is the minimal power of Yn�k�1occurring in the terms of f in which occurs the power Y mn�kn�k . There-fore, mn�k, mn�k�1 depend only on the hyperplanes Hn�k, Hn�k�1 andnot on Z1; : : : ; Zk; Y1; : : : ; Yn�k�2, since (as above) a linear transformationof the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k�2 changes the coe�cients (be-ing the polynomials from IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�2]) of the expansionof f in the variables Yn�k, Yn�k�1 and a coe�cient vanishes identicallyif and only if it vanishes identically after the transformation. Denote by0 6� f (2) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�2] the coe�cient of the expansion off at the monomial Y mn�k�1n�k�1 Y mn�kn�k . Obviouslyf (2) =  f (1)Y mn�k�1n�k�1 ! (Z1; : : : ; Zk; Y1; : : : ; Yn�k�2; 0)7



One could view f (2) as a polynomial on the (n�2)-dimensional plane Hn�k \Hn�k�1.Continuing in the similar way, we obtain consecutively the (non-negative)integers mn�k; mn�k�1; : : : ; m1 and the polynomials0 6� f (l) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�l]1 � l � n � k, by induction on l. Herewith, Y mn�k�l+1n�k�l+1 is the minimalpower of Yn�k�l+1 occurring in the terms of f , in which occurs the monomialY mn�k�l+2n�k�l+2 � � �Y mn�kn�k for each 1 � l � n � k. Notice that mn�k; : : : ; mn�k�ldepend only on the hyperplanes Hn�k; : : : ; Hn�k�l and not on Z1; : : : ; Zk; Y1;: : : ; Yn�k�l�1. Then f (l) is the coe�cient of the expansion of f at the mono-mial Y mn�k�l+1n�k�l+1 � � � Y mn�kn�k andf (l+1) =  f (l)Y mn�k�ln�k�l ! (Z1; : : : ; Zk; Y1; : : : ; Yn�k�l�1; 0)Thus, f (l) depends only on Hn�k; : : : ; Hn�k�l and not onZ1; : : : ; Zk; Y1; : : : ; Yn�k�l�1. One could view f (l) as a polynomial onthe (n� l)-dimensional plane Hn�k \ � � � \Hn�k�l+1. Continuing, we de�nealso m0k; : : : ; m01.Finally, the leading term lm(f) = �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k is the min-imal term of f in the lexicographical ordering with respect to the order-ing Z1 > � � � > Zk > Y1 > � � � > Yn�k. The leading term lm(f (l)) =�Zm011 � � �Zm0kk Y m11 � � �Y mn�k�ln�k�l , we refer to this equality as the maintenanceproperty (see also [GKMS96]).Denote by V ar(f) = V ar(H1;:::;Hn�k) (f) the number of positive (i.e.nonzero) integers among mn�k; : : : ; m1. As we have shown above, V ar(f)is independent from the coordinates Z1; : : : ; Zk of �. Obviously, V ar(f) co-incides with the number of 1 � l � n � k such that Yn�k�l j f (l), the lattercondition is equivalent to that the variety ff (l) = 0gT(Hn�k\� � �\Hn�k�l+1)contains the plane Hn�k \ � � � \ Hn�k�l+1 \ Hn�k�l (being a hyperplane inHn�k \ � � � \Hn�k�l+1). 8



It is convenient (see also [GKMS96]) to reformulate the introduced con-cepts by means of in�nitesimals. Namely for a real closed �eld F (see e.g.[L65]) we say that an element " transcendental over F is an in�nitesimal(relative to F ) if 0 < " < a for any element 0 < a 2 F . This uniquelyinduces the order on the �eld F (") of rational functions and further on thereal closure gF (") (see [L65]).One could make the order in gF (") clearer by embedding it in the largerreal closed �eld F (("1=1)) of Puiseux series (cf. e.g. [GV88]). A nonzeroPuiseux series has the form b = Pi�i0 �i"i=�, where �1 < i0 < 1 is aninteger, �i 2 F for every integer i; �i0 6= 0 and the denominator of therational exponents � � 1 is an integer. The order on F (("1=1)) is de�ned asfollows: sgn(b) = sgn(�i0). When i0 � 1, then b is called an in�nitesimal,when i0 � �1, then b is called in�nitely large. For any not in�nitely largeb we de�ne its standard part st(b) = st"(b) 2 F as follows: when i0 = 0,then st(b) = �i0 , when i0 � 1, then st(b) = 0. In the natural way we extendthe standard part to the vectors from (F (("1=1)))n and further to subsets inthis space.Now let "1 > "2 > : : : > "n+2 > 0 be in�nitesimals, where "1 isan in�nitesimal relative to IR; in general "i+1 is an in�nitesimal relativeto IR("1; : : : ; "i) for all 0 � i � n + 1. Denote the real closed �eldIRi = gIR("1; : : : ; "i), in particular, IR0 = IR. For an element b 2 IRn+2 forbrevity denote the standard part sti(b) = st"i+1(st"i+2 � � � (st"n+2(b) � � �) 2 IRi(provided that it is de�nable).Also we will use the Tarski's transfer principle [T51]. Namely, for tworeal closed �elds F1 � F2 a closed (so, without free variables) formula in thelanguage of the �rst-order theory of F1 is true over F1 if and only if thisformula is true over F2.Tarski's transfer principle implies that a semialgebraic set ff1 �0; : : : ; fk1 � 0; fk1+1 > 0; : : : ; fk > 0g � F n, where the polynomi-als fi 2 F [X1; : : : ; Xn] have the degrees deg(fi) � d, has at most9



