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Abstract

In this paper, we investigate the problem of finding ¢-sparse shifts for multivariate polynomials.
Given a polynomial f € Flxy,29,...,2,] of degree d, and a positive integer ¢, we consider the
problem of representing f(z) as a K-linear combination of the power products of u; where u; =
z; — b; for some b; € K, an extension of F, for ¢« = 1,...,n, ie, f = 3, F;u%, in which at
most t of the F; are non-zero. We provide sufficient conditions for uniqueness of sparse shifts for
multivariate polynomials, prove tight bounds on the degree of the polynomial being interpolated
in terms of the sparsity bound ¢ and a bound on the size of the coefficients of the polynomial in
the standard representation, and describe two new efficient algorithms for computing sparse shifts
for a multivariate polynomial.
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Introduction

In this paper, we consider the problem of computing ¢-sparse shifts for multivariate polynomials.
Given a polynomial f € Flxzq,23,...,2,] of degree d (where F is a field of characteristic 0), consider
the representation of f(z) as a K-linear combination of the power products of u; where u; = ; — b;
for some b; € K, an extension of F, for ¢« = 1,...,n, i.e., f = >, F;ju® where a; denotes the
multi-index (a1, ajg, ..., 0;,), and v indicates the power product u?ﬂu;ﬂ coun’". Let t be a
positive integer < (d:n). We say that b = (b1,b2,...,b,) is a t-sparse shift for f (or, f is t-sparse
in the shifted basis consisting of the power products of the u;) if at most t of the F; in the above
representation are non-zero (the term “basis” refers to the fact that the power products of the w;
form a F-basis for the polynomial ring Flzy, 23, ..., 24)).

The main problem that we address is: given an f and ¢ as above, can we efficiently compute a
t-sparse shift for f if one exists? We are particularly interested of in the case polynomials that have
rational shifts (each b; € F) and the case of polynomials that have finitely many ¢-sparse shifts.

Recently, there has been much interest in the design of efficient algorithms for computing sparse
representations for various classes of functions such as polynomials, rational functions, and algebraic
functions (Grigoriev-Karpinski 1987, Clausen et al 1988, Ben-Or& Tiwari 1988, Kaltofen-Lakshman
1988, Borodin-Tiwari 1990, Grigoriev-Karpinski-Singer 1990,1991,1992, 1993, 1994, Mansour 1992,
Lakshman-Saunders 1993, 1994). The problem of finding sparsifying invertible linear tranforma-
tions for polynomials in Flzy,2o,...,2,] was first addressed in a recent paper by Grigoriev and
Karpinski (Grigoriev-Karpinski 1992) where they provide an algebraic criterion to be satisfied by
any sparsifying linear tranformation for a polynomial in Flzy, zs,...,2,] and an algorithm based
on the algebraic criterion for computing sparsifying linear transformations. However, the algorithm
requires solving systems of polynomial equations and inequalities involving the parameters a; ;, ¢; of
the sparsifying transformations over the algebraic closure of F. While this is possible in principle,
it is known to be very hard. For the important special case considered in this paper, we show
that one can compute a system of polynomial equations involving the parameters of the unknown
transformation which is already “solved” in a sense (the parameters are separated) in time that
is polynomially bounded by t. The dependence of the algorithm on d,n is sensitive to how the
polynomial f is presented. We will state the precise complexity result a little later. In this paper,
we build on the results of two earlier papers, (Grigoriev-Karpinski 1993, Lakshman-Saunders 1994),
and we make use of techniques used to deal with zero-dimensional Grébner bases.

We assume that we are given a straight line program for computing f. Consequently, we can
generate straight line programs for some low order partial derivatives of f efficiently (see Baur and
Strassen, 1983). Instead of a straight-line program for f, it is enough if we have black boxes for f
and certain low order partial derivatives of f. It is indeed possible to use this approach even if we
have just a black box for computing f. We make some remarks later on as to how to modify our
approach to work in this situation.

The main contributions of this paper are:

e sufficient conditions for uniqueness of sparse shifts for multivariate polynomials;



e tight bounds on the degree of the polynomial being interpolated in terms of the sparsity
bound ¢ and a bound M on the size of the coefficients of the polynomial in the standard
representation.

e two new efficient algorithms for computing sparse shifts for a multivariate polynomial.

In section 1 we discuss conditions under which a polynomial can have a unique sparse shift. In
section 2, we describe our first algorithm for computing sparse shifts. In section 3, we describe
our degree bounds and the second algorithm for computing sparse shifts. The first algorithm
computes t-sparse shifts for a multivariate polynomial f with finitely many ¢-sparse shifts in all
cases except one — it can fail when deg, (f) < ¢ for two or more z; and f still has finitely many
sparse shifts. It performs (dt)o(”) Q-operations if randomization is not allowed and t°) Q-
operations if randomization is allowed. When there is a unique shift, the algorithm performs
(td™)°™) Q-operations if randomization is not allowed and (nt)°") Q-operations if randomization is
allowed. The second algorithm computes t-sparse shifts for a multivariate polynomial f without any
finiteness restrictions on the number of ¢-sparse shifts. It has running time bounded by (nt)o(”2).
We conclude with a discussion of open problems and possible applications in section 4.

Actually, the algorithms could run when F-operations are admitted, but for the complexity
analysis to make the algorithms more realistic we allow just Q-operations.

1. Observations on the Uniqueness of Sparse Shifts
In (Lakshman-Saunders 1994), the following were shown to be true.

Theorem 1 Let f(z) € Flz] be of degree d and let t < (d+ 1)/2. If there exists an o in some
algebraic extension K of F such that f(x) ist-sparse in the shifted power basis 1, (z—a), (z—a)?, .. .,

then the shift o is unique. a

Corollary 1 Let f(z) € Flx] be of degree d and let t < (d+ 1)/2. If a (in any extension K of F)
is a t-sparse shift (hence the unique t-sparse shift) for f(x), then a € F. a

The situation is more complicated than this for the multivariate case. The following example
illustrates one difficulty. Consider the polynomial h(z,y) = z%y + 2 with d > 4. h is 2-sparse with
respect to the shift (0,¢) for any ¢ € F (h(z,y) = 2%(y — ¢) + (¢ + 1)2?). Obvious generalizations
of this example to polynomials in Flzy,29,...,2,] lead us to the following conclusion. Let h €
Flay, €9, ..., 2,] and

B = {I;: (b1, b, ...,b,) € F" such that b is a t-sparse shift for h}.
Note that if & is a t-sparse shift for A, then b is a common zero of at least some (d:”) — t partial
derivatives of h. It follows that B is an algebraic set in F” and can be of any dimension from —1

ton — 1 (as usually we agree that the empty set has the dimension —1).

The next two weaker uniqueness results follow from theorem 1. Let h € Flzy, o, ..., 2,] with

deg, (h) = d; and let ¢t < (d; +1)/2.



