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In [DG 891, the authors show that many results concerning the problem 
of efficient interpolation of k-sparse multivariate polynomials can be 
formulated and proved in the general setting of k-sparse sums of charac- 
ters of abelian monoids. In this note we describe another conceptual 
framework for the interpolation problem. In this framework, we consider 
R-algebras of functions &i, . . . , &” on an integral domain R, together 
with R-linear operators .LSi: 4 + 4. We then consider functions f from 
R” to R that can be expressed as the sum of k terms, each term being an 
R-multiple of an n-fold product f&xi) . * * . *f&J, where each fi is an 
eigenfunction for ~3~. We show how these functions can be thought of as 
k-sums of characters on an associated abelian monoid. This allows one to 
use the results of [DG 891 to solve interpolation problems for k-sparse 
sums of functions which, at first glance, do not seem to be characters. 

Let R, &‘i, . . . , JZ&, and LSi,. . . , g,, be as above. For each A E R and 
1 I i I n, define the A-eigenspace g^ of Bi by 

Lxty = (fE A22g.!qf= hf]. 
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For every 1 5 i I II we fix some subset Sj c R. Furthermore, we suppose 
that 

(a) for each i, 1 I i I n, and each A E Si, we are given an eigenfunc- 
tion 0 # fi^ E 4” such that 4^ = Rfi", and, 

(b) a point a, E R is given such that for each i, 1 I i I II, and each 
A E Si, we have fYao) # 0. 

Let Xi,. . . , X,, be variables and let & be the R-algebra of functions 
from R" to R generated by products of the form gi(X,) * * *. . g,(X,), 
where gi E 4, 1 I i I IZ. We can extend the operators -?Bi to operators 
on ~2 (which we denote again by gi) by setting 

For all integer k 2 1, we say that a function f E ti is k-sparse (with 
respect to 9r,. . . , gn and S,, . . . , S,) if f = C, s jskcjf;, where ci E R 
and each fj = n, sisnf>~.j(Xi) for some Ais’ E Si. Consider the following 
examples: 

EXAMPLE 1. Let R = Z, the integers, and, for each i, 1 < i 5 n, let 
4 c O[X] consists of all polynomials with rational coefficients that map 
the integers to the integers. For 1 I i 5 n, set gi = XA, where (Af) = 
f(X) - f(X - 1) and let Si = Z ;rO, the non-negative integers. For each 
A E Si we can take A” = (f) = (X(X - 1) . . * * * (X - A + l))/A!. Note 
that fi* = 1. Finally, let a0 = - 1. In this case 

where this sum is over a finite set of A = (A,, . . . , A,,), Ai E Si, and 
cA E Z. One can show that ~2 coincides with the subring of Q[ Xi, . . . , X,1 
consisting of all polynomials mapping Z” -+ Z (for n = 1, this can be 
found in [S 651; one can prove the result for it > 1 using the ideas in [S 651 
and double induction, first on n and then on the degree of a polynomial in 
XJ. 

EXAMPLE 2. Let R be an integral domain with Z c R and for each i, 
let 4 = R[Xl. L&p,,..., p,, be pair-wise distinct primes, let (gifXX) = 
f(piX) for f E 4, and let a, = 1. For each i, 1 < i s n, let Si = {~#lj E 
Z ~ *] and let fJ’: = Xj. In this case &‘= R[ Xi,. . . , X,] and k-sparse 
functions correspond to k-sparse polynomials. 
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EXAMPLE 3. Let R = C, the complex numbers and let 4 = R[eX, eeX] 
for each i, 1 I i s IZ. For each i, 1 5 i I rr, set gi = d/dX and let 
Si = Z. For each 0 # A E Si, we can take f: = eAX and let a, = 0. In this 
case 

where this sum is over a finite set of A in Z” and c* E 77; that is, ~2 is the 
set of finite fourier series. A similar example can be constructed over IF!, 
the real numbers. 

EXAMPLE 4. One can combine Examples 2 and 3. Let II = 2. Let 
&‘r = R[X] with Bi = p,X as in Example, 2 and let tiz = R[eX, eeX] 
with .cB2 = d/dX. Let S, = {pilj E Z >,,o), f$ = Xj, and S, = Z, fi = ehX. 
In this case, 

d= {flf = Cci, jXiejx2}, 

where the sum is over a finite subset of h , 0 X Z. - 

EXAMPLE 5. Let A be an infinite cyclic monoid generated by a and let 
K be a field. Let R = K[A] = (rlr = Ci,ociai}, where the sum is finite 
and ci E K. With the obvious addition and multiplication, R is an integral 
domain. If X is a character on A, then X defines a function on R 
satisfying X(Cc,a’> = CC,,Y(U’). Let n = 1 and let .&‘r = {flf = Cdjxj 
where Xj is a character of A and dj E RI. For f = Cdjxj E .M, and 
r E R, we let f(r) = Cdjxj(r). In this way J%’ is an R-algebra of functions 
on R. Let (g,fXX) = f(aX> and S, = K - (0). For each A E S, we may 
take ft to be the character defined by f:(a) = A. Finally, we let a, = u”. 
In this case &= &r, and k-sparse functions correspond to k-sums of 
characters (cf. [DG 89, Introduction]). 

