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Abstract. We establish a (novel for desingularization algorithms)
apriori bound on the length of resolution of singularities by means
of the compositions of the normalizations with Nash blowings up,
albeit that only for affine binomial varieties of (essential) dimen-
sion 2 . Contrary to a common belief the latter algorithm turns
out to be of a very small complexity (in fact polynomial).

To that end we prove a structure theorem for binomial varieties
and, consequently, the equivalence of the Nash algorithm to a com-
binatorial algorithm that resembles Euclidean division in dimen-
sion ≥ 2 and, perhaps, makes the Nash termination conjecture of
the Nash algorithm particularly interesting.

A bound on the length of the normalized Nash resolution of
a minimal surface singularity via the size of the dual graph of its
minimal desingularization is in the Appendix (by M. Spivakovsky).
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1. Introduction.

1.1. Nash blow ups and normalizations: conjectures. For a re-
duced equidimensional algebraic variety X , say of dimX = n , over
an algebraically closed field K of zero characteristic (this requirement
is relaxed in Sections 3, 5) the Gauss map GX is defined off singular
points SingX of X and sends every point P ∈ RegX := X \SingX to
the tangent space TPX (to X at P) as points of the respective Grass-
manian bundle restricted overX . (Using embeddings of affine charts of
X in KN consider the Grassmanian variety of n-dimensional subspaces
of KN . The latter naturally embeds into projective space P(∧nKN)
by means of Plücker coordinates, i. e. the homogeneous coordinates in
∧nKN .) The Nash blow up N(X) of X is the closure of the graph of
GX together with the natural projection NX : N(X) → X .

Nash conjecture. The sequence of Nash blowings up starting with
any algebraic variety stabilizes, resulting in a desingularization.

Over affine charts the ring of ‘regular functions’ K[N (X)] on the
normalization NX : N (X) → X of a variety X is the integral closure
of K[X] in its field of fractions. When Z is nonsingular and X ≃ Z × Y
(locally) it follows that N (X) ≃ Z × N (Y ) (of course also only lo-
cally). Normalization separates irreducible components with respect
to the étale topology (their ideals in the completions of the local rings
are the minimal prime ideals). We refer to the compositions of nor-
malizations with Nash blowings up as normalized Nash blowings up.

Normalized Nash conjecture. Normalized Nash blowings up
starting with any algebraic variety result in a desingularization.

Remark 1.1. So far Nash and normalized Nash desingularizations re-
main elusive in respective dimensions larger than one and two. More-
over, in dimension larger than one an apriori estimate for the length of
the normalized Nash desingularization is novel (no such estimates are
known for other desingularizations).
(i) If the Nash blow up NX : N(X) → X is an isomorphism then

X is nonsingular, see [12] and [13].
(ii) The Nash conjecture is true when dimX = 1 and there is a

simple estimate for the length of sequences by Nash blowings up leading
to a desingularization (e. g. by means of Newton-Puiseux expansions).
(iii) M. Spivakovsky proved that the sequence of normalized Nash

blowings up terminates when dimX = 2 , see [15] and [10]. In fact
1 + log2(#Γ) is an upper bound on the length of normalized Nash
desingularization of a minimal surface singularity, where #Γ is the
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number of vertices of the dual graph Γ of itsminimal desingularization;
see below in the Appendix authored by M. Spivakovsky.

1.2. Summary of results and the structure of the paper. In
Section 4 we establish the equivalence of the Nash algorithm for desin-
gularization of binomial varieties with a simple combinatorial algo-
rithm that resembles classical Euclidean division. The main first step
(proved in Sections 3 , 5) is our structure theorem for binomial vari-
eties: we establish isomorphisms of the irreducible components of any
affine binomial variety V̂ ⊂ AN with its toric component V and, also,
the isomorphisms of the étale germs of the latter with those of the
product of a suitable subtorus of V and of the binomial subvariety
ŶV := {w ∈ V : wi = 1 , i ∈ I} , where wi’s are the coordinates on
AN and I := {i : V ∩ {wi = 0} = ∅} (Theorem 3.7). The toric compo-

nent YV of ŶV →֒ AN−#I contains 0 (Corollary 3.5). An affine toric
variety Y ∋ 0 iff 0 6∈ Conv(E) := the convex hull of the set E ⊂ Zm