Lemma l Ifb = (b1,b2,...,b,) and &= (c1,cq,...,¢,) are two t-sparse shifts for h, then b; = ¢
for any 1 <1 < n.

Proof: For a fixed 7 consider a mapping ® : Flzq, 29,...,2,] — Fla;] with ®(z;) = a; for i # j
where a; € F are chosen to preserve the degree in z;, i.e., deg, (h) = d; = deg(®(h)). Both b; and
¢; are t-sparse shifts for ®(h) and using theorem 1, we conclude that b; = ¢;. a

Lemma 2 Let d = miny<;<,{deg, (R)}. Ift < (d+1)/2, then h has at most one t-sparse shift.

Proof: Apply lemma 1 to each z;. a

Stronger uniqueness results hold for the more general case of sparsifying linear transformations
under side conditions.

1.1 Sufficient conditions for Uniqueness

In this subsection, we prove two different sufficient conditions for the uniqueness of sparsifying
transformations. Let

F=Yra =Y ¢, d=AF+d
=1 =1
where
Uy L1 dy
o o - x - d
= 2 1. A= (aij)1<ij<n, T = 2, d= |
Unp Tn, dn
a; ;,d; € K and A non-singular. Let a;,ay,...,a, denote the columns of A with A denoting the

set {ay,ag,...,a,}. Let d be the degree of f.
Theorem 2 Ifcfis not in the span of B, for every proper subset B of A, then, t + 1T > d.

Proof: Let us substitute linear forms in a new variable ( for the z; as

with k;, N € K to be chosen in a certain way. Clearly, the linear forms u; become linear forms in
¢ under this substitution. Let us try to choose k;, N is such a way that each of the u;-s becomes a
scalar multiple of one and the same linear form in {, different from ¢ + N. The u; are tranformed
as follows:

ap) a1 ... Grp ki(C+ N) dy ry Nry+d;

(21 Qo2 ... Gz, ka(C+ N) dy ro Nry+d,
} . : ) + : = : ¢+ :

p1 Qp2 ... dpgp kn (C + N) dn r, Nrn + dn



where r; = 3"_, a; ;k;. Let

J=1
ry k1
o ry T ko
7= , k=
r?’L kn

We want each r;¢ + (r;N + d;) to be a scalar multiple of one and the same linear form in ¢ which
means we want A7 = N7+ d for some non-zero A € K. So, we have (A= N)r= d. Recalling that
7= Ak, we have k = 1/(A—N)A~Ld. Let us choose A, N such that A, N # 0 and A # N and find the
corresponding k; by solving the above system of equations. It follows from the hypothesis (that dis
not in the span of any proper subset of A) that no k; is zero. This implies that under the substitution
considered, the degree does not decrease, i.e., deg(f) = deg(®(¢)) where ®(¢) = f(a; = ki((+ N)).
Now, ®(¢) has degree d, is t-sparse in the powers of ( + N and T-sparse in the powers of { + A.
Invoking the univariate theorem, we have t + 7T > d. O

For the special case of sparse shifts, we get the following:
Corollary 2 Let f = Z;Zl Fjz® = Zszl quuﬁﬂ where u; = x; + d;. If nod; =0, thent+ 1T > d.

Proof: Let A be the identity matrix in the above theorem. a

The second theorem on the number of sparse shifts imposes a different criterion. Let B = A~! =
(bij)1<ij<n- We have & = B + d' where d’ = —Bd. Note that

n
2;0/0x;(uitus? . ouir) = uitud? ooupt(ay s/ ug + agisefug .+ amsn/un)(z b; juj;) + ¢
i=1

where deg, (¢) < s1 + s2 + ...+ s,. Let d be the degree of f.
Theorem 3 If for some v, [17_ a;; [1/= bi; # 0, then tT > d/n for n > 0.

Assume the contrary. We set up some notation and prove supporting claims and then present the
proof of the theorem. Let D = z;0/dx;. There exist ¢p, €1,...,¢ € F such that do<j<t D f =0
(see lemma 4). Let to = max{j: ¢ #0} <t.

Let S, (d) C 2™ denote the set of integer points of the (n—1)-dimensional simplex {(z1, z2, ..., z,) :
2 >0, 1 <i<n,> 1cicn 2z =d}. Call the set {f3,..., 07} the support of f. For any two vectors

s,w € Su(d), let var(s,w) = 3,0, max(s; — w;,0) = — 3 ;o min(s; — w;,0). For any vec-
tor v = (v1,v3,...,0,) such that 2 i<i<n Vi = 0, represent v uniquely as v = o) 4 v where
UZ(-I_) = max(v;,0) and UZ(_) = min(v;, 0). We have var(v) =3 ;<. UZ(-I_) == i<i<n UZ(_).

Let Ty be the number of points in the intersection of the support of f with S,,(d) and denote the
points in this intersection by aj,ay,...,ar,. Observe that for any b € Z” satistying the conditions
var(b) = to, a; +b € S,(d) (see above) the point a; 4+ b belongs to the support of D (u?) (due



to the assumption in the statement of the theorem) and does not belong to the support of D!(u®/)
for any [ < tg.

For each m, 1 < m < n, re-order the a; in non-decreasing order on their m-th coordinates as
Ogal,m SaZ,m < ---SaTo,m Sd

Lemma 3 There is anm, 1 < m < n, for which either ay ,, > to, or, for a certainl, 1 <1 <Tp—1,
aiL1,m — Alm > 2t + 1.

Proof: Suppose not; then for every m we have a;,, < to — 14 (I — 1)2¢y for each {, 1 <1 < Tj,.
Hence,
Z ajm S (to — 1)T0 + QtoTo(To — 1)/2 = To(toTo — 1) S To(d/n — 1)7
1<I<To
the latter inequality follows from the assumption that the theorem is wrong. On the other hand,
Yo l<m<n 21<1<T, Alm = dTg since a; € S, (d) for 1 <1 < Ty, we get a contradiction. Hence, the
lemma is true. a

Proof: (of theorem 3): Assume that t7° < d/n. Fix an m, 1 < m < n satisfying lemma 3.

First, consider the case a; ,, > to (see the beginning of the proof of the theorem). Consider those
points among aj,...,ar, that belong to the (n — 2)-dimensional simplex S, (d) N{a;, = aj;}.
Without loss of generality, assume that they are a;,...,ar, 71 < Tp. Among these points, choose
the one that is largest in the lexicographic order, without loss of generality, let it be a;. Since
aj g, > to, we have Zk;ém ay ; < d—ty. Consider the point a3 = (ay 1 + fo,a1.2,...,81,m—1,1,m —
to,...,a1,) € Sy(d). Clearly, var(a;,a;) = tg. We will show that for any point a;, 2 < j < T,
var(a;,a;) > to, thereby showing that a; does not belong to the support of D! (u®) forall 0 < I < tg
and 2 < j < Ty and proving the theorem for the case a; ,, > tg. Suppose that var(a;,a;) < to;
this means that v = a; — a; = vt 4 (=) with v(+) = (0,...,0,%0,0,...,0) (the {y appearing in
the m-th position) and a; € {a;,...,ar,}. Let a; = (a;1,...,8;,). Since a;; < a; 1, (as a; is
lexicographically the largest among the a;), o) = (—t0,0,...,0), but then a; = a;, a contradiction!
This proves that var(a;,a;) > to.

