The Interpolation Problem for k-Sparse Sums of Eigenfunctions of Operators

Dima Yu. Grigoriev
Leningrad Department of the V. A. Steklov Mathematical Institute of the Academy of Sciences of the USSR, Fontanka 27, Leningrad 191011, USSR
Marek Karpinski*
Department of Computer Science, University of Bonn, 5300 Bonn 1, Federal Republic of Germany
AND
Michael F. Singer ${ }^{\dagger}$
Department of Mathematics, Box 8205, North Carolina State University, Raleigh, North Carolina 27695

In [DG 89], the authors show that many results concerning the problem of efficient interpolation of k-sparse multivariate polynomials can be formulated and proved in the general setting of k-sparse sums of characters of abelian monoids. In this note we describe another conceptual framework for the interpolation problem. In this framework, we consider R-algebras of functions $\mathscr{A}_{1}, \ldots, \mathscr{A}_{n}$ on an integral domain R, together with R-linear operators $\mathscr{\mathscr { i }}_{i}: \mathscr{A}_{i} \rightarrow \mathscr{A}_{i}$. We then consider functions f from R^{n} to R that can be expressed as the sum of k terms, each term being an R-multiple of an n-fold product $f_{1}\left(x_{1}\right) \cdots \cdot f_{n}\left(x_{n}\right)$, where each f_{i} is an eigenfunction for \mathscr{D}_{i}. We show how these functions can be thought of as k-sums of characters on an associated abelian monoid. This allows one to use the results of [DG 89] to solve interpolation problems for k-sparse sums of functions which, at first glance, do not seem to be characters.
Let $R, \mathscr{A}_{1}, \ldots, \mathscr{A}_{n}$, and $\mathscr{D}_{1}, \ldots, \mathscr{D}_{n}$ be as above. For each $\lambda \in R$ and $1 \leq i \leq n$, define the λ-eigenspace $\mathscr{A}_{i}^{\lambda}$ of \mathscr{D}_{i} by

$$
\mathscr{A}_{i}^{\lambda}=\left\{f \in \mathscr{A}_{i} \mid \mathscr{D}_{i} f=\lambda f\right\} .
$$

[^0]For every $1 \leq i \leq n$ we fix some subset $S_{i} \subset R$. Furthermore, we suppose that
(a) for each $i, 1 \leq i \leq n$, and each $\lambda \in S_{i}$, we are given an eigenfunction $0 \neq f_{i}^{\lambda} \in \mathscr{A}_{i}^{\lambda}$ such that $\mathscr{X}_{i}^{\lambda}=R f_{i}^{\lambda}$, and,
(b) a point $a_{0} \in R$ is given such that for each $i, 1 \leq i \leq n$, and each $\lambda \in S_{i}$, we have $f_{i}^{\lambda}\left(a_{0}\right) \neq 0$.
Let X_{1}, \ldots, X_{n} be variables and let \mathscr{A} be the R-algebra of functions from R^{n} to R generated by products of the form $g_{1}\left(X_{1}\right) \cdots \cdots g_{n}\left(X_{n}\right)$, where $g_{i} \in \mathscr{A}_{i}, 1 \leq i \leq n$. We can extend the operators \mathscr{D}_{i} to operators on \mathscr{A} (which we denote again by \mathscr{D}_{i}) by setting

$$
\begin{aligned}
& \mathscr{\mathscr { O }}_{i}\left(g_{1}\left(X_{1}\right) \cdots g_{n}\left(X_{n}\right)\right) \\
& \quad=g_{1}\left(X_{1}\right) \cdots \cdots g_{i-1}\left(X_{i-1}\right)\left(\mathscr{D}_{i} g_{i}\right)\left(X_{i}\right) g_{i+1}\left(X_{i+1}\right) \cdots g_{n}\left(X_{n}\right) .
\end{aligned}
$$