of the exponents of a monomial parametrization of the torus of Y
(Claim 3.2). The latter essential property is preserved (Claim 4.6)
in the affine charts of a suitable covering of the Nash blowing up and
implies that Y is nonsingular iff the set E is spanned over nonnegative
integers by a subset of E of size m = dimY (Criterion 3.16). As a
consequence and by following the changes in the exponents E under
the Nash blowings up we establish in Section 4 the equivalence of the
algorithm for desingularization of binomial varieties by means of Nash
blowings up to an ‘Euclidean m-dimensional division’. However, its
termination predicted by the Nash conjecture remains open even when
m = 2 .
On the other hand a combinatorial version of the composition of nor-

malizations with Nash blowings up for m = 2 yields (unexpectedly for
any desingularization) a sharp apriori bound 2 · log2 D on the length of
desingularizing sequences, where D is the area of the parallelogram on
the shortest integral generators of the cone spanned by the exponents
E , see Theorems 2.1 , 6.8 and Corollary 6.9 (and a ‘guidance’ remark
at the beginning of Section 6.1). Consequently, when m = 2 we estab-
lish a polynomial complexity of the algorithm in the binary size of the
input, see Corollaries 7.5 , 7.6 , 7.7 . Also, every affine chart is covered
after the normalized Nash blowing up by at most 5 affine charts with
at most 3 among them being singular, cf. Claim 6.10 . In Section 8 we
establish (local) invariance of D = Do , o ∈ Y , with respect to local
isomorphisms that preserve hypersurfaces invariant under the action of
the torus of Y and contain o .
An earlier version of this work appeared in [8] .
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1.3. Euclidean m-dimensional division algorithm, m ≥ 1 . Let
R+ ⊂ R and Q+ ⊂ Q denote nonnegative real and rational numbers
respectively; let Z+ ⊂ Z be the set of positive integers. For a finite set
E ⊂ Zm let Z+(E) denote the additive semigroup spanned by E . Let
Span Q+

(E) be the convex cone spanned by E over Q+ in Qm . Then

The input is a finite E := {~∆j}j ⊂ Zm = Span ZE with 0 6∈ Conv(E)
and E = Extreme(Z+(E)) := the minimal set of generators of Z+(E) .
Let S := {J ⊂ E : #J = m , det{~∆j}j∈J 6= 0} , {~∆J :=

∑
j∈J

~∆j}J∈S
and say that h ∈ (Rm)dual is ‘irrational’ iff dimQ Span Q{hi}i = m .
The branching set For each irrational h such that h|E > 0 , there

exists a unique J ∈ S which minimizes the quantity h(~∆J) . By def-
inition, the branching set B consists of all such J as h runs over the
irrational elements of (Rm)dual satisfying h|E > 0 . In other words, let

EJ := E∪{~∆J ′− ~∆J}J 6=J ′∈S . Then B = S ′ := {J ∈ S : 0 6∈ Conv(EJ)} .
See Claim 4.6 and its proof for details.

The output corresponding to J ∈ B is NJ(E) := Extreme(Z+(EJ)) .
A branch terminates at E when #E = m , cf. Claim 4.9.

Normalized Euclidean m-dimensional division is the alternat-
ing composition of Euclidean m-dimensional division with a combina-
torial version of normalization: E 7→ N (E) , where N (E) :=
Extreme(Zm ∩ Span Q+(E) \ 0) .
1.4. Desingularization reductions briefly. A binomial is the dif-
ference of two monomials in a given set of variables, which is fixed once
and for all. Affine binomial (shortly AB-)varieties (see e. g. [3]) are
defined as the closures in KN of the zeroes (off coordinate hyperplanes)
of collections of binomials. Theorem 3.7 provides a reduction of Nash
and of normalized Nash desingularizations of AB-varieties to that of
essential varieties, i. e. affine toric varieties containing the origin. All
the isomorphism types of singularities of an essential variety occur in
every neighbourhood of its origin, see Claim 3.13.

Remark 1.2. Of course, if X consists of several irreducible compo-
nents X = ∪iXi then N(X) = ∪iN(Xi) and N(Xi) are the irreducible
components of N(X). When the variety X has an étale open set U
which is a product of a nonsingular variety Z with a (possibly singular)
variety Y , then N(X) over U is isomorphic to the product Z ×N(Y )
of Z with N(Y ) .
Let X be an algebraic variety and let X1 , X2 denote two smooth

germs of irreducible components of a certain étale open neighourhood
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U of a point ξ ∈ X . Let Ij , j = 1, 2 , denote the defining ideals

of X1 and X2 in the completion Ô of the local ring O of the ambient
manifold at ξ . The contact between X1 and X2 is defined to be the
largest integer l such that I1 + m̂l = I2 + m̂l , where m̂ is the maximal
ideal of Ô . Nash blow up either separates X1 and X2 or reduces the
contact between them. Thus the sequence of Nash blowings up of a
variety all of whose étale irreducible components are smooth at every
point terminates, separating ‘Nash liftings’ of these components.