Now, consider the case ajt1,, — a;,, > 2o+ 1 for a certain [,1 < [ Ty — 1 (according to
lemma 3 we need just a trial of this and of the previous case). Among the points in {a;,...,az,} N
{a;m = a41,m}, choose the largest in lexicographic order, call it a;;1. As before, consider the
point a;41 = ay41 + (t0,0,...,0,—1%0,0,...,0) € 5, (d) (the —tg is in position m) and prove that
var(aj,a;yq) > to for every j, 1 < j <Tj and j # [+ 1 and complete the proof as in the previous
case. O

2. Computing Sparse Multivariate Shifts

We assume in our discussion that f has a finite (possibly zero) number of sparse shifts. If there
are infinitely many t-sparse shifts with respect to one or more z; ( when f is seen as an element
of Flay, ..., &ic1, Tig1,. .., p)[x;] with t > deg, (f)) but only finitely many of them can be com-
bined to t-sparse shifts for the polynomial f, then the algorithm of this section can fail. This



situation is taken care of by the algorithm of next section as the “low degree case”. In this sec-
tion, we assume that ¢ < deg, (f) for 1 <4 < n. As before, let f = E;Zl F;u®7. Recall that o
denotes the multi-index (a1, ajg,..., 0 ,), and u® indicates the power product u?ﬂu;ﬂ T
Consider the ideal I C Q[yy, y2, ..., y,] which is the ideal of the points {ay, as, ..., a;}. We shall
construct a reduced Grébner basis for I under any admissible term ordering. For convenience,
we choose the lexicographic term ordering with y; < 12 < ... < y,. In fact, we can construct a
triangular set decomposition of the ideal [ instead of a Grébner basis for /. For a good descrip-
tion of zero-dimensional Grobner bases and triangular sets, we refer the reader to (Lazard 1992,

Kapur—Lakshman 1992).
The Grobner basis GG for I under the chosen term ordering looks as follows:
) = v + gﬁ;)l_lyfl_l +oet g+ ),
G(lz) (yh y2)7 G(Qz)(yh y2)7 sy Gg)(ylv y2)7
GgS)(yh Y2, Y3), G(QB)(yh Y2, Y3); - - -ng)(yh Y2, Y3),

G(IN)(yPyQ7 .. ,7yn)7(}(2n)(y17y27 cesYn)y .7G§§Z)(y17y27 ey Yn)-

We recall a few standard terms and facts from the theory of Grobner bases. For further details,
see (Becker et al 1993).

e the head term of a polynomial A, HEADTERM (h) is the largest term (under the term ordering
<) appearing in h with a non-zero coefficient.

e aterm s is reduced with respect to the Grobner basis G if it is not divisible by HEADTERM (g)
for any g € G.

e The number of reduced terms with respect to the Grébner basis GG is equal to the dimension

of the residue class ring Q[yy, ..., y,]/I as a Q-vector space and, in our case, is < .

Suppose h € I and
b=y + hoy + hay™ + ...+ byt

where y% = y;i’lygi’2 oy ™ and yoi+t < g% for 0 < 7 < L. Let us define fe; for a multi-index
€6 = (61,62 ... 6n) With €1,€.9,...,€., > 0 as follows:
Joo...00 = /
f(e,‘yl,qyg,...,qyn) = ($1 - zl)af(EM_1751.727...751.7”)/8961 if €1 > 07 else

= (22— 22)8][‘(5,‘71,Ei72—1,...,el‘7n)/8$2 if €2 >0, else

= (0 = 20)0f(e; 1 i nrmein—1)/ 0T otherwise.
Furthermore, we extend the ordering < to the set of polynomials f; as

Je, < Je, iy <y,



Let

—

fao=falzi=b1, iz, = by, 21,22, .., 2,) € K21, ..., 24)

where (by,bz,...,b,) is a t-sparse shift for f.

Lemma 4 Leth € I and h = y* +hoy®2 4+ hsy® +. . .+ hpy L. Then the polynomials f; , f;, .. .,f;
satisfy the Q-linear relation

hife, + hofe, 4+ hsfo 4+ ..+ hpfe, =0, with hy = 1.
Proof: We have .
]2 = Za;iFj(x —b)%
7=1

where o = o} a5y .. ol and, (@ —0)™ = (w1 — by)*1 (22 — b)*2 ... (2, — by)*9m. Therefore,

L L t
Yohife = D hid ] afiwE(e - b))
i=1 i=1  j=1

t L
= ZZhiO&;iF]‘(w—b)aj

7=1:1=1

= Z:h(%‘)Fj(ﬂC — b))

= 0, since h € [I.

O
For polynomials fi, fo, ..., fim, [ let us define a generalized Wronskian matrix and the w-vector
as
S f2 ce fm f
D(f D(f ee. D(fn D(f
Wm(f17f27"'7fm): (:1) (: 2) .. (: ) 3 wm(f): ( ) 3
D) DTHf) o DTS D)

where D is a generic linear combination of d/dz;, i.e., D = Y%, ;0/0z;, l; € F. As usual, D
denotes the operator D applied ¢ times. Let

Wm(f17f27 e 7fm) = det(Wm(fhf?? c 7fm))

Clearly,
WL(f617"'7fEL) € .7‘-[217...7Zn7$17...7$n]

and

WL (Fers oo os fe) € K21, -y 2]



Lemma 5 If a set of polynomials F = {fz,f;, .. ,f;} satisfies the K-linear relation

and no proper subset of I’ satifies a K-linear relation, then h = (hy hs ... hp)TT is the unique
solution to the system of equations

JE—

WL—I(f;v .- '7fEL)§g: _wL—l(-fﬁ\l)‘

Proof: The proof is classical and we give only a brief sketch. By rewriting the linear dependency
as

— oo =hofe ¥ h3fo 4.+ hif,
and applying the operator D successively L — 1 times, it follows that

Wit (faas e os fep )i = —wr1(fey)-

If h is not the only solution, then Wr_4 (ft27 .. 7fEL) is smgular i.e., the Wronskian Wr_4 (f627 .. ,f;)

vanishes identically. This implies that the polynomials f627 .. ,fEL are K-linearly dependent (Ka-
planski 1957). But no proper subset of F'is supposed to satify a K-linear relation, hence, h is the
only solution. a

From lemmas 4,5, it follows that if b = (b1,b2,...,b,) is a t-sparse shift for f, and if h =
Y r+hoy?+hsye+. . Ahpyt € I, then Wr(f,, ..., fc,) vanishes identically under the substitution
z1 = by, 29 = by, ..., 2z, = b,. A partial converse of lemma 4 is also true and it gives us a way to
determine sparse shifts of f.