For all integer $k \geq 1$, we say that a function $f \in \mathscr{A}$ is k-sparse (with respect to $\mathscr{D}_{1}, \ldots, \mathscr{D}_{n}$ and S_{1}, \ldots, S_{n}) if $f=\Sigma_{1 \leq j \leq k} c_{j} f_{j}$, where $c_{j} \in R$ and each $f_{j}=\prod_{1 \leq i \leq n} f_{i}^{\lambda_{i, j}}\left(X_{i}\right)$ for some $\lambda^{i, j} \in S_{i}$. Consider the following examples:
Example 1. Let $R=\mathbb{Z}$, the integers, and, for each $i, 1 \leq i \leq n$, let $\mathscr{A}_{i} \subset \mathbb{Q}[X]$ consists of all polynomials with rational coefficients that map the integers to the integers. For $1 \leq i \leq n$, set $\mathscr{D}_{i}=X \Delta$, where $(\Delta f)=$ $f(X)-f(X-1)$ and let $S_{i}=\mathbb{Z}_{z 0}$, the non-negative integers. For each $\lambda \in S_{i}$ we can take $f_{i}^{\lambda}=\binom{x}{\lambda}=(X(X-1) \cdots \cdot(X-\lambda+1)) / \lambda!$. Note that $f_{i}^{0}=1$. Finally, let $a_{0}=-1$. In this case

$$
\mathscr{A}=\left\{f \left\lvert\, f=\sum_{\Lambda} c_{\Lambda}\binom{X_{1}}{\lambda_{1}} \cdots \cdot\binom{X_{n}}{\lambda_{n}}\right.\right\},
$$

where this sum is over a finite set of $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right), \lambda_{i} \in S_{i}$, and $c_{\Lambda} \in \mathbb{Z}$. One can show that \mathscr{A} coincides with the subring of $\mathbb{Q}\left[X_{1}, \ldots, X_{n}\right]$ consisting of all polynomials mapping $\mathbb{Z}^{n} \rightarrow \mathbb{Z}$ (for $n=1$, this can be found in [S 65]; one can prove the result for $n>1$ using the ideas in [S 65] and double induction, first on n and then on the degree of a polynomial in X_{n}).

Example 2. Let R be an integral domain with $\mathbb{Z} \subset R$ and for each i, let $\mathscr{A}_{i}=R[X]$. Let p_{1}, \ldots, p_{n} be pairwise distinct primes, let $\left(\mathscr{D}_{i} f\right)(X)=$ $f\left(p_{i} X\right)$ for $f \in \mathscr{A}_{i}$ and let $a_{0}=1$. For each $i, 1 \leq i \leq n$, let $S_{i}=\left\{p_{i}^{j} \mid j \in\right.$ $\left.\mathbb{Z}_{20}\right\}$ and let $f_{i}^{p_{i}^{j}}=X^{j}$. In this case $\mathscr{A}=R\left[X_{1}, \ldots, X_{n}\right]$ and k-sparse functions correspond to k-sparse polynomials.

Example 3. Let $R=\mathbb{C}$, the complex numbers and let $\mathscr{A}_{i}=R\left[e^{X}, e^{-X}\right]$ for each $i, 1 \leq i \leq n$. For each $i, 1 \leq i \leq n$, set $\mathscr{D}_{i}=d / d X$ and let $S_{i}=\mathbb{Z}$. For each $0 \neq \lambda \in S_{i}$, we can take $f_{i}^{\lambda}=e^{\lambda X}$ and let $a_{0}=0$. In this case

$$
\mathscr{A}=\left\{f \mid f=\sum_{\Lambda} c_{\Lambda} e^{\lambda_{1} X_{1}+\cdots+\lambda_{n} X_{n}}\right\}
$$

where this sum is over a finite set of Λ in \mathbb{Z}^{n} and $c_{\Lambda} \in \mathbb{Z}$; that is, \mathscr{A} is the set of finite fourier series. A similar example can be constructed over \mathbb{R}, the real numbers.

