A low complexity probabilistic test for integer multiplication

Dima Grigoriev
CNRS, Mathématiques, Université de Lille 59655, Villeneuve d'Ascq, France
dmitry.grigoryev@math.univ-lille1.fr http://logic.pdmi.ras.ru/~grigorev

Gérald Tenenbaum Institut Élie Cartan, Université Henri Poincaré-Nancy
BP 23954506 Vandœuvre, France gerald.tenenbaum@iecn.u-nancy.fr http://www.iecn.u-nancy.fr/~ tenenb

(version 11/1/2010, 17h39)

Abstract

A probabilistic test for equality $a=b c$ for given n-bit integers a, b, c is designed within complexity $n(\log \log n) \exp \left\{O\left(\log ^{*} n\right)\right\}$.

Keywords. probabilistic test, integer multiplication, small divisors

1 Test for multiplication

Denote by $M(n)$ the complexity of multiplication of two n-bit integers. It is wellknown [4] that

$$
M(n)=n(\log n) \exp \left\{O\left(\log ^{*} n\right)\right\}
$$

improving upon the algorithm given in [6]. ${ }^{1}$
We consider here probabilistic testing of the equality $a=b c$ for given n-bit integers a, b, c. In this context, it may be worth mentioning that a probabilistic test for matrix product $A=B C$ within linear complexity has been described in [3]. A general concept of a checking problem (vs. a solving one) was suggested in [2].

Lemma 1.1. The complexity of division with remainder of n-bit integer a by m-bit integer d does not exceed $n(\log m) \exp \left\{O\left(\log ^{*} m\right)\right\}$.

Proof. Let $a \in \mathbb{N}^{*}$ be an n-bit integer and, for $1 \leqslant m \leqslant n$, write the 2^{m}-ary expansion of a, namely $a=\sum_{0 \leqslant i \leqslant n / m} a_{i} 2^{m i}$ with $0 \leqslant a_{i}<2^{m}(0 \leqslant i \leqslant n / m)$. Each of remainder $u_{i}:=\operatorname{Rem}\left(2^{m i}, d\right) \in[0, d[$ may be computed within complexity $O(M(m))[1]$. Subsequently one can calculate each $v_{i}:=\operatorname{Rem}\left(a_{i} u_{i}, d\right)(0 \leqslant i \leqslant n / m)$ again within complexity $O(M(m))$. Finally, $\operatorname{Rem}\left(\sum_{0 \leqslant i \leqslant n / m} v_{i}, d\right)$ can be computed within complexity $O(n)$.

To perform a probabilistic test of the validity of the equation $a=b c$, the algorithm picks randomly an integer $2 \leqslant d \leqslant n^{2}$, calculates $a^{\prime}:=\operatorname{Rem}(a, d)$,

[^0]$b^{\prime}:=\operatorname{Rem}(b, d), c^{\prime}:=\operatorname{Rem}(c, d)$ and finally tests the equality $a^{\prime}=\operatorname{Rem}\left(b^{\prime} c^{\prime}, d\right)$. This test has complexity less than $n(\log \log n) \exp \left\{O\left(\log ^{*} n\right)\right\}$ by virtue of Lemma 1.1 and has an error less than $1 / 2$ due to the following result applied to $a-b c$.

Theorem 1.2. Let $\delta>1-\ln 2$. Then any sufficiently large n-bit integer has at most δn^{2} divisors in the interval $\left[1, n^{2}\right]$.

Remark 1.3. More precisely, the bounds established in the next section show that, for any $\varepsilon>0$, the test can be defined by picking the random divisor d in the interval $\left[2, n^{\sqrt{\mathrm{e}}+\varepsilon}\right]$, but not by picking d in the interval $\left[2, n^{\sqrt{\mathrm{e}}-\varepsilon}\right]$.

2 Bounds for the number of small divisors

We designate by $\ln _{k}$ the k-fold iteration of the Neperian logarithm function $\ln =\ln _{1}$.
Let $P(n)$ denote the largest prime factor of an integer $n>1$, with the convention that $P(1)=1$. For $x \geqslant 1, y \geqslant 1$, we define $S(x, y):=\{n \leqslant x: P(n) \leqslant y\}$ as the set of y-friable integers not exceeding x, and denote by $\Psi(x, y)$ its cardinality. We designate by ϱ Dickman's function, which is defined as the unique continuous solution on \mathbb{R}^{+}of the difference-differential equation

$$
u \varrho^{\prime}(u)+\varrho(u-1)=0 \quad(u>1)
$$

with initial condition $\varrho(u)=1(0 \leqslant u \leqslant 1)$. The function ϱ is strictly decreasing from 1 to 0 on $[0, \infty[$ and we have

$$
\varrho(u)=u^{-u+o(u)} \quad(u \rightarrow \infty) .
$$

For further information and references on the Dickman function, see, e.g., [7], chapter III.5.