For a polynomial h = y“t+hoy2+hsye+.. . +hpyL, let support(h) denote the list of polynomials
Jers feos ooy fe, and W(h) denote Wy, (support(h)) where L is the cardinality of support(h).

Lemma 6 Let G = {g1,92,---,9} C Qly1,v2, .-, Y] be a reduced Grobner basis for a zero-
dimensional ideal J with dim(Q[yy, ya, ..., yi]/J) < t, and b; = (b1, by, ..., b;) € K such that

W(G1)z,=b,, j=1,..i = W(92)z;=b,, j=1,.i = -+ = W(Gr)z,=b,, j=1,..;i = 0.
Then b; is a partial t-sparse shift for f, ie., [ = 2;21 ¢;(x — b)) where (x — b)) denotes
(21 — bl)ﬁ%1 (x2 — bz)ﬁj’2 ooz - bi)ﬁ“ and J is the ideal of the points {fy, Pa, ..., Bt}

Proof: Let f = Z?:l ¢i(x — b)% with ¢; # 0. We will show that k < t. Suppose g; = g1 1y +
91,292+ 913y 4. . .+ g1.0y". Since W(g1)2,=p;, j=1,... = 0, by lemma 5, g1 1 fe, +g12fc, + 91,3 e, +
R A,

L k

B Zgl’p(zﬂ?@(ﬂf—b)ﬁﬂ)
pk L

= ZZ 7pﬁ (be_b)

Jj=1p=1



k
= > 01(8))¢;(x — b)"

J=1
= 0.

Therefore, g1(f;) = 0 for j = 1,...,k. In a similar fashion, we can show that ¢,(3;) = 0 for each
gp € G. In other words, each §; is a zero of the ideal J. Since dim(Q[y1,y2,...,u:]/J) < ¢, J can
have at most t distinct zeros. Therefore, k < t. a

2.1 The Sparse Shift Algorithm — Case of Finitely Many Shifts
Our goal is to construct the Grobner basis (. Given any term s (in y1,...,¥,), it is either

o reduced with respect to G, or
e the head term of some polynomial in G, or

e a multiple of some head term in G.

A term s is called a simple multiple of the term s’ if s = y;s’ for some y;. Every head term in ¢
is a simple multiple of some reduced term. The idea is to enumerate f,., in the increasing order
according to < and decide, with the help of a Wronskian test, which of the above properties the
term y® satisfies. The idea of systematic enumeration is borrowed from the well-known FGLM
basis conversion algorithm (Faugere et al 1993).

e The function Complete_basis constructs a reduced Grébner basis for the ideal I under the pure
lexicographic term order with y; < yo < ... < y,. In the process, it also computes the corresponding
t-sparse shifts for f. If f has several t-sparse shifts satisfying the assumptions stated earlier,
Complete_basis constructs reduced Grébner bases for the ideal I corresponding to each of the sparse
shifts. It returns a set of ordered pairs (I;, () where bis a t-sparse shift for f and G is a reduced
Grobner basis for the corresponding ideal I. It uses the functions Nexzt_term and Wronskian_test.

e The function Next_term takes four parameters:

o current_basis, reduced_terms and last_shift_index are passed in unmodified by Complete_basis,
and,

e new_var is a flag that is set by Next_term.

Nexzt_term returns the smallest term y°( =: s) (according to the ordering <) that is neither in
reduced_terms nor is a multiple of some known head term in current_basis; it returns null if no
such y¢ exists. When such a term exists, if it has a new variable, i.e., the number of variables in
the term is > last_shift_indezx, the flag new_var is set to true, else new_var is set to false.

e The function Wronskian_test takes five parameters: s,reduced_terms, list_of_bis, last_shift_index

and new_var which are all passed in unmodified by Complete_basis and it operates in two distinct
modes.

10



o If new_var = true, then Wronskian_test tries to extend the partial t-sparse shift list_of bis =
(b1,...,b) to the next variable, i.e., variable whose index is last_shift_index +1 =k + 1. If
it finds a possible shift, it returns the pair of values [ true, bis_or_poly | where bis_or_poly
contains all the zeros of the content of Wri1(fe, fey, -3 fe,)zi=bi, i=1,...k as an element of
Klzk41][z1, 22, - - ., @) where y ... y“L € reduced_terms, and L = Cardinality(reduced_terms).
If the content is 1, then Wronskian_test returns the pair of values [ false, [] ] .

o If new var = false, then Wronskian_test attempts to solve the system of linear equations

Wi (Jers s Jer )6 = —wr(f)

where y“1, ..., y°L € reduced_terms, and L = Cardinality(reduced_terms). If there is a solution
¢ = (g1 g2 ... gr)'", then Wronskian_test returns the pair of values [ true, y° + gy +
...+ gyt | where y° = s. If there is no solution, then Wronskian_test returns the pair of
values [ false, [] ].

Complete_basis( f,
current_basis, /* set containing a partially constructed Grébner basis; */
reduced_terms, /* set containing terms known to be reduced with respect to
current_basis; */
list_of_bis, /* list containing partial shifts; if list_of_-bis = (by,...,bk),
then the b; are possible t-sparse shifts for @;, 1 =1,...,k; */
last_shift_index /* index of the last variable for which a shift has been com-

puted; last_shift_index = Cardinality(list_of_bis) always; */
term_limit /* bound on the number of terms (¢) in the shifted sparse

representation of f; */

begin
local

set_of GBs, /* (I;, (7) are accumulated in this; */

new_var, Wr_flag,

bis_or_poly; /* flags and place-holders for return values and return status
of Next_term, Wronskian_test; */

set.of GBs :=={};
if Cardinality(reduced_terms) < term_limit then
if s := Next_term( reduced_terms, current_basis,
last_shift_index, new_var) then
[ Wr_flag, bis_or_poly | := Wronskian_test( s, reduced_terms,
list_of_bis, last_shift_index, new_var);
if new_var then

if Wr_flag then
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for each b € bis_or_poly do
set_of GBs := set_of GBsU Complete_basis(reduced_terms,
current_basis, [list_of_bis, b], last_shift_index+1, term_limit);
od ;
set_of_GBs := set_of -GBs U Complete_basis(reduced_terms U s,
current_basis, list_of_bis, last_shift_index, term_limit);
return set_of (GBs /* new_var is true, and the flag Wr_flag is set to trueby
Wronskian_test ; therefore, one or more possible shifts were
found for the last_shift_index+1-th variable; branch out to
complete each of the shifts; continue the original branch also