(minf2k; ( kn)ngdn)O(1) connected components (cf. [GV88]), relying on thisbound in case F = IR from [W68] (cf. also [BPR94]), which strenghtens theresult of [M64].Another application of Tarski's transfer principle is the concept of thecompletion. Let F1 � F2 be real closed �elds and 	 be a formula (withquanti�ers and, perhaps, with n free variables) of the language of the �rst-order theory of the �eld F1. Then 	 determines a semialgebraic set V � F n1 .The completion V (F2) � F n2 is a semialgebraic set determined by the sameformula 	 (obviously, V � V (F2)). Tarski's transfer principle entails, inparticular, that the number of connected components of V is the same as theone of V (F2) (cf. [GV88]).One could easily see that for any point (z1; : : : ; zk) 2 IRkk+2 such thatf (n�k)(z1; : : : ; zk) 6= 0 (we utilize the introduced above notations) the follow-ing equality for the signs�m11 : : : �mn�kn�k sgn �f (n�k)(z1; : : : ; zk)� =sgn �f(z1; : : : ; zk; �1"k+3; : : : ; �n�k"n+2)� (1)holds for any �1; : : : ; �n�k 2 f�1; 1g. For any 1 � i � n � k such thatmi = 0 (1) holds also for �i = 0, agreeing that 00 = 1. Moreover, thefollowing polynomial identity holds:f (n�k)(Z1; : : : ; Zk) = stk+2  f(Z1; : : : ; Zk; "k+3; : : : ; "n+2)"m1k+3 � � � "mn�kn+2 ! (2)For a family of hyperplanes H1; : : : ; Hm � IRn let S = [1�i�mHi bean arrangement, by B0 (H1; : : : ; Hm) we denote the number of connectedcomponents of the complement IRn � S.Following e.g. [S90] we de�ne the complexity s = C(f) of a polyno-mial f 2 IR[X1; : : : ; Xn] as the length of the shortest straight-line pro-gram which computes f . Recall that the latter is a sequence of operationsu1 = X1; : : : ; un = Xn, then for every n < j � s + n uj = ~uj1 � ~uj2, wherefor each i = 1; 2 either ~uji = uji with ji < j or ~uji 2 IR and either � = �10



or � = +. To every uj by recursion on j one attaches in the natural way apolynomial Uj 2 IR[X1; : : : ; Xn] (the value of uj). The straight-line programcomputes f if Us+n = f .Observe that one could consider also the division � = = and the resultingrational functions, but since we deal only with the signs of the testing func-tions in the computation trees (see below), we could consider separately thecomputations of the numerators and denominators of the rational functionsby means of the straight-line programs without the divisions.For a polynomial g 2 IR[Z1; : : : ; Zk] its border complexity C(g) (cf. [S90])is the minimal C(f) where f 2 IR[X1; : : : ; Xn] for a certain n � k such thatg = f (n�k), for suitable coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k, which we treatas the linear forms in X1; : : : ; Xn. Actually, one could literally extend theconcept of the border complexity to the polynomials with the coe�cientsfrom an arbitrary �eld.The main result of this section is the following lower bound on the bordercomplexity.Proposition: Let for a polynomial g 2 IR[Z1; : : : ; Zk] its border com-plexity C(g) � s. Assume that H1; : : : ; Hm � IRk are pairwise distincthyperplanes such that the corresponding linear functions LHi j g, 1 � i � m(where the zero set of LHi is Hi). Then B0(H1; : : : ; Hm) � 2O(s+k).Remark: In fact, one could formulate the proposition in a stronger set-ting as follows (the proof goes through literally). For a polynomial g withthe border complexity less than s, the number of the connected componentsin the complement in IRk of the set fg = 0g of zeroes of g does not exceed2O(s+k).Proof: Let ui = Xi, 1 � i � n; uj = ~uj1 � ~uj2, n + 1 �j � n + s be a straight-line program which computes a certain polyno-mial f 2 IR[X1; : : : ; Xn] such that g = f (n�k) for suitable coordinatesZ1; : : : ; Zk; Y1; : : : ; Yn�k (we utilize the introduced above notations). Ex-11



press Xi = �(i)1 Z1 + � � � + �(i)k Zk + �(i)1 Y1 + � � ��(i)n�kYn�k, 1 � i � n, where�(i)j ; �(i)j 2 IR. Remind that by f(Z1; : : : ; Zk; Y1; : : : ; Yn�k) we denote thepolynomial f in the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k.Due to (2) for any point (z1; : : : ; zk) 2 IRk2 we haveg(z1; : : : ; zk) = st2  f(z1; : : : ; zk; "k+3; : : : ; "n+2)"m1k+3 � � � "mn�kn+2 ! (3)Denote u0i = �(i)1 z1 + � � �+ �(i)k zk + �(i)1 "k+3 + � � �+ �(i)n�k"n+2, 1 � i � n.Introduce a new variable Z0 and two semialgebraic setsV = � (z0; z1; : : : ; zk; un+1; : : : ; un+s) 2 IRk+s+1n+2 :uj = ~u0j1 � ~u0j2; n+ 1 � j � n+ s;where for each i = 1; 2 either~u0ji = u0ji when 1 � ji � nand ~u0ji = uji when n < ji <j, or ~u0ji 2 IR according tothe straight-line program whichcomputes f ;�( un+s"m1k+3 � � � "mn�kn+2 )2 � "1�2 +�z20 + z21 + � � �+ z2k � 1"1�2 < "2 �;V = �(z0; z1; : : : ; zk) 2 IRk+11 : g2 (z1; : : : ; zk) = "1; z20 + z21 + � � �+ z2k = 1"1�Denote by Q : IRk+s+1n+2 ! IRk+1n+2 the linear projection along the coordinatesun+1; : : : ; un+s. The linear projection Q : Vf!Q(V) is an isomorphism of thesemialgebraic sets, since the projectionY(V) = ((z0; z1; : : : ; zk) 2 IRk+1n+2 : 0@ f(z1; : : : ; zk; "k+3; : : : ; "n+2)"m1k+3 � � � "mn�kn+2 !2 � "11A2+(z20 + z21 + � � �+ z2k � 1"1 )2 < "2)12