Example 4. One can combine Examples 2 and 3. Let $n=2$. Let $\mathscr{A}_{1}=R[X]$ with $\mathscr{D}_{1}=p_{1} X$ as in Example 2 and let $\mathscr{A}_{2}=R\left[e^{X}, e^{-X}\right]$ with $\mathscr{D}_{2}=d / d X$. Let $S_{1}=\left\{p_{1}^{j} \mid j \in \mathbb{Z}_{\geq 0}\right\}, f_{1}^{p_{i}^{j}}=X^{j}$, and $S_{2}=\mathbb{Z}, f_{2}^{\lambda}=e^{\lambda X}$. In this case,

$$
\mathscr{A}=\left\{f \mid f=\sum c_{i, j} X_{1}^{i} e^{j X_{2}}\right\}
$$

where the sum is over a finite subset of $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$.
Example 5. Let A be an infinite cyclic monoid generated by a and let K be a field. Let $R=K[A]=\left\{r \mid r=\sum_{i \geq 0} c_{i} a^{i}\right\}$, where the sum is finite and $c_{i} \in K$. With the obvious addition and multiplication, R is an integral domain. If χ is a character on A, then χ defines a function on R satisfying $\chi\left(\sum c_{i} a^{i}\right)=\sum c_{i} \chi\left(a^{i}\right)$. Let $n=1$ and let $\mathscr{A}_{1}=\left\{f \mid f=\sum d_{j} \chi_{j}\right.$ where χ_{j} is a character of A and $\left.d_{j} \in K\right\}$. For $f=\Sigma d_{j} \chi_{j} \in \mathscr{A}$, and $r \in R$, we let $f(r)=\sum d_{j} \chi_{j}(r)$. In this way \mathscr{A} is an R-algebra of functions on R. Let $\left(\mathscr{D}_{1} f\right)(\chi)=f(a \chi)$ and $S_{1}=K-\{0\}$. For each $\lambda \in S_{1}$ we may take f_{1}^{λ} to be the character defined by $f_{1}^{\lambda}(a)=\lambda$. Finally, we let $a_{0}=a^{0}$. In this case $\mathscr{A}=\mathscr{A}_{1}$, and k-sparse functions correspond to k-sums of characters (cf. [DG 89 , Introduction]).

We now return to the general situation. We are interested in computational questions involving k-sparse functions in \mathscr{A}. We assume that a function $f \in \mathscr{A}$ is given by a black box that allows us to calculate $f\left(a_{0}, \ldots, a_{0}\right)$ and $\left(\mathscr{D}_{i}^{j} f\right)\left(a_{0}, \ldots, a_{0}\right)$ for $1 \leq i \leq n$ and all $j \geq 1\left(\mathscr{D}_{i}^{j} f=\right.$ $\mathscr{D}_{i}\left(\mathscr{D}_{i}\left(\cdots\left(\mathscr{D}_{i} f\right) \cdots\right)\right.$, where \mathscr{D}_{i} is iterated j times $)$. In Example 1, this is equivalent to being able to calculate $f\left(-m_{1}, \ldots,-m_{n}\right)$ for all $m_{i} \in \mathbb{Z}>0$. In Example 2, this means we can calculate $f\left(p_{1}^{m_{1}}, \ldots, p_{n}^{m_{n}}\right)$ for all $m_{i} \in$ $\mathbb{Z}_{>0}$. In these two examples our assumption would be satisfied if we had black boxes to calculate the values of f in \mathbb{Z}^{n}. In Example 3, our assumption implies that we can calculate ($\left.\partial^{m_{1}+\cdots+m_{n}} f / \partial X_{1}^{m_{1}} \cdots \partial X_{n}^{m_{n}}\right)(0)$ for all $m_{i} \in \mathbb{Z}_{>0}$. In general we shall show that the techniques of [DG 89] can be used to decide, given a black box (as above) for a k-sparse function
$f \in \mathscr{A}$, if f is identically zero and to interpolate this function, i.e., to find the $\lambda_{i, j}$ and c_{j}. To do this we must interpret f as a k-sparse sum of monomial characters on a monoid.