in search of other shifts. */
else

set_of_GBs := Complete_basis(reduced_terms U s,
current_basis, list_of_bis, last_shift_index, term_limit)
return set_of GBs; fi /* No possible shift was found for the last_shift_index+1-
th variable; no Q-linear combination of the term s and all
the lower terms known to be reduced with respect to cur-
rent_basis belongs to I; classify s as reduced with respect to

current_basisand continue.*/
else

if Wr_flag then
set_of_GBs := Complete_basis(reduced_terms, current_basis U
bis_or_poly, list_of_bis, last_shift_index, term_limit)
return set_of (GBs /* new_var is false, and the flag Wr_flagis set to trueby
Wronskian_test | therefore, a Q-linear combination of the
term s and all the lower terms known to be reduced with
respect to current_basis was found to belong to I'; update the

current_basis and continue. */
else

set_of_GBs := Complete_basis(reduced_terms U s,
current_basis, list_of_bis, last_shift_index, term_limit)
return set_of_GBs; fi ; /* no Q-linear combination of the term s and all the lower
terms known to be reduced with respect to current_basis
belongs to [I; classify s as reduced with respect to cur-
rent_basisand continue.*/

fi
else

return { (list_of_bis, current_basis) }
/* Next_term failed to return a new term; so, every term is
either known to be reduced with respect to current_basis, or
is a multiple of some head term in current_basis. This means
that current_basis is a zero-dimensional Grobner basis; return
the basis and the corresponding shift. */

else
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end.

return { }; /* The basis being built has more than ¢t reduced terms which
means that the shift being computed can not be completed
to a t-sparse shift. */

As described earlier, the function Wronskian_test returns a pair of values consisting of a flag (to
denote what was computed) and either a list of possible shifts or a new element of the Grébner
basis being constructed. It uses two functions, Roots_of Content and Lin_Sys_Solve.

The function Roots_of Content takes 2 parameters, an index k, 0 < k < n—1, and a polyno-
mial w € K[zg41][21, 22, ..., 2,]. Roots_of-Content returns a list of all the zeros of the content
of the polynomial w.

The function Lin_Sys_Solve takes 2 parameters, W (€ K™*™) w(€ K™), and attempts to
solve the m X m system of linear equations Wq;: w. If the system has a solution, it returns
a g € K™ such that W§ = w, else it returns a null list. In our case, the system of equations
either has a unique solution or no solution.

Wronskian_test( s,

reduced_terms,
list_of_bis,
last_shift_index,
new_var

)

begin
local
shift_candidates, /* used to accumulate the list of zeroes of the content of
WL—I—I(fev f617 ey fEL)Z,‘Zb,‘, i=1,...,k as all element of K[Zk—l—l][xlv L2y ey xn]
where y“1, ..., yL € reduced_terms, and L = Cardinality(reduced_terms).

*/

list_of_coeffs, /* used to store the list of coefficients returned by Lin_Sys_Solve. */
basis_element,  /* used to store a polynomial y*+ ¢,y +...4 gLy’ that will become part

k;

k

of the Grébner basis being constructed. */

= last_shift_index;

if new_var then

shift_candidates := Roots_of_Content(last_shift_index + 1,

WL-l—l(fev felv ) fEL)Z,‘:b,‘, i:l,...,k);
if shift_candidates #[] then

return [ true, shift_candidates |
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else
return [false, [] | fi
else . .
list_of_coeffs := Lin_Sys_Solve(Wr(fe,, .-, fe,), —wL(ﬁ));
if list_of_coeffs £ [ ] then /* list_of_coeffs is a list of coefficients [g1, g2,..., 9] */
basis_element := y° + g1y + g2y + ...+ gryL;
return [ true, basis_element |
else
return [false, [] | fi
fi
end.
Initially, Complete_basis is invoked with the following parameter values: the polynomial f, cur-
rent_basis set to { } , reduced_terms set to {1}, list_of_bis set to (), last_shift_index set to 0, and
term_limit set to t.

Correctness of the Algorithm: The algorithm is in one of two states always, new_varbeing
true and new_varbeing false.

State 1, new_var true: In this state, the algorithm is attempting to extend current_basis
to include a polynomial in Flyi,...,yit1] (where ¢ = last_shift_index). Since the Grébner basis
being constructed is a lexicographically ordered basis, and the partial basis current_basis is being
built from the smallest head term up, current_basis is actually a reduced Grébner basis for a
zero-dimensional ideal J in Flyi,...,y;| with dim(Q[y1,y2,...,¥]/J) < ¢, and the elements of
current_basis satisfy the Wronskian tests with respect to the candidate shift list_of_bis. By theorem
6, list_of_bis is indeed a partial shift for f and a candidate for a complete shift. There are at
most finitely many ways in which this partial shift can be extended to variable z;41 (that is
our assumption). Each possible way to extend the shift appears as a root of the content of an
appropriate Wronskian, the algorithm tries to find the contents of all such Wronskians by exhaustive
enumeration. If the content of a Wronskian has more than one root, each root is a possible way
to continue the shift list_of_bis and the algorithm branches into as many branches as the roots and
also continues the computations along the parent branch. When the algorithm starts a new branch,
it enters state 2.

State 2, new_var false: In this state, the algorithm already has a candidate shift for zq,..., z;
and is attempting to extend current_basis to include relevant elements of the Grobner basis that
are in Fly1,...,y;] (where ¢ = last_shift_index). If a polynomial h € Fly,...,y;] belongs to the
ideal under construction, then by lemmas 4 and 5, h satisfies the Wronskian test. If h is indeed
an element of the target Grébner basis, then it will be generated by the algorithm because of
the particular order in which the Wronskian tests are performed (this is one of the key ideas in
the FGLM algorithm; see (Faugere et al) for details). The algorithm enters state 1 when after
it generates a basis element whose head term is a pure power of z; (because Nezt_term now sets
new_var to true).

In every branch, in either state, after a Wronskian test, either a new reduced term is deduced
or a new basis polynomial is generated. The number of basis elements is bounded by term_limit
and the number of reduced terms is bounded by term_limit. If the cardinality of reduced_terms
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exceeds term_limit, then the ideal J has more than ¢ zeros, i.e., the partial shift list_of bis cannot
be extended to ;47 and the algorithm terminates that branch. Therefore, each branch terminates
after at most (n+ 1)t Wronskian tests. When a branch terminates, if the number of reduced terms
is < term_limit, then the branch must have terminated because Nezt_term returned the empty
list; this means that every term is known to be either reduced or a head term or a multiple of a
head term with respect to current_basis which means that current_basis is a reduced Grébner basis
in Qxy,...,x,]

If there are infinitely many ¢-sparse shifts with respect to one or more x; (¢ > deg, (f)) but only
finitely many of them can be combined to t-sparse shifts for the polynomial f, then the algorithm can
encounter an identically vanishing Wronskian in state 1 and will fail. An example of a polynomial
for which such a phenomenon happens is (z — 1)?(y — 1)2(z = 1)?+ (2 = ) (y— 1) (2 = 1) +2. (1,1, 1)
is a 3-sparse shift for this polynomial and it is the only 3-sparse shift for the polynomial. However,
with respect to any single variable, there are infinitely many 3-sparse shifts. This situation is taken
care of by the algorithm of the next section as the “low degree case”.