Given a function $Z:\left[1, \infty[\rightarrow] 1, \infty\left[\right.\right.$ such that $\ln Z(x)=o\left(\ln x \ln _{2} x\right)$ as $x \rightarrow \infty$ and a real number $t>\mathrm{e}$, we let $\Xi(t ; Z)$ denote the smallest solution in $] 1, \infty[$ of the equation

$$
Z(x) \varrho\left(\frac{\ln x}{\ln _{2} t}\right)=1
$$

That such a solution exists follows from the fact that the right hand side is >1 for $x=\ln t$ and tends to 0 as $x \rightarrow \infty$.

Put

$$
\tau(n, x):=\sum_{\substack{d \mid n \\ d \leqslant x}} 1 \quad\left(n \in \mathbb{N}^{*}, x \geqslant 1\right)
$$

Theorem 2.1. Let $Z:[1, \infty[\rightarrow] 1, \infty[$ be a non-decreasing function satisfying

$$
\begin{equation*}
\ln Z(x) \ll(\ln x) /\left(\ln _{2} 3 x\right)^{2} \quad(x \geqslant 1) \tag{1}
\end{equation*}
$$

For all $\varepsilon>0$ and sufficiently large n, we have

$$
\begin{equation*}
x>\Xi(n ;(1+\varepsilon) Z) \Rightarrow \tau(n, x) \leqslant x / Z(x) \tag{2}
\end{equation*}
$$

Under the extra condition

$$
\begin{equation*}
\ln Z(x)=o(\sqrt{\ln x}) \quad(x \rightarrow \infty) \tag{3}
\end{equation*}
$$

there exists a strictly increasing integer sequence $\left\{n_{k}\right\}_{k=0}^{\infty}$ such that

$$
\begin{equation*}
\tau\left(n_{k}, x_{k}\right)>x_{k} / Z\left(x_{k}\right) \quad(k \geqslant 0) \tag{4}
\end{equation*}
$$

with $x_{k}:=\Xi\left(n_{k} ;(1-\varepsilon) Z\right)$.
Before embarking on the proof, we note a simple corollary obtained by considering the case when Z is a constant. For fixed $v>1$, we let $x_{n}(v)$ denote the smallest real number such that

$$
\tau(n, x) \leqslant x / v \quad\left(n \geqslant 1, x \geqslant x_{n}(v)\right) .
$$

Theorem 1.2 follows by specializing $v=2$ in the next statement, and Remark 1.3 by selecting $v=1 /(1-\ln 2)$.
Theorem 2.2. For $1<v \leqslant 1 /(1-\ln 2), w:=\exp \{1-1 / v\}$, we have

$$
\begin{equation*}
x_{n}(v) \leqslant(\ln n)^{w+o(1)} \quad(n \rightarrow \infty) \tag{5}
\end{equation*}
$$

Moreover, in the above upper bound, the exponent w is optimal in the following sense: given any $\varepsilon>0$, there exists a strictly increasing integer sequence $\left\{n_{j}\right\}_{j=0}^{\infty}$ such that

$$
\begin{equation*}
x_{n_{j}}(v)>\left(\ln n_{j}\right)^{w-\varepsilon} \quad(j \geqslant 0) . \tag{6}
\end{equation*}
$$

Proof. We select $Z(x)=v$ in Theorem 2.1 and note that, since $\varrho(u)=1-\ln u$ for $1 \leqslant u \leqslant 2$, we have $\Xi(n ; v)=(\log n)^{w}$ for $n \geqslant 3$ and $1<v \leqslant 1 /(1-\log 2)$.
Proof of Theorem 2.1. We first establish (2).
Let p_{k} denote the k-th prime number and $\left\{p_{j}(n)\right\}_{j=1}^{\omega(n)}$ designate the increasing sequence of distinct prime factors of an natural integer n. Then the mapping

$$
F: \prod_{1 \leqslant j \leqslant \omega(n)} p_{j}(n)^{\nu_{j}} \mapsto \prod_{1 \leqslant j \leqslant \omega(n)} p_{j}^{\nu_{j}}
$$

is an injection from the set of divisors of n into the subset of $p_{\omega(n)}$-friable integers d. Moreover, $F(d) \leqslant d$ for all $d \geqslant 1$. Therefore

$$
\begin{equation*}
\tau(n, x) \leqslant \Psi\left(x, p_{\omega(n)}\right) \quad(n \geqslant 1, x \geqslant 1) . \tag{7}
\end{equation*}
$$