and the inverse mapping is given by the polynomial mapping uj = ~u0j1 � ~u0j2,n+ 1 � j � n+ s.Then V � Q(V) because of (3).Furthermore, st1(Q(V)) = V ; the left side is de�nable since for any point(z0; : : : ; zk) 2 Q(V) the square of its euclidean norm kzo; : : : ; zkk2 = z20 +� � �+ z2k < 1"1 + " 122 < 1"1 +1. By the same reason lemma 1 from [GV88] statesthat the number N3 of the connected components of V does not exceed thenumber N4 of the connected components of Q(V), the latter coincides withthe number of the connected components of V since it is isomorphic to Q(V).We claim that for any connected component W � IRk (which is an openset in the euclidean topology) of the component IRk�fg = 0g and an arbitrarypoint w0 2 @W on the boundary, there exists a point (z1; : : : ; zk) 2 W (IR1) �IRk1 from the completionW (IR1) (as we have seen above from Tarski's transferprinciple, the connected componentsW of the complement are in the bijectivecorrespondence with their completions W (IR1) � W , being the connectedcomponents of the complement fg = 0g(IR1) in IRk1, the number of theseconnected components we denote by N0) such that g2(z1; : : : ; zk) = "1 andst0(z1; : : : ; zk) = w0 (cf. lemma 3 from [GV88]). Indeed, pick out an arbitrarypoint w 2 W . Taking into account that w0 2 @(W (IR1)), so g(w0) = 0, and0 < g2(w) 2 IR we conclude that g2 attains on W (IR1) any intermediatevalue from IR1 between 0 and g2(w) (using Tarski's transfer principle), inparticular, "1. Now take a point w1 2 W (IR1) being the nearest to w0 suchthat g2(w1) = "1 (its existence follows again from Tarski's transfer principle).It su�ces to prove that st0(w1) = w0. Suppose the contrary. Then thereexists 0 < r 2 IR such that for any point w2 2 W (IR1) with the distancekw0�w2k � r the inequality g2(w2) < "1 holds. Since w0 2 @W there existsa point w3 2 W such that kw0 � w3k � r, then 0 < g2(w3) 2 IR and we geta contradiction with the supposition, and that proves the claim.Furthermore, since w0 2 IRk and st0(z1; : : : ; zk) = w0, there exists 0 <r1 2 IR such that the norm kz1; : : : ; zkk � r1, a fortiori kz1; : : : ; zkk2 � 1"1 .13



Consider a semialgebraic setV0 = n(z1; : : : ; zk) 2 IRk1 : g2 (z1; : : : ; zk) = "1oDenote by N1 the number of the connected components of V0 containing apoint w4 with the square of the euclidean norm kw4k2 � 1"1 . The provedabove claim states that the number N0 does not exceed N1, taking intoaccount that V0 � �IRk � fg = 0g�(IR1) = IRk1 � (fg = 0g)(IR1)On the other hand, B0(H1; : : : ; Hm) � N0, since u1�i�mLHi j g (evidently,in every connected component, being an open set in the euclidean topology,of the complement of the arrangement �IRk � S1�i�mHi� � �IRk � fg = 0g�,there exists a point at which g does not vanish).Obviously, N1 is less than or equal to the number N2 of the connectedcomponents of the setV1 = V0 \ �(z1; : : : ; zk) 2 IRk1 : kz1; : : : ; zkk2 � 1"1�In its turn V1 = Q0(V ), where Q0 : IRk+11 ! IRk1 is the projection along thecoordinate Z0. Hence N2 � N3.Gathering the obtained chain of inequalities B0(H1; : : : ; Hm) � N0 �N1 � N2 � N3 � N4 for the numbers of the connected components, we con-clude that B0(H1; : : : ; Hm) does not exceed the number of connected com-ponents of V. The latter is less than 2O(s+k) according to [W68] and Tarski'stransfer principle (see above).The proposition is proved.2 Lower bounds for randomized computationtreesRecall (see e.g. [B83]) that in the computation tree (CT ) testing polyno-mials are computed along paths using the elementary arithmetic operations.14