The function Complete_basis returns a set of ordered pairs (I;, () where bis a t-sparse shift
for f and G is a reduced Grébner basis for the corresponding ideal I. From these, it is quite
straightforward to compute the shifted sparse representation f = >>'_, F,u® corresponding to the

pair (b, G).

e Find the zeros of the ideal (G'). We know that the zeros are the multi-indices «; in the above
representation. Since we already have a reduced, lexicographically ordered Grobner basis and
know that all the roots are n-tuples of integers, this can be done fast. See (Lazard 1992).

e Once we know the shift b and the multi-indices a;, we can find the coefficients of f from its
values at ¢ selected points by solving a ¢ x t system of linear equations.

Complexity Analysis: In the following analysis, our main goal is to get an upper bound on the
number of Q-operations performed by the sparse shift algorithm. Our emphasis is not so much on
getting the sharpest possible bounds (as that would depend on the intricate details of how each step
is implemented) as on finding the coarse dependence (polynomial or exponential) of the running
time (number of Q-operations) on n,t¢,d. We choose the primitive element methos for computing
with algebraic numbers for convenience and the other models that one finds in the literature are
polynomially related to this (polynomial in the degree of the extension under consideration).

The polynomial f is assumed to have rational number coefficients. In fact, the algorithm
could run over any field of characteristic zero, but in the complexity analysis we assume that the
coeflicients of f are rationals. The t-sparse shifts may be algebraic over Q as we have seen. We
assume that the algebraic numbers that arise in a particular branch of the algorithm are expressed as
Q-linear combinations of 1,(,(?, ... where ( is a primitive element of the smallest degree algebraic
extension over Q that contains all the algebraic numbers that arise in that branch.

The main operation in the algorithm is the Wronskian test in Complete_basis. We know that in
each branch generated by Complete_basis, there are at most n(t + 1) Wronskian tests. How many
distinct branches can there be? Notice that branching can take place only when Complete_basis is
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in state 1. Branching corresponds to finding more than one root for the content of a Wronskian.
Consider a Wronskian test in state 1 with last_shift_index = ¢. The Wronskians are determinants
of matrices of size no more than (¢ + 1) x (¢t + 1) and the degree of each entry in z; is no more
than ¢, therefore, the content of the Wronskian, which is a polynomial in z;y1, has degree O(¢?) in
zi+1. Hence a worst case bound on the number of branches at a time is O(¢?). The main branch
in state 1 can branch at most ¢ times and the main branches are the only ones that can branch.
The branching stops when last_shift_index becomes equal to n. Therefore, the number of branches
is bounded by O(#*"). Conclude that there are O(nt*>**1) Wronskian tests in all.

Consider any branch generated by Complete_basis at a time when last_shift _index = ¢. The
entries of the Wronskian are polynomials in z;41 and zq,..., 2, with coefficients from an algebraic
extension of the rationals of degree O(t?') (the contents of the previous Wronskians whose roots
form the partial shift along the chosen branch are of degree O(¢*) in z;, j < i + 1, and if each of
the contents is irreducible over the earlier extensions, the current extension will have degree O(t*)
over Q). Each arithmetic operation in such an extension costs O(t%) Q-operations.

To compute the content of a Wronskian, we have to compute the Wronskian (a (t+1) x (t+1)
determinant at most). The Wronskian is a polynomial of degree O(dt) in the x; and O(¢?) in z41.
Computing the Wronskian and then its content costs O(t3(dt)*"t4") = O(d*"t°"*3) Q-operations
if we are to do it deterministically. If we are allowed to use randomization, we can substitute two
different sets of random rational numbers for the z; in the matrix corresponding to the Wronskian
and compute the univariate ged of the determinants of the matrix under the two specializations.
With high probability, the ged will be the content of the Wronskian. The cost of doing this is
Ot 11 .1*") = O(t*"*7) Q-operations.

The last two steps in the sparse shift algorithm are much simpler. Finding the integer roots of
a zero-dimensional lexicographic Grébner basis with at most ¢ zeros can be done by finding all the
integer roots of a univariate polynomial of degree at most ¢ and evaluating n — 1 other univariate
polynomials of degree < t at the roots this polynomial and solving an n X n linear system (see
(Lakshman 1990)). The total cost is bounded by O(t® + nt? 4+ n®) Q-operations. This has to be
done at most O(nt***1) times (once for each branch of Complete_basis).

Setting up and solving a ¢ X ¢ linear system to compute the coefficients in the shifted sparse
representation costs O(t®) Q-operations and this too has to be done at most O(nt*"!) times, once
for each branch of Complete_basis. Adding up the costs of all the steps, we have:

Theorem 4 The algorithm of this section computes all shifted t-sparse representations for f pro-
vided deg,, (f) >t for each ;. If randomization is not allowed, the algorithm performs (n(dt)™)°M)
Q-operations. If randomization is allowed, the algorithm performs (nt”)o(l) Q-operations. O

For the special case of ¢ < (deg, (f) + 1)/2 for each z;, the polynomial f has at most one

t-sparse shift by lemma 2, the algorithm runs much faster. In this case, there is essentially no
branching and all individual shifts are rational. For this case, we have:

Theorem 5 Ift < (deg, (f) +1)/2 for each x;, the algorithm of this section computes a shifted
t-sparse representations for f (if it has one) in time polynomial in t. More specifically, if random-
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ization is not allowed, the algorithm performs (ntd”)o(l) Q-operations. If randomization is allowed,
the algorithm performs (nt)o(l) Q-operations. O

Remark: If we do not have the derivarives of f available, but only a black box that evaluates f,
we can still use ideas close to the ones describes in this section to construct a Grébner basis for the
ideal of points p®t, p®2,..., p~* with p]% denoting the power product pfj’lpgj’z) ...p; 7" where the p;
are distinct prime integers. In place of f, one can use f(pi' + 21,53 + 22, ..., P + 2n).