Since we have, for any integer $n \geqslant 1$,

$$
\prod_{p \leqslant p_{\omega(n)}} p \leqslant n
$$

a strong form of the prime number theorem yields

$$
\begin{equation*}
p_{\omega(n)} \leqslant L_{n}:=\left\{1+\mathrm{e}^{-\left(\ln _{2} n\right)^{c}}\right\} \ln n \tag{8}
\end{equation*}
$$

for any $c<3 / 5$ and sufficiently large n.

If, for instance, $\ln n \leqslant \mathrm{e}^{2\left(\ln _{2} x\right)^{11 / 6}}$, we have, as $n \rightarrow \infty$, by virtue of the uniform upper bound for $\Psi(x, y)$ given in theorem III.5.1 of [7],

$$
\Psi\left(x, L_{n}\right) \leqslant \Psi(x, 2 \ln n) \ll x^{1-1 /\left(2+2 \ln _{2} n\right)} \ll x \mathrm{e}^{-\frac{1}{5}(\ln x) /\left(\ln _{2} x\right)^{11 / 6}}=o(x / Z(x))
$$

This implies $\tau(n, x)<x / Z(x)$ in this case.
If

$$
\begin{equation*}
\ln n>\mathrm{e}^{2\left(\ln _{2} x\right)^{11 / 6}} \tag{9}
\end{equation*}
$$

Hildebrand's asymptotic formula (see for instance corollary III.5.19 of [7]) implies

$$
\Psi\left(x, L_{n}\right) \leqslant\{1+o(1)\} x \varrho\left(\frac{\ln x}{\ln L_{n}}\right) \quad(x \rightarrow \infty)
$$

However, by (8), we have

$$
\frac{\ln x}{\ln L_{n}}=\frac{\ln x}{\ln _{2} n}+O\left(\mathrm{e}^{-\left(\ln _{2} x\right)^{11 c / 6}}\right)
$$

By selecting $\frac{6}{11}<c<\frac{3}{5}$, and in view of the estimate $\varrho^{\prime}(u) \ll(\ln 2 u) \varrho(u)(u \geqslant 1)$ established for instance in corollary III.5.14 of [7], we deduce that

$$
\varrho\left(\frac{\ln x}{\ln L_{n}}\right) \sim \varrho\left(\frac{\ln x}{\ln _{2} n}\right)
$$

as n and x tend to infinity under condition (9). It follows that, in the same circumstances, we have $\tau(n, x)<x / Z(x)$ as soon as $x>\Xi(n,(1+\varepsilon) Z)$.

This completes the proof of the upper bound (2).
To prove the lower bound (4), we give ourselves a (large) constant $D \in \mathbb{N}^{*}$ and put

$$
\Psi_{D}(x, y):=\sum_{\substack{n \leqslant x \\ p \mid n \Rightarrow p \leqslant y}} g_{D}(n)
$$

where g_{D} is the indicator of D-free integers, i.e. integers such that $p^{\nu} \| n \Rightarrow \nu \leqslant D$. The arithmetical function g_{D} is an s-function in the sense of [5], in other words $g_{D}(n)$ only depends upon

$$
s(n):=\prod_{p^{\nu} \| n, \nu \geqslant 2} p^{\nu} .
$$

Theorem 1 of [5] may hence be applied, and, writing $\zeta(s)$ for the Riemann zeta function, yields, for any $\varepsilon>0$,

$$
\begin{equation*}
\Psi_{D}(x, y):=\sum_{\substack{n \leqslant x \\ p \mid n \Rightarrow p \leqslant y}} g_{D}(n) \sim \frac{x \varrho(u)}{\zeta(D+1)} \tag{10}
\end{equation*}
$$

as x and y tend to infinity in such a way that $\exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leqslant y \leqslant x$.
Let us then put $N_{k}:=\prod_{1 \leqslant j \leqslant k} p_{j}^{D}(k \geqslant 1)$. Applying (10) for

$$
\begin{equation*}
p_{k}<x \leqslant \exp \left\{o\left(\left(\ln p_{k}\right)^{2} / \ln _{2} p_{k}\right)\right\} \quad(k \rightarrow \infty), \tag{11}
\end{equation*}
$$

and setting $u_{k}:=(\ln x) / \ln p_{k}$, we get

$$
\tau\left(N_{k}, x\right)=\Psi_{D}\left(x, p_{k}\right) \sim \frac{x \varrho\left(u_{k}\right)}{\zeta(D+1)}
$$