In particular, for a testing polynomial fi 2 IR[X1; : : : ; Xn] at the level i (as-suming that the root has the zero level) we have C(fi) � i. Under RCT (cf.[MT82], [S83], [M85a,b,c]) we mean a collection of CT T = fT�g and a prob-abilistic vector p� � 0, P� p� = 1 such that T� is chosen with the probabilityp�. The main requirement is that for any input RCT gives a correct outputwith the probability 1� 
 > 12 (
 is called the error probability of RCT ).For a hyperplane H � IRn by H+ � IRn denote the closed halfspacefLH � 0g, where LH is a certain linear function with the zero set H. For afamily of hyperplanes H1; : : : ; Hm the intersections S+ = \1�i�mH+i is calleda polyhedron. An intersection � = Hi1 \ � � � \ Hin�k is called k-face of S+if dim � = dim(� \ S+) = k. By �k(S+) we denote the number of k-facesof S+. Similary (and even simpler) for the arrangement S = [1�i�mHi itsk-face is any k-dimensional intersection of the form � = Hi1 \ � � � \ Hin�k .By �k(S) we denote the number of k-faces of S.Now we are able to formulate the main result of this paper.Theorem: Let there exist positive constants c1; c2; c3; c4 such that c3(1�c1) < c2 and an arrangement S = S = [1�i�mHi or a polyhedron S = S+ =\1�i�mH+i satisfy the following properties:1. �[c1n](S) � 
(mc2n);2. for any k-face � of S with k � c1n and any subfamily Hi1 ; : : : ; Hiqof H1; : : : ; Hm with at least q � mc3 hyperplanes such that Hij 6� �for each 1 � j � q and the hyperplanes Hi1 \ �; : : : ; Hiq \ � in � arepairwise distinct, the number of the connected components B(�)0 (Hi1 \�; : : : ; Hiq\�) of the complement in � of the arrangement [1�j�q(Hij \�) is greater than 
(mc4n).Then for any RCT recognizing S, its depth is greater than 
(n logm).Before proceeding to the proof of the theorem, we need some preparation.First we �x the canonical representation of k-face � in two cases: namely,of S and of S+, respectively (see [GKMS96]). In the case of S take the15



maximal in�k � m such that Hin�k � �, then the maximal in�k�1 such thatHin�k�1 � � and dim(Hin�k \ Hin�k�1) = n � 2 (obviously in�k�1 < in�k)and so on we produce the indices in�k > in�k�1 > � � � > i1 such that � =Hin�k \ � � � \ Hi1 . As the representation of � we take the 
ag of planes:Hin�k � Hin�k \Hin�k�1 � � � � � Hin�k \ � � � \Hi1 = �.Now consider the case of S+. W.l.o.g. one could assume that dim S+ = n.Under a hyperplane of a l-dimensional polyhedron we mean a (l � 1)-planewhich is (l � 1)-face of the polyhedron. W.l.o.g. one could assume that allhyperplanes H1; : : : ; Hm are hyperfaces of S+.Take the maximal in�k � m such that Hin�k � �. Denote the polyhedronS+1 = Hin�k\S+. Obviously, � is its k-face and dim S+1 = n�1. ByH1 denotethe family of all hyperplanes Hi such that Hi � � and (Hin�k\Hi) is a hyper-face of S+1 (thereby, it is (n� 2)-face of S+). Then H1 � fH1; : : : ; Hin�k�1gbecause of the choice of in�k. Since S+1 is a convex polyhedron, any of itsfaces is an intersection of some of its hyperfaces, in particular, any of its face�1 which contains � � �1, could be represented as �1 = Hin�k \ (THi2H01 Hi)for a suitable subfamily H01 � H1.Assume that by recursion on l it is already produced a sequence of indicesin�k > � � � > in�k�l+1, 1 � l � n�k�1 such thatHin�k\� � �\Hin�k�l1+1 is (n�l1)-face of S+ for every 1 � l1 � l. Denote �(l) = Hin�k\� � �\Hin�k�l+1 and thepolyhedron S+l = �(l)\S+. In addition, a family Hl � fH1; : : : ; Hin�k�l+1�1gis produced such that for any Hi 2 Hl �(l)\Hi contains � and is a hyperfaceof S+l , and vice versa any hyperface of S+l has the form �(l)\Hi for a certainHi 2 Hl. Hence any face �1 � � of S+l has the form �1 = �(l) \ (THi2H0l Hi)for a suitable subfamily H0l � Hl.To carry out the recursive step, take as in�k�l the maximal index such thatHin�k�l 2 Hl (obviously, in�k�l < in�k�l+1). Then �(l+1) = �(l) \Hin�k�l is ahyperface of S+l (and thereby is (n�l�1)-face of S+). Denote the polyhedronS+l+1 = Hin�k�l \ S+l . Take as Hl+1 the family of all Hi 2 Hl such that�(l+1)\Hi is a hyperface of S+l+1 (evidently, �(l+1)\Hi � � since Hin�k�l ; Hi 216