3. Sparse Shift Algorithm — The General Case

In this section, we deal with the case of finding t-sparse shifts for a polynomial f € Flay,..., z,]
(we suppose that 7 C R) for which deg,. (f) < 2t for one or more z; and consequently, there might
be several (possibly infinitely many) t-sparse shifts with respect to x; alone. This covers the case
that causes the algorithm in the previous section to fail. We assume that the polynomial f is given
to us as a black box or a straight line program. Assuming that we are given a bound M on the
sizes of the coefficients of f in the standard representation (and without knowing anything about
the degree of f), we identify three kinds of variables in f:

e variables that have very high degree (Q((M + t2)1+¢)), these appear with a unique t-sparse
shift that is either 0, or 1 or -1. We make repeated use of the Ben-Or and Tiwari algorithm
(Ben-Or, Tiwari 1988) in conjunction with some bounds proved in this section to identify the
high degree variables and to find the corresponding shifts.

e variables that have moderate degree (2¢ < degree < ¢(M +¢?)17¢ for some constant c), these
appear with a unique, rational shift in any ¢t-sparse representation of f. We make repeated use
of the sparse-shift algorithm in (Lakshman-Saunders 1994) to identify the moderate degree
variables.

e variables that have low degree (degree < 2t), these may appear with different, algebraic shifts
in different t-sparse representation of f. We make use of the algorithm in (Grigoriev-Karpinski
1993) to identify the low degree variables and find their sparse shifts.

The algorithm used to find sparse shifts for the low degree variables (Grigoriev-Karpinski 1993) is
very general and in fact solves the problem of computing sparse shifts completely without making
such distinctions as listed here. However, we apply it selectively, to polynomials of low degree (d <
2tn), and as a result, the complexity of the algorithm comes down from O(d°("") to O((nt)°(""))
operations.

3.1 Degree Bounds on Shifted Sparse Polynomials

We establish some bounds on the degrees of f in each x; in terms of ¢, n, M. These bounds are used
in the main algorithm which unfolds in the rest of the section. The main steps of the algorithm
are collected together at the end of the section.

Let f =YY%, fix' = 2;21 F;(z — b)%. For a rational number p/q € F, define size(p/q) =
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[logy(p+1)]+[logy(g+1)] and for the polynomial f € F[z] as above, define s1ze( f) = max{size(f;)}.
Let s1ze(f) < M for an integer M.

Lemma 7 For any € > 0 there exists ¢ such that if f has two sparse representations as above where

b {0,1,—1}, then d < (M + t*)1 T,

Proof: If d < 3t, the lemma is obvious. If d > 3t, then b is unique and rational (Lakshman-Saunders
1994) and we have f = Z?:o fizt = E;Zl Fi(z— b)5ﬂ with d = &; > 8;_1 > ... > §;. Rewrite this as

ﬁBtCDd+1 - f

where F = (Fs5, Fs5, ...Fs,), By is the t x t diagonal matrix with B,(j,7) = b%, C is a t x (d + 1)
matrix with C(7, j) = <d+(§1i_j)7 Dypq the (d+ 1) x (d+ 1) diagonal matrix with B;(j,7) = b=4+/~1,
and, f: (fa fa—1 --. fo). Let @ = (uq ug ... uy) = FB:. Let C; be the t x ¢ submatrix of C
consisting of the last ¢ columns of C.

We know that C; is non-singular (see (Lakshman-Saunders 1994)) and hence,

pt-1 0 ... 0
B 0 b7 ... 0 .
= (fi—1 fi—2 ... fo) : : . C; .
0 0 R

Therefore, s1zE(u1) < M + tsizE(b) + ct? log d for some constant ¢, the ct?log d term coming from
Ct_l. Since fz = u1b~%, we get

s1zE(uy) > s1ze(b?) — M > d(sizg(b) — 2) — M

Since b € {0, 1, —1}, we have s1zE(b) > 3 and therefore, d—3t < (d—3t)(s1zE(b)—2) < /(M +t*log d)
for some constant ¢’. It follows that d/logd < ¢/(M + ¢*) and d = O((M + t*)'*¢) for any ¢ > 0. O

Lemma 8 Let g € Flay, x2,...,2,] be a non-zero polynomial that is shifted t-sparse and S =
{ay < ay < ...<ay} CR. Then g cannot vanish everywhere on S™.

Proof: The lemma follows from successive applications of Descartes’ rule to each variable x1, zo, ..., z,.
O

Choose a constant ¢ and an arbitrarily small ¢ > 0 such that deg,. (f) < ¢(M + t*)1*¢ for
1 <4< ninlemma 7. Denote this degree bound ¢(M + ¢2)1+¢ by D.

Let 1 < ¢ < n.Fix btobe one of 0, —1,—1 and let X; = x;—b. For each W = (wq,w,...,w,) €
S7=1. consider the univariate polynomial fu (X;) = f(wy, ..., wi_y, i, Wity,- ., w,). By lemma 8,

it follows that there is a W such that deg(fw (X;)) = deg, (f). Fix such a W.
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Let A; = {_27 (_2)27 (_2)37 Tt (_2)2t}7 Ag = {_37 (_3)27 (_3)37 R (_3)2t}7
Az = {_57 (_5)27 (_5)37 RS (_5)2t}7 and, Ay = {_77 (_7)27 (_7)37 RS (_7)2t}' Apply the Ben-Or
and Tiwari interpolation algorithm (Ben-Or, Tiwari 1988) to fu (X;) at the four sets of points
Ay, Ag, Az, Ay respectively. If the algorithm succeeds, it returns a t-sparse polynomial in F[X;] for
each set of evaluation points Ay, A, A3, A4. Let us denote the polynomials returned by the Ben-Or
and Tiwari algorithm by g1, g2, g3, g4 € F[X;] respectively.

Lemma 9 deg, (f) > D if and only if g1 = g2 = g3 = g4 and deg(g,) > D.

Proof: (=) : Since deg, (f) > D, then by lemma 7, we have b; € {—1,0,1} in any t-sparse shift
(b1,ba,...,b,) for f. Therefore, fy (X;) is t-sparse for any W € S™~! and since the interpolating
polynomial produced by the Ben-Or and Tiwari algorithm (Ben-Or, Tiwari 1988) is unique, we
have g1 = g2 = g3 = g4 = fw (X;). Since we choose a W such that deg(fw (X;)) = deg,, (f), it
follows that deg(g1) > D.

(<) : Assume that for a certain Wy, the Ben-Or and Tiwari algorithm returns four ¢-sparse
polynomials in X; such that g1 = g2 = g3 = ¢4 and deg(g1) > D. The polynomial fi, (X;) is shifted
t-sparse and coincides with the t-sparse polynomial ¢ at 4¢ positive points and 4¢ negative points.
Therefore, by theorem 5 in (Lakshman-Saunders 1994), we have fu, (X;) = ¢1(X;). o

If the Ben-Or, Tiwari algorithm fails to return, for each b = 0,1, —1, and for each W four
t-sparse polynomials in X; g1 = g = g3 = g4 with degy, (g91) > D, then fw(z;) has a non-zero
t-sparse shift and deg, (f) < D. Denote the set of all indices ¢ such that deg, (f) > D by Ip. The
set I can be determined by performing ((logd)t")°(") arithmetic operations (for each i, for each
b, and for each W € S"~1, we have to perform the Ben-Or and Tiwari algorithm 4 times).