Now, observe that hypothesis (11) implies

$$
u_{k} \ln \left(1+u_{k}\right)=o\left(\ln p_{k}\right) \quad(k \rightarrow \infty)
$$

Since $\ln N_{k} \sim D p_{k}$, we therefore have, when x satisfies (11),

$$
\begin{aligned}
\varrho\left(\frac{\ln x}{\ln _{2} N_{k}}\right) & =\varrho\left(\frac{\ln x}{\ln p_{k}+O(1)}\right)=\varrho\left(u_{k}+O\left(\frac{u_{k}}{\ln p_{k}}\right)\right) \\
& =\left\{1+O\left(\frac{u_{k} \ln \left(1+u_{k}\right)}{\ln p_{k}}\right)\right\} \varrho\left(u_{k}\right) \sim \varrho\left(u_{k}\right)
\end{aligned}
$$

Select $x:=\Xi\left(N_{k} ;(1-\varepsilon) Z\right)$, where $\left.\varepsilon \in\right] 0,1-1 / Z(1)[$. From the above, it then follows that $Z(x)(1-\varepsilon) \varrho\left(u_{k}\right)=1+o(1)$ as $k \rightarrow \infty$. We deduce, on the one hand, that $x>p_{k}$, because $\varrho(1)=1$, and, on the other hand, in view of the classical asymptotic estimates for $\varrho(u)$ (see for instance theorem III.5.13 of [7]), that

$$
u_{k} \ln \left(1+u_{k}\right) \asymp \ln Z(x)=o(\sqrt{\ln x})
$$

Condition (11) is hence fulfilled. It follows that

$$
\tau\left(N_{k}, x\right)=\Psi_{D}\left(x, p_{k}\right)>\frac{x}{(1-\varepsilon / 2) \zeta(D+1) Z(x)}>\frac{x}{Z(x)} \quad(k \rightarrow \infty)
$$

provided we choose, as we may, D sufficiently large in terms of ε.
This completes the proof of the second part of our theorem.
As a further concrete example of application of Theorem 2.1, we state the following corollary.

Corollary 2.3. Let $c>0, \varepsilon>0$. For sufficiently large n and all

$$
x>(\ln n)^{\{1+\varepsilon\} c\left(\ln _{3} n\right) / \ln _{4} n}
$$

we have $\tau(n, x) \leqslant x /(\ln x)^{c}$. This statement is optimal in the sense that one cannot replace ε by $-\varepsilon$.

Acknowledgements. The first author is grateful to John Harrison who asked for a deterministic test for multiplication, Pieter Moree for valuable discussions and to Max-Planck Institut für Mathematik, Bonn, where the note has been written, for hospitality.

References

[1] A. Aho, J. Hopcroft and J. Ullman, Design and analysis of computer algorithms, Addison-Wesley, (1974).
[2] M. Blum, S. Kannan, Designing programs that check their work, Proc. ACM Symp. Th. Comput. (1989), 86-97.
[3] R. Freivalds, Fast probabilistic algorithms, Proc. Symp. Math. Found. Comput. Sci., Springer (1979), 57-69.
[4] M. Fürer, Faster integer multiplication, Proc. ACM Symp. Th. Comput., (2007), 57-66.
[5] A. Ivić and G. Tenenbaum, Local densities over integers free of large prime factors, Quart. J. Math. (Oxford) (2) 37 (1986), 401-417.
[6] A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing, 7 (1971), 281-292.
[7] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, third edition, coll. Échelles, Belin (Paris), 2008.

[^0]: ${ }^{1}$ Recall the definition $\log ^{*} n:=\min \left\{j \geqslant 0: \log { }^{[j]} n \leqslant 1\right\}$, where $\log ^{[j]}$ is the j-fold iteration of the logarithm to the base 2 , denoted by log.