Hl). Due to the choice of in�k�l we have Hl+1 � fH1; : : : ; Hin�k�l�1g.It remains to prove that for any hyperface �2 of S+l+1 such that �2 � �,there exists Hi 2 Hl+1 for which �2 = �(l+1) \Hi. According to the propertyof Hl there exist Hj1; Hj2 2 Hl such that �2 = �(l) \ Hj1 \ Hj2. Since�(l+1) � �2 and dim �(l+1) = dim �2+1 = n� l� 1, either �2 = �(l+1) \Hj1or �2 = �(l+1) \ Hj2 is valid. In the former case Hj1 2 Hl+1, in the lattercase Hj2 2 Hl+1. This completes the recursive step.Thus, at the end of recursion we obtain a 
ag, which we treat as theclaimed canonical representation of the k-face �:Hin�k � Hin�k \Hin�k�1 � � � � � Hin�k \ � � � \Hi1 = �such that for each 1 � l � k Hin�k \ � � � \Hin�k�l+1 is (n� l)-face of S+ (therecursion on l implies that dim(Hin�k \ � � � \Hin�k�l+1) = n� l).Fix k-face � of S, where either S = S or S = S+. Let Hin�k �Hin�k \Hin�k�1 � � � � � Hin�k \ � � � \Hi1 = � be a 
ag which represents � asdescribed above. For a family of polynomials f1; : : : ; fs 2 IR[X1; : : : ; Xn] wede�ne V ar(�)(f1; : : : ; fs) to be the number of the variables among Y1; : : : ; Yn�k(we utilize the notations introduced in section 1) which occur in at leastone of lm(f1); : : : ; lm(fs), where Hi1 ; : : : ; Hin�k are the coordinate hyper-planes of the coordinates Y1; : : : ; Yn�k, respectively. Since lm(f1 � � � fs) =lm(f1) � � � lm(fs) we get that V ar(Hi1 ;:::;Hin�k )(f1 � � � fs) = V ar(�)(f1 � � �fs) =V ar(�)(f1; : : : ; fs).For any CT T1 we denote by V ar(�)(T1) = V ar(Hi1 ;:::Hin�k )(T1) the maxi-mum of V ar(�)(f1 � � � fs) taken over all the paths of T1, where f1; : : : ; fs aretesting polynomials along the path.The following lemma was proved in [GKMS96].Lemma 1: Let T = fT�g be an RCT recognizinga) an arrangement S = [1�i�mHi such that � = \1�j�n�kHij is k-face ofS, or 17



b) a polyhedron S+ = \1�i�mH+i such that for each 1 � l � n � k\l�j�n�kHij is (k + l � 1)-face of S+ (denote � = \1�j�n�kHij)with error probability 
 < 12 . Then V ar(Hi1 ;:::;Hin�k )(T�) � (1�2
)2(n�k) for a fraction of 1�2
2�2
 of all T�'s.Remark: Notice that the conditions in a), b) are ful�lled if Hin�k �Hin�k \Hin�k�1 � � � � � Hin�k \ � � � \Hi1 = � is the canonical 
ag represen-tation of � in both cases of S and S+ (see above).Proof of Lemma 1: Choose the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�ksuch that Z1; : : : ; Zk are the coordinates in � and Hi1 ; : : : ; Hin�k are thecoordinate hyperplanes of Y1; : : : ; Yn�k, respectively (cf. section 1), whichsatisfy the following properties. The origin (0; : : : ; 0)| {z }n of this coordinatessystem Z1; : : : ; Zk; Y1; : : : ; Yn�k does not lie in any l-face with l < k andbesides, in the case b) (0; : : : ; 0) belongs to the polyhedron S+. Also werequire that for any testing polynomial f from any CT T� f (n�k) (0; : : : ; 0)| {z }k 6=0 holds (recall that f (n�k) 6� 0 depends only on Hi1; : : : ; Hin�k , see section1). a) Consider the point E = (0; : : : ; 0| {z }k ; "k+3; : : : ; "n+2) and the pointsE(0)i = (0; : : : ; 0| {z }k ; "k+3; : : : ; "k+i+1; 0; "k+i+3; : : : ; "n+2), 1 � i � n � k. Thenthe point E 62 S (because of the choice of the origin of the coordinates systemZ1; : : : ; Zk; Y1; : : : ; Yn�k) and E(0)i 2 S, 1 � i � n� k.Easy counting yields that there is a fraction of 1�2
2(1�
) of all T�'s that givethe correct outputs for E and for at least (1� 2
)2(n�k) many among E(0)i ,1 � i � n � k. Take such T�0 and some 1 � i0 � n � k for which T�0 givesthe correct output.Denote by f1; : : : ; fs the testing polynomials along the path in T�0 fol-lowed by the input E. We claim that Yi0 occurs in one of the leading termslm(f1); : : : ; lm(fs) (thereby, Yi0 occurs in lm(f1 � � � fs) = lm(f1) � � � lm(fs),18



see above).Suppose the contrary. Let lm(fl) = Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k , thenmi0 = 0 by the supposition. Then (1) from section 1 implies thatsgn(fl(E(0)i0 )) = sgn(f (n�k)l (0; : : : ; 0| {z }k )) 6= 0 because of the choice of the ori-gin of the coordinates system Z1; : : : ; Zk; Y1; : : : ; Yn�k. By the same tokensgn(fl(E)) = sgn(f (n�k)l (0; : : : ; 0| {z }k )). Therefore, E(0)i0 satis�es all the testsalong the path under consideration in T�0 followed by the input E, hence theoutput of T�0 for the input E(0)i0 is the same as for the input E, so incorrect,that contradicts the choice of i0.b) First we show that E 2 S+. Take any hyperplane Hl = f�1Z1 +: : : + �kZk + �1Y1 + : : : + �n�kYn�k + �0 = 0g, 1 � l � m given by alinear function LHl with the coe�cients �i; �j 2 IR. We need to show thatLHl(E) � 0. Let 0 � j0 � n � k be the uniquely de�ned index such that�0 = : : : = �j0�1 = 0, �j0 6= 0 (if all �0 = : : : = �n�k = 0 then LHl(E) = 0).We prove that �j0 > 0, this would entail that sgn(LHl(E)) = sgn(�j0) > 0.Pick out an arbitrary point vn�j0 = (0; : : : ; 0| {z }k ; y(n�j0)1 ; : : : ; y(n�j0)j0 ; 0; : : : ; 0) 2((Hin \ : : : \ Hij0+1) \ S+) � Hij0 . Then y(n�j0)j0 6= 0, therefore y(n�j0)j0 > 0since vn�j0 2 S+. Hence 0 < sgnLHl(vn�j0) = sgn(�j0 � y(n�j0)j0 ), this impliesthat sgn(�j0) > 0. Thus E 2 S+.Notice that the pointsE(+)i = (0; : : : ; 0; "k+3; : : : ; "k+i+1;�"k+i+2; "k+i+3; : : : ; "n+2) 62 S+, 1 � i �n� k.The rest of the proof is similar as in a), with replacing the role of thepoints E(0)i by E(+)i . In a similar way if mi0 = 0 then sgn(fl(E(+)i0 )) =sgn(f (n�k)l (0; : : : ; 0| {z }k )) = sgn(fl(E)) 6= 0 again because of (1) from section 1.Lemma 1 is proved.An analogue of lemma 2 from [GKMS96] is the following lemma.Lemma 2: Let S = S or S = S+ satisfy the condition 2. of the the-19