Let j € {1,2,...,n}\ Ig. For each W € S™~! interpolate fy (z;) as a dense univariate polyno-
mial. If for some Wy, deg( fw, (z;) > 2¢, then we can use the sparse-shift algorithm from (Lakshman-
Saunders 1994) to find the unique b; € F such that fyy, (X;) is t-sparse relative to z; — b;.

Lemma 10 Letj € {1,2,....n}\Ip. Thendeg, (f) > 2t iff for a certain Wy € Sr=1 deg(fw, () >
2t. If the latter is true, then there is unique b; € F such that fw,(z;) is t-sparse relative to x; —b;.
Moreover,in any t-sparse shift (b},0,...,0,) of f, we have b’ = b;.

Proof: The existence of W, follows from lemma 8. Since fiy, (2;) is shifted t-sparse, and its degree
> 2t, the shift is unique (theorem 1, Lakshman-Saunders, 1994). If (b%,05,...,0]) is a t-sparse

shift for f, then fyw,(z;) is t-sparse with respect to z; — b;. From the uniqueness of the shift, it
follows that b = b;. 0

Denote the set of all indices j € {1,2,...,n} \ Ip such that deg, (f) > 2t by Ic. The set
I can be determined by performing (Mt”)o(l) arithmetic operations (for each j and for each
W € §7~1, we have to perform a dense univariate interpolation and the sparse-shift algorithm of
Lakshman-Saunders once; since the degree with respect to z; is bounded by D, we have the above

bound.)
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From lemmas 9, 10, it follows that for every ¢ € Ig only the powers of x; and for every j € I,
only the powers of x; — b; appear in any {-sparse representation of f. Moreover, any two shifted
t-sparse representations of f contain the same power products of z; and z; —b;. The last statement
follows from lemma 8 by considering suitable fy’s. Consider the representation of f as

F= % JXpe =0
1<i<t

where f; € F[{z}], k € {1,2,...,n}\(IpUlc), XT denotes a power product of X;, 7 € Ip, and (z—
b)?é Note that the degrees of the f; in any xy are less than 2¢. Therefore, the dense representations
of f; as F-linear combinations of power products of zj for k € {1,2,...,n}\ (IpU I¢) have O(t")
terms. We explicitly compute the f; by dense interpolation from their values at O(t") points. The
values of the f; for a particular specialization S taking z to vy € F for k € {1,2,...,n}\ (IgUl¢)
are obtained by constructing S(f) € F[IpUIc] (S(f) denotes the image of f under the substitution
S). For any &, S(f) is obtained by sparse interpolation using the Ben-Or and Tiwari algorithm
(since we know the non-zero shifts b;, this can be achieved by direct application of the Ben-Or and
Tiwari algorithm). The cost of constructing the f; this way is ((logd)t™)°(!) F-operations.

Once we have the f;, the problem is to find shifts by for the z for k € {1,2,...,n}\ (I U I¢)
such that the total number of terms in all the f; represented in the power products of zp — by is
at most t. This is done by finding a shifted ¢-sparse representation for the polynomial ¥(zy, z) =
fiz? 4+ f22270 4+ .+ fi2'T! where 2 is a new unknown. In any t-sparse shift of the above
polynomial, the shift with respect to z has to be 0 since its degree in z is greater than 2¢t — 1. To
find a t-sparse shift for ¥, we apply the algorithm from (Grigoriev-Karpinski 1993) which finds the
variety V of all ¢t-sparse shifts of f, i.e., set of r-tuples (by,,bg,,...,bx,) (r = n — cardinality (/g U
Ic) and {ky,....k.} = {1,...,n} \ (Ig U I¢)) such that the total number of terms in all the
fi represented in the power products of zj — by is at most ¢. The algorithm from (Grigoriev-
Karpinski 1993) returns the variety V as a union of its irreducible components U;V; and for each
V; and ¢, the algorithm returns a set of exponent vectors ey, ..., e; and a set of rational functions
gbelk e {1,....n}\ (UBUIg)),...,gs(bi|k € {1,...,n}\ (Ip U I¢)) such that f; = > ;_, gja® for
any (bg,, bk, ..., b, ) € Vi. For this input, the number of operations performed by the algorithm of
Grigoriev and Karpinski is bounded by O((nt)°("")) since deg(f;) < 2tn. We now collect, the main
steps of the algorithm together and summarize its asymptotic time complexity in theorem 6:

Algorithm to find all multivariate sparse shifts

o Compute the index set Ig of variables of high degree in f. If the Ben-Or and Tiwari algorithm
fails to produce t-sparse g1, ga, g3, g4 satisfying lemma 9 for a variable X; = z; — b, for every
b e {0,1,—1}, then that variable has degree < D.

e For each variable x; whose index j is not in Ig, construct fy (z;) for all possible W by dense
interpolation assuming that deg(fw (x;)) < D. Denote the interpolant by gw (x;) and perform
the sparse shift algorithm of Lakshman-Saunders on gw (x;) whenever deg(gw (z;)) > 2t. If
each time, we discover the same shift, note that j € I¢.

o (onsider the representation of [ as

Fo= Y hXE@-b (1)

1<i<t
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Determine the f; by dense interpolation as outlined in the text and compute sparse shifts for
U(zg,2) = frz¥4 fo2 7 4L+ [z by the algorithm of Grigoriev and Karpinski. For each
such shift of the f;, return the corresponding t-sparse representation f obtained by substituting
the shifted sparse representations of the f; into the representation (1) above.

Theorem 6 The algorithm of this section computes all shifted t-sparse representations for f. The
algorithm performs O(MOM) (nt)°("*)) operations. o

4. Discussion

In this paper, we have investigated the problem of finding t-sparse shifts for multivariate poly-
nomials. The first algorithm has the advantage that the unknown shifts are obtained as zeros
of univariate polynomials over algebraic extensions of Q (as opposed to having to solve general
systems of polynomial equations). The algorithm uses Grobner basis techniques. However, this
algorithm cannot handle all polynomials with ¢-sparse shifts. The second algorithm is a complete al-
gorithm slower than the first, but improves significantly over previously known algorithms. Several
interesting issues remain unresolved at this time:

e find a necessary and sufficient condition for the uniqueness of t-sparse shifts and sparsifying
linear transformations for multivariate polynomials.

e find an algorithm that handles the low degree case more efficiently than our algorithm. It
is intriguing to see what might happen if we try to construct Grébner bases as in the first
algorithm, but with respect to other term orderings to handle the low degree case.

e find efficient algorithms for finding sparsifying linear tranformations (see Grigoriev and Karpin-
ski, 1993). The Grobner basis techniques can be extended to find sparsifying linear transfor-
mations for bivariate polynomials efficiently (polynomial in ¢, d).

It is also interesting to consider more general transformations such as ones leading to sparse de-
compositions of polynomials.
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