Let A be the subalgebra of the algebra of R-endomorphisms of \mathscr{A}, $\operatorname{END}_{R}(\mathscr{A})$, generated over R by $\mathscr{D}_{1}, \ldots \mathscr{D}_{n}$. We consider A as a multiplicative monoid. Let F be the quotient field of R. Each element $f \in \mathscr{A}$ yields a function \tilde{f} on A defined by

$$
\tilde{f}\left(\sum r_{J} \mathscr{D}_{1}^{j_{1}}, \ldots, \mathscr{D}_{n}^{j_{n}}\right)=\sum r_{J}\left(\mathscr{D}_{1}^{j_{1}}, \ldots, \mathscr{D}_{n}^{j_{n}} f\right)\left(a_{0}\right) .
$$

Note that $\tilde{f}_{i}^{\lambda}\left(\mathscr{D}_{i}\right)=\left(\mathscr{D}_{i} f_{i}^{\lambda}\right)\left(a_{0}\right)=\lambda f_{i}^{\lambda}\left(a_{0}\right)$ and $\tilde{f_{i}^{\lambda}}\left(\mathscr{D}_{j}\right)=0$ if $i \neq j$. If $f \in \mathscr{A}$ satisfies $f\left(a_{0}\right) \neq 0$, we define

$$
\hat{f}=\frac{1}{f\left(a_{0}\right)} \tilde{f}
$$

If $f=f_{i}^{\lambda}$, then one sees that $\hat{f_{i}^{\lambda}}\left(\mathscr{D}_{i}\right)=\lambda, \hat{f_{i}}\left(\mathscr{D}_{j}\right)=0$ if $i \neq j$, and $\hat{f_{i}}(1)=$ 1 , so \hat{f}_{i}^{λ} is an F-valued character of A. Note that distinct values of λ yield distinct characters.

A k-sparse

$$
f=\sum_{1 \leq j \leq k} c_{j} \prod_{1 \leq i \leq n} f_{i}^{\lambda_{i, j}}
$$

on \mathscr{A} corresponds to a k-sparse sum of monomial characters

$$
\tilde{f}=\sum_{1 \leq j \leq k} c_{j}\left(\prod_{1 \leq i \leq n} f_{i}^{\lambda_{i, j}}\left(a_{0}\right)\right) \prod_{1 \leq i \leq n} \hat{f}_{i}^{\lambda_{i, j}}
$$

on A. Therefore deciding if f is identically zero and interpolating are equivalent to the same problems for \tilde{f}. Note that if f and g both belong to $\mathscr{X}_{i}^{\lambda}$, then $\hat{f}=\hat{g}$. Because of this, we have restricted $\mathscr{X}_{i}^{\lambda}$ (in condition (a) above) to be a cyclic R-module. Without this restriction we could not recover a k-sparse representation of f from \tilde{f}.

In Example 2, the submonoid U of A generated by $\mathscr{D}_{1}, \ldots \mathscr{D}_{n}$ is abelian of rank n, so the comments in the second paragraph of Section 2 of [DG 89] apply and we can conclude that we can reduce to a cyclic monoid. In general, we cannot guarantee the existence of such a submonoid of A but we can guarantee the existence of k-distinction sets for the set of monomial characters, if the ring R is infinite or contains $\mathrm{GF}\left(p^{\left[\log _{p}\left(s^{2} n / 2\right)\right]}\right)$ if R is finite of characteristic $p \neq 0$ (cf. [GKS 89; DG 89]).