orem. Assume that CT T 0 for some constant c > 0, satis�es the inequalityV ar(�)(T 0) � c(1 � c1)n for at least M dc1ne-faces � of S. Then the deptht of T 0 ful�ls either t � 
(n logm) or M � O(3tm(1�c+c3+�)(1�c1)n), where aconstant � > 0 could be made as close to zero as desired.The proof of lemma 2 di�ers from the proof of the analogous lemma 2 from[GKMS96] proved for d-decision trees, in which the degrees of the testingpolynomials do not exceed d, rather than computation trees (considered inthe present paper), in which the degrees of the testing polynomials could beexponential in the depth t of CT. Therefore the main tool in the proof oflemma 2 is the lower bound on the border complexity from the proposition(see section 1).Before proving lemma 2 we show how to deduce the theorem from lemmas1 and 2. Consider RCT fT�g recognizing S with error probability 
 < 12 .Denote k = dc1ne. Lemma 1, condition 1. of the theorem and counting implythe existence of T�0 such that the inequality V ar(�)(T�0) � (1�2
)2(n�k) istrue for M = 1�2
2(1�
)
(mc2n) k-faces � of S. Apply lemma 2 to CT T 0 = T�0with c = (1 � 2
)2. If t � 
(n logm) the theorem is proved, else sincethe error probability 
 could be made a positive constant as close to zero asdesired at the expence of increasing by a constant factor the depth of RCT[M85a,c], take 
 such that (1 � c + �) < c2�c3(1�c1)1�c1 . Then lemma 2 entailsthat t � 
(n logm), which proves the theorem. Thus, it remains to provelemma 2.Proof of lemma 2: To each k-face � of S satisfying the inequalityV ar(�)(T 0) � c(n � k), we correspond a path in T 0 with the testing poly-nomials f1; : : : ; fs 2 IR[X1; : : : ; Xn] such that V ar(�)(f1 � � �fs) � V ar(�)(T 0).Denote f = f1 � � � fs. Consider a canonical representation of � by a 
ag (seeabove) Hin�k � Hin�k \Hin�k�1 � : : : � Hin�k \ : : : \Hi1 = �Fix this path of T 0 for the time being and consider all k-faces � to which20



corresponds this path. We arrange the representing 
ags of all these k-facesin a tree T which we call the tree of 
ags (cf. the proof of lemma 2 from[GKMS96]). T has a root with the zero level, each its path has the samelength n� k (such trees are called regular), some of its vertices are labeled.We construct T by induction on the level of its vertices. The base of induc-tion. For each k-face � to which corresponds the �xed path of T 0, construct avertex, being a son of the root of T , and to this vertex (of level 1) attach thehyperplane Hin�k (we utilize inroduced above notations). Thus, to di�erentsons of the root di�erent hyperplanes are attached. We label the constructedvertex if and only if Yn�kjf (the latter means that the linear function or thevariable Yn�k gives a contribution into V ar(�)(f)). Besides, we assign to theconstructed vertex the polynomial f (1) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�1] (seesection 1).Now assume by induction on l that l < n � k levels of T are alreadyconstructed. Consider any vertex v of T at l-th level. To the vertex v leadsthe partially labeled path (from the root), to whose vertices the beginningelements of a 
ag are attached successively:Hin�k � Hin�k \Hin�k�1 � : : : � Hin�k \ : : : \Hin�k�l+1 = �1 (4)Finally, the polynomial f (l) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�l] is assigned to thevertex v. Recall (see section 1) that f (l) is de�ned on (n � l)-plane �1.Besides, v is either labeled or not labeled.Thus, to di�erent vertices at the level l are attached the di�erent begin-nings of 
ags.At the inductive step we construct the sons of v. Namely, for any k-face �with the same beginning (4) of its representing 
ag consider the next elementof its 
ag, let it be �1\Hin�k�l . Construct a son of v to which we attach �1\Hin�k�l and assign the polynomial f (l+1) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�l�1].We label this vertex if and only if Yn�k�ljf (l) (recall that due to the main-tainance property, see section 1, the latter condition means that the linearform or the variable Yn�k�l gives a contribution into V ar(�)(f)).21