1.5. Singularities vis-a-vis structure of binomial varieties. Let
K[w] denote the ring of polynomials in N variables wj with coefficients
in a field K . Affine binomial (or AB-)varieties are defined to be the

closures V̂ in AN of the sets of common zeroes on the standard torus
TN := ∩j{wj 6= 0} ⊂ AN := SpecK[w] of collections of binomials.
In Sections 3 , 5 we state and prove a structure theorem for affine
binomial (shortly AB-)varieties (assuming that the numbers defined

in Theorem 3.7 C, namely d(V̂ ) := d 6= 0 in K , e. g. whenever
K is of characteristic zero), see Theorem 3.7 C. For an algebraically
closed field K one may replace AN by KN . Let I be the set
defined in Section 1.2 . We split all w-coordinates on AN into y-
and z-coordinates, w = (y , z) , with y = {wi}i 6∈I and z = {wi}i∈I .

Let π : AN ∋ (y , z) 7→ z ∈ AN−L . We refer to varieties of the

form (π)−1(W ) for a nonsingular W →֒ π(V̂ ) as V̂ -admissible. Due to
Theorem 3.7 the singularities of the irreducible components of the étale
germs of a variety V̂ in the AB class and of the V̂ -admissible varieties
are essentially ‘the same’, see Claim 3.14 and Remark 3.15 (the latter
class of generalized AB or shortly GAB-varieties includes all quasi-
binomial varieties, i. e. varieties such that every defining equation is a
linear combination of two monomials).
Other consequences of Theorem 3.7 include a reduction of Nash (re-

spectively normalized Nash) desingularizations of GAB-varieties to
the respective desingularizations of irreducible binomial varieties pass-
ing through the origins of the (appropriate) ambient affine coordinate
charts. We also obtain simple criteria of nonsingularity for all toric
varieties in terms of the exponents of monomial parametrizations of
their dense tori and, as a consequence, for blowings up of smooth affine
spaces at the ideals generated by monomials, see Criteria 3.18 and 3.19.
Affine toric varieties are the closures in AN of the images - φE(T

m)
of the standard tori Tm ≃ Tm := ∩j{xj · x̃j = 1} →֒ A2m under
monomial bijections φE : Tm → φE(T

m) →֒ TN (with E ⊂ Zm being
the set of the exponents of the monomial components of φE). Toric
varieties are binomial, but not necessarily normal, e. g. the Whitney
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Umbrella {x2 − z · y2 = 0} ⊂ C3 . Moreover, Nash blowings up of
normal varieties with open dense tori may fail to be normal, e. g. the
Nash blow up of a surface S := φE(T2) ⊂ C3 , where φE : (x1, x2) 7→
(x1 ·x2 , x1 ·x22 , x31 ·x22), fails to be normal in spite of the fact that S is
a normal surface. Indeed, normality of the latter is a consequence (due
to a criterion in Section 2.1 of [5] ) of the property of the exponents
E = {(1, 1) , (1, 2) , (3, 2)} ⊂ (Z+)

2 to span over Z+ all points of
its integral lattice within the cone spanned (over R+) by E in R2 . See
Example 6.3 for the failure of normality for N(S) . Consequently we
refer to the varieties with a dense torus as toric (as in [16] or [1]), while
in [5] they are refered to as toric only when normal.

2. A sharp apriori bound in essential dimension 2.

We consider algebraic varieties (so called binomial) that admit (Zariski)

open coverings by ‘affine binomial’ varieties, i. e. closures V̂ in AN

of sets V ∗(f̂) := {w ∈ TN : f̂j(w) = 0 , 1 ≤ j ≤M } , where (f̂)
are the ideals in the ring K[w] of polynomials in w := (w1, . . . , wN)
with coefficients in a field K generated by binomials

f̂j := w
α̂j1

1 · · ·wα̂jN

N − w
β̂j1

1 · · ·wβ̂jN

N .(2.1)

Let the exponent matrix Ê of V̂ have entries α̂ji− β̂ji and denote by
(j) the vector with the only nonzero coordinate (the jth ) equal to one.

Let {~δi × 0}i ⊂ ZN be a Z-basis of Ker Ê ∩ (QL × 0) ⊂ QN , where

{~δi}1≤i≤m ⊂ ZL (with splittings w = (y, z) and KN = KL ⊕ KN−L

as in the previous section, while K being an algebraically closed field
of zero characteristic, cf. Section 1.1). Our main estimate is

Theorem 2.1. Complexity bound on desingularization when m = 2 .