Lemma. For any k, n, one can construct vectors $\Omega_{1}, \ldots, \Omega_{t_{0}}$, in R^{n} with $t_{0}=\left[k^{2} n / 2\right]$, such that for any vectors $\Lambda_{1}, \ldots, \Lambda_{k} \in R^{n}$ there exists $a j$, $1 \leq j \leq t_{0}$, for which $\Lambda_{l} \cdot \Omega_{j} \neq \Lambda_{r} \cdot \Omega_{j}$ for all $1 \leq l<r \leq k$. Furthermore, if $\operatorname{char}(R)=0$ then the entries of $\Omega_{1}, \ldots, \Omega_{t_{0}}$ can be natural numbers less than $k^{2} n$. If $\operatorname{char}(R)=p$ and $\operatorname{GF}\left(p^{\left[\log _{p}\left(k^{p_{n}^{0}} / 2\right) \mid\right.}\right) \subset R$ then the entries of $\Omega_{1}, \ldots, \Omega_{t_{0}}$ can be chosen from $\operatorname{GF}\left(p^{\left[\log _{p}\left(k^{2} n / 2\right)\right]}\right)$.

Proof. Consider first the case char $(R)=0$. Let q be a prime number with $\left\lceil k^{2} n / 2\right\rceil \leq q \leq k^{2} n$ (which exists by Bertrand's postulate) and define an integer matrix

$$
\Omega=\left(\omega_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq t_{0}}
$$

where $0 \leq \omega_{i j} \leq q$ and such that $\omega_{i j} \equiv j^{i}(\bmod q)$. Note that each $n \times n$ submatrix of Ω is nonsingular because such a matrix is a Vandermonde matrix $\bmod q$. As $\Omega_{1}, \ldots, \Omega_{t_{0}}$ we can take the elements of Ω. For each pair $1 \leq l<r \leq s$, there exist at most $(n-1)$ vectors among $\Omega_{1}, \ldots, \Omega_{t_{0}}$ which are orthogonal to ($\Lambda_{l}-\Lambda_{r}$). Therefore, among $\Omega_{1}, \ldots, \Omega_{t_{0}}$ one can find a vector not orthogonal to all the differences $\Lambda_{l}-\Lambda_{r}$ (cf. Lemma 2.3 [DG 89]).
If $\operatorname{char}(R)=p$, the proof is similar using the matrix

$$
\left(\alpha_{j}^{i}\right)_{1 \leq i \leq n, 1 \leq j \leq t_{0}}
$$

where $\alpha_{j} \in R$ are pairwise distinct. If $\mathrm{GF}\left(p^{\log _{g}\left(k^{2} n / 2\right) \mid}\right) \subset R$ we can chose α_{j} from the latter field.

From this lemma, we see that the elements $D_{1}, \ldots, D_{t_{0}}$, where

$$
D_{i}=\sum_{j=1}^{n} \omega_{i j} \mathscr{D}_{j},
$$

form a k-distinction set. Therefore one can use the techniques of Section 1 of [DG 89] to develop zero testing and interpolation algorithms in our setting. Conversely, Example 5 shows that results developed in this setting can be transferred to results about characters on infinite cycle monoids. For example, in Example 3, the matrix M_{k} of Theorem 1 of [DG 89] arises naturally as a Wronskian matrix associated with solutions of a linear differential equation. This observation perhaps explains the somewhat mysterious appearance of ideas from BCH codes in this subject.

References

[DG 89] A. Dress and J. Grabmeier, The interpolation problem for k-sparse polynomials and character sums, Adv. Appl. Math., 12 (1991), 57-75.
[GKS 88] D. Yu. Grigoriev, M. Karpinski and M. Singer, "Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields," University of Bonn, Research Report No. 8523-CS, 1988.
[S 65] J. P. Serre, "Algèbre Local-Multiplicités, Lecture Notes in Mathematics, Vol. 11, Springer-Verlag, New York, 1965.

[^0]: *Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.
 ${ }^{\dagger}$ Supported in part by NSF Grant DMS-8803109.