This completes the inductive construction of T . The leaves (or paths)of T correspond bijectively to k-faces of S to which the �xed path of T 0corresponds. To each leaf (or path) of T which corresponds to k-face � the
ag representing � Hin�k � Hin�k \Hin�k�1 � : : : � Hin�k \ : : : \Hi1 = � isattached along the path (which is partially labeled).Now we proceed to estimating the number of leaves of T . For a vertexv consider all its labeled sons (we utilize the introduced above notations).Each labeled son corresponds to a hyperplane Hi such that the linear func-tion L�1\Hijf (l), where L�1\Hi is a certain linear function on (n� l)-plane �1with the zero set �1 \ Hi, being a hyperplane in �1, and to di�erent sonscorrespond di�erent hyperplanes �1 \Hi. Consider the family H of all suchhyperplanes Hi. First assume that it contains at leastmc3 hyperplanes. Thenthe condition 2. of the theorem implies that the number of the connectedcomponents b = B(�1)0 (fHi \ �1gHi2H) of the complement in �1 of the ar-rangement SHi2H(Hi \ �1) is greater than 
(mc4n). On the other hand theproposition (see section 1) entails that b � 2O(s+n�l) � 2O(s+n), taking intoaccount that the complexity C(f) = C(f1 � � � fs) � 2s� 1. This provides thelower bound on the depth of T 0, namely, t � s � 
(n logm), that proveslemma 2. Thus, we can assume that any vertex v of T has less than mc3labeled sons. Besides the labeled sons, each vertex could have at most munlabeled sons. Furthermore, due to the maintenance property, along eachpath of T at least c(1 � c1)n vertices are labeled (see the inductive stepabove).To estimate the number of leaves in T introduce an auxiliary magnitudeM(R;Q) to be the maximal possible number of the leaves in a regular tree(actually, we could stick with subtrees of T , so they are partially labeled)with the length of any path equal to R and with at most Q unlabeled verticesalong the path. One can assume w.l.o.g. that Q � R � m (if Q > R thenset M(R;Q) = 0, the inequality R � m holds since we consider the subtreesof T , and to each path of T a 
ag of the length at most m is attached).22



Considering such a tree and its subtrees with the roots being the sons (bothunlabeled and labeled) of the root of the tree, we get the following inductiveinequality: M(R;Q) � m �M(R � 1; Q� 1) +mc3M(R � 1; Q)For the base of induction, obviously M(0; 0) = 1. By induction on R weobtain the bound M(R;Q) � � �mQ � m(c3+�1)R for arbitrary �1 > 0 and asuitable � > 0.Substituting R = n � dc1ne, Q = (1 � c)(n � dc1ne), we conclude thatthe number of the leaves of T is less than O(m(1�c)(1�c1)n+(c3+�)(1�c1)n) forarbitrary � > 0.To complete the proof of lemma 2 it remains to notice that the tree of
ags T was constructed for a �xed path of CT T 0; there are at most 3tpaths of T 0. On the other hand, every k-face � of S, satisfying the inequalityV ar(�)(T 0) � c(1 � c1)n, corresponds to one of the leaves of a tree of 
agsconstructed for one of the paths of T 0. Hence the number of such k-facesM � O(3t �m(1�c+c3+�)(1�c1)n).3 Quadratic complexity lower bound forRCTs solving the restricted integer pro-grammingThe restricted integer programming is the arrangementLn;j = [a2f0;:::;j�1gn faX = 1g � IRnof m = jn hyperplanes for some j � 2 (see e.g. [M85b]). For j = 2 Ln;2 isthe knapsack problem.As an application of the theorem we prove the following corollary.23



Corollary: For any RCT solving the restricted integer programmingLn;j, its depth is greater than 
(n2 log j).To check the conditions 1., 2. of the theorem �rst take 34 < c1 < 1. Anyk = dc1ne-face � of Ln;j can be given by n�k linear equations g1; : : : ; gn�k ofthe form aX = 1 from Ln;j. If other linear equations g01; : : : ; g0n�k fromthe family Ln;j give the same k-face � then their linear hulls coincide:L(g1; : : : ; gn�k) = L(g01; : : : ; g0n�k).Take a prime j � p < 2j. Let us show that the linear hull L(g1; : : : ; gn�k)contains at most pn�k linear equations from the family Ln;j. Consider thelinear equations from (L(g1; : : : ; gn�k) \ Ln;j) mod p (we treat the linearequations as their vectors of the coe�cients). Then the results are pairwisedistinct vectors, they constitute a family F � IFn+1p , choose among the ele-ments from F a basis over IFp, it contains at most n�k elements (otherwise,the preimages of F prior taking modp would be linear independent as well).All the vectors from F are the linear combinations over IFp of the elements ofthe basis, therefore, F contains at most pn�k elements, thus the cardinalityjL(g1; : : : ; gn�k) \ Ln;jj = jFj � pn�k.Any (n� k)-tuple of the linearly independent linear equations from Ln;jprovides a k-face. Therefore, any k-face is provided by less or equal to pn�kn� k! � p(n�k)2 � (2j � 1)(n�k)2number of (n � k)-tuples because of the shown above. On the other hand,denote by Il, 1 � l � n the number of linearly independent l-tuples fromLn;j. Obviously, I1 = jn � 1. By induction on l for l � n � 1 we haveIl+1 � Il(jn�pl)l+1 again because of the shown above. Hence,Il � (jn � 1)(jn � p)(jn � p2) � � � (jn � pl�1) 1l! >(jn � 1)(jn � 2j)(jn � (2j)2) � � � (jn � (2j)l�1) 1l! >jnl  1� 1 + (2j) + (2j)2 + � � �+ (2j)l�1jn ! 1l! =24