(i) The convex hull of {((~δ1)l , (~δ2)l)}1≤l≤L does not contain 0 ∈ R2 .

(ii) Let D be the size of the coordinate of ~δ1 ∧ ~δ2 at (l) ∧ (k) ,
1 ≤ l , k ≤ L , for which the cone in R2 spanned over R+ by

((~δ1)l , (~δ2)l) and ((~δ1)k , (~δ2)k) contains all vectors ((~δ1)j , (~δ2)j) ,
1 ≤ j ≤ L . Then after at most 2 · log2D normalized Nash blowings

up starting with the variety V̂ the process stabilizes.

Theorem 2.1 (i) (for any m ) is a consequence of Claim 3.2 (cf.
Remark 4.1 below), while the second claim is a consequence of The-
orem 6.8 proved in Section 7 , see also a ‘guidance’ remark at the
beginning of Section 6.1 .
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Remark 2.2. Finding D of Theorem 2.1 (and Section 1.2):

Note that for any integral basis { ~δi}1≤i≤m , as considered preceding

Theorem 2.1, the coordinates of ~δ1 ∧ · · · ∧ ~δm in the standard basis
are unique up to a sign and can simply be found by choosing any Q-

basis {~vi}1≤i≤m with the same Q-span as that of the {~δi}1≤i≤m , then
multiplying the respective coordinates of ~v1 ∧ · · · ∧ ~vm by their least
common denominator and subsequently dividing the obtained integers
by their g.c.d. . For m = 2 we may, moreover, determine the bound
D of Theorem 2.1 up to a sign by detecting which (l)∧ (k) coordinate
of the resulting sequence of integers to take. To that end the criterion
of detecting pairs (l, k) of Theorem 2.1 does not depend on the choice
of a basis and can be applied as well with a basis {~vi}1≤i≤m .

We prove the local invariance of the integer D from Theorem 2.1
(and Section 1.2) in Section 8 , cf. Lemma 8.3 and Corollary 8.5 .

Part 1. Arbitrary dimension.

We state the main result of Part 1, namely Theorem 3.7 in Section 3.

3. Reduction to essential toric case.

We adopt the following notations: V̂ is the closure of V̂ ∗ := V̂ ∩TN =

V ∗(f̂) = {w ∈ TN : wÊ = IM} , 0 ∈ AM is the origin, IM :=
(1, . . . , 1) ∈ AM , IdN denotes the unit matrix of size N × N . We
refer to the closure in AN of the image of a bijective monomial map
φE : Tm → X∗

E := φE(T
m) ⊂ AN (with the exponents in E ⊂ Zm )

as an affine toric variety and denote the latter by XE . For the sake
of convenience we denote by (A||B) the matrix with columns of A
followed by the columns of B and the matrix with rows from the
exponents set E by the same letter, i. e. φE(x) = xE . But we denote
both the set of columns and transpose matrix of a matrix T by T tr ,
e.g. π ◦φE = φ(π(Etr))tr (for π from Section 1.5). We refer to ∆ ⊂ ZN

as a Z-basis when #(∆) = rank (∆) and Span Z(∆) = Span Q(∆)∩ZN .

Classical construction: applying ‘Gauss elimination’ let Λ , λ
be square matrices with entries in Z and det(Λ) = 1 = det(λ) such

that matrix τ := Λ ·Ê ·λ has vanishing entries except in the upper-left
corner on a ‘diagonal’ of length r = rank Ê (while for the successive
integral entries dq ∈ Z+ , q = 1, . . . , r , the ideals generated in Z by

the q× q minors of matrix Ê and, respectively, by d1 · ... · dq coincide;

it is the so called Smith normal form). Denote d(Ê) := |d1 · ... · dr| .
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Remark 3.1. Immediate consequences of this construction include
1. dim V̂ = N − r ;

2. solutions of wÊ = IM and of w̃τ = IM in TN are related by
an automorphism φλ of TN ;
3. d(Ê) = #((Span Q(Ê

tr) ∩ ZM)/Span Z(Ê
tr)) ;

4. V̂ ∗ has [d(Ê)] irreducible components, , where [d(Ê)] := d(Ê)

or [d(Ê)] := d(Ê) · p−s ∈ Z \ (p · Z) (with an appropriate s ∈ Z+)
depending on whether K has characteristic p = 0 or p > 0 ;

5. when N = r the morphism φÊ : TN ∋ w 7→ wÊ ∈ TM is a

parametrization iff d(Ê) = 1 , is surjective iff field K is perfect, is an

étale isomorphism iff [d(Ê)] = d(