We now return to the general situation. We are interested in computa- 
tional questions involving k-sparse functions in M. We assume that a 
function f E & is given by a black box that allows us to calculate 
f(ao, . * * 7 a,) and (g/fXu,, . . . , a,) for 1 I i 5 n and all j 2 1 <LB/f = 
qq( . * * eq f 1 . * * ), where Si is iterated j times). In Example 1, this is 
equivalent to being able to calculate f(-m,, . . . , - m,) for all mi E Z , o. 
In Example 2, this means we can calculate f(p;ll, . . . , p,“n) for all mi E 
H ,o. In these two examples our assumption would be satisfied if we had 
black boxes to calculate the values of f in Z”. In Example 3, our 
assumption implies that we can calculate (am,+ “. ‘mnf/~X;ll . * . aX:nXO) 
for all mj E Z,,. In general we shall show that the techniques of [DG 891 
can be used to decide, given a black box (as above) for a k-sparse function 
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f E Q?, if f is identically zero and to interpolate this function, i.e., to find 
the hi, j and cj. To do this we must interpret f as a k-sparse sum of 
monomial characters on a monoid. 

Let A be the subalgebra of the algebra of R-endomorphisms of J& 
END,(&), generated over R by gr,. . . gn. We consider A as a multi- 
plicative monoid. Let F be the quotient field of R. Each element f E &’ 
yields a function f on A defined by 

Note that fi(gi) = (QJifiAXa,) = Af~(a,,) and fi(gj) = 0 if i #j. If 
f E & satisfies f(u,> f 0, we define 

A 

f = fh> 
+. 

If f = f>, then one sees that fi(53i) = A, fi(q) = 0 if i # j, and &l) = 
1, so &’ is an F-valued character of A. Note that distinct values of A yield 
distinct characters. 

A k-sparse 

on & corresponds to a k-sparse sum of monomial characters 

on A. Therefore deciding if f is identically zero and interpolating are 
equivalent io the same problems for f: Note that if f and g both belong to 
e”, then f = 2. Because of this, we have restricted g^ (in condition (a) 
above) to be a cyclic R-module. Without this restriction we could not 
recover a k-sparse representation of f from f: 

In Example 2, the submonoid U of A generated by gr,. . . g’, is abelian 
of rank II, so the comments in the second paragraph of Section 2 of [DG 
891 apply and we can conclude that we can reduce to a cyclic monoid. In 
general, we cannot guarantee the existence of such a submonoid of A but 
we can guarantee the existence of k-distinction sets for the set of mono- 
mial characters, if the ring R is infinite or contains GF(pnog~(sZn/2)1) if R 
is finite of characteristic p # 0 (cf. [GKS 89; DG 891). 
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LEMMA. For any k, n, one can construct vectors R,, . . . , fiztO, in R” with 
t, = [k2n/21, such that for any vectors A,, . . . , A, E R” there exists a j, 
1 4 j I t,, for which A, * Rj # A, * Rj for all 1 5 1 < r 5 k. Furthermore, 
if char(R) = 0 then the entries of Sz,, . . . , I&o can be natural numbers less 
than k’n. If char(R) = p and GF(p ~‘“g@n/2)1) c R then the entries of 
R 1, . . . , Q. can be chosen from GF(pr1”gp(kzn/2)l). 

Proof: Consider first the case char(R) = 0. Let 4 be a prime number 
with [k*n/21 I 4 I k2n (which exists by Bertrand’s postulate) and define 
an integer matrix 

where 0 5 oij < 9 and such that wij = i’ (mod 41. Note that each n x n 
submatrix of 51 is nonsingular because such a matrix is a Vandermonde 
matrix mod 4. As R,, . . . , a,,, we can take the elements of a. For each 
pair 1 I 1 < r I s, there exist at most (n - 1) vectors among Q,, . . . , RtO 
which are orthogonal to (A, - A,). Therefore, among or,. . . , fit0 one can 
find a vector not orthogonal to all the differences A, - A, (cf. Lemma 2.3 
[DG 891). 

If char(R) = p, the proof is similar using the matrix 

where ‘Ye E R are pairwise distinct. If GF(p~‘og~((kZ”‘2)11 c R we can chose 
czj from the latter field. 0 

From this lemma, we see that the elements D,, . . . , DIO, where 

Di = i wij9$, 
j=l 

form a k-distinction set. Therefore one can use the techniques of Section 
1 of [DG 891 to develop zero testing and interpolation algorithms in our 
setting. Conversely, Example 5 shows that results developed in this setting 
can be transferred to results about characters on infinite cycle monoids. 
For example, in Example 3, the matrix Mk of Theorem 1 of [DG 891 arises 
naturally as a Wronskian matrix associated with solutions of a linear 
differential equation. This observation perhaps explains the somewhat 
mysterious appearance of ideas from BCH codes in this subject. 
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