jnl  1� (2j)l � 1(2j � 1)jn! 1l!If l � n2 we have (2j)l�1(2j�1)jn � 13 , i.e. Il > 
( jnll! ). Substituting l = n � k, weconclude that the number of k-faces �k(Ln;j) is greater than
 j(1�c1��1)n2(2j)(1�c1)2n2! � 
 �j((1�c1)(2c1�1)��1)n2�for arbitrary �1 > 0. Thus, to satisfy the condition 1. in the theorem onecan take c2 = (1� c1)(2c1 � 1)� �1.To justify the condition 2. in the theorem take any k1-face � of Ln;jwhere k1 � k given by n � k1 linear equations g1; : : : ; gn�k1 from Ln;j, andbesides, q � jc3n linear equations h1; : : : ; hq from Ln;j. Take a certain 0 <c5 < 1 which will be speci�ed later. Denote k2 = dc5ne. There are � qk2� �
(jc5(c3��)n2) k2-tuples from h1; : : : ; hq for arbitrary � > 0. If two k2-tupleshi1 ; : : : ; hik2 and hl1 ; : : : ; hlk2 give the same face in � (i.e. a face of Ln;j, beinga subset of �), the linear hulls coincide:L(g1; : : : ; gn�k1; hi1 ; : : : ; hik2 ) = L(g1; : : : ; gn�k1; hl1 ; : : : ; hlk2 )(cf. above). Therefore, for any face in � there are at most �pn�k1+k2k2 � �(2j)c5(n�k1+c5n)n such k2-tuples (since the latter linear hull contains atmost pn�k1+k2 linear equations from Ln;j, see above). Furthermore,(2j)c5(n�k1+c5n)n � j2c5(1�c1+c5)n2 . Thus, the number of faces in �of the subarrangement S(�) = S1�i�q(� \ fhi = 0g) is greater than
 �jc5(c3���2+2c1�2c5)n2�.Now take c3 = 12 , then the requirement c3(1�c1) < c2 is ful�lled for smallenough �1 > 0. Since c3 � 2 + 2c1 > 0, one could choose c5 > 0 and � > 0small enough to provide c04 = c5(c3 � � � 2 + 2c1 � 2c5) > 0.Thus, we have proved so far that the number of faces in � in the subar-rangement S(�) is greater than 
(jc04n2). Take any 0 < c4 < c04. The requiredbound 2. of the theorem on the number of the connected components of the25



complement in � of the subarrangement S(�) B(�)0 (�\fh1 = 0g; : : : ;�\fhq =0g) � 
(jc4n2) (and thereby the corollary) follows from the following generalremark (this can be deduced also from [B92], but for the sake of selfcontainesswe give a short and elementary proof of it).Remark: For any arrangement S = S1�i�mHi � IRn and 0 � k � n� 1the number of k-faces in the arrangement �k(S) < B0(H1; : : : ; Hm).Proof: Intersecting S with a generic (n�k)-plane, we reduce the remarkto the case k = 0.Thus k = 0. Choose a generic hyperplane H and shift it parallel toitself. When it contains a vertex v of S we show that there \appears" a new(in other words, not yet swept) connected component of the complementIRn � S with a vertex v and situated completely on one side of H. Indeed,let v = T1�j�nHij for some Hi1; : : : ; Hin. Take the coordinates system withthe coordinate hyperplanes Hi1 ; : : : ; Hin. Let H have an equation in thesecoordinates �1X1+� � �+�nXn = 0, each �i 6= 0, 1 � i � n, sinceH is generic.Then the \orthant" f�iXi � 0; 1 � i � ng (which is situated completely onone side of H) contains a connected component of the complement IRn � Swith a vertex in v.So, to each vertex v of S corresponds a connected component of thecomplement IRn � S. In addition, to the �rst (in the order of shifting H)vertex v1 corresponds also at least one more connected component situatedin the \orthant" f�iXi � 0; 1 � i � ng (so on the other side of H) with avertex in v1, this implies the strict inequality in the remark.4 Lower bound on the complexity of deter-ministic computation treesFor CT T 0 which recognizes either an arrangement S = S or a polyhedronS = S+ given by the hyperplanes H1; : : : ; Hm, we can give the similar com-26



plexity lower bound 
(logN) as in the theorem, where N is the number ofk-faces of S, without the restriction N � m
(n) imposed in the theorem.Theorem 2: Let CT T 0 with the depth t recognize S with N k-faces,and S satisfy the following condition. For any k1-face � of S with k1 � kand any subset Hi1 ; : : : ; His with s � N c3=(n�k) for a certain c3 < 1 such thatthe planes Hi1 \ �; : : : ; His \ � are pairwise distinct from �, the number ofconnected componets of the complement in � of the arrangement B(�)0 (Hi1 \�; : : : ; His \ �) � N c4 for a suitable c4 > 0. Then t � 
(logN).The proof follows the proof of the theorem with considerable simpli�ca-tions. Namely, in lemma 1 one states that V ar(�)(T 0) = n � k. In lemma 2we have either the bound 2t � N
(c4) or the bound N � 3tN c3 due to theestimation M(n� k; 0) � N c3 .Notice that the Theorem 2 in case of an arrangement S = S followsfrom [SY82], [B83] without the condition in the Theorem 2. In case of apolyhedron S = S+ a weaker complexity lower bound 
(logN= log logN)was proved in Theorem 2 from [GKV96] without the condition of Theorem2.5 Open ProblemWe were not able to prove any superlinear lower bound or a linear upperbound on the Element Distinctness(cf. [M85a], [GKMS96]) for randomizedcomputational trees. Note that the corresponding lower bound for random-ized decision trees is 
(n logn), [GKMS96].AcknowledgementWe thank Friedhelm Meyer auf der Heide, Volker Strassen, and Andy Yaofor many stimulating discussions. 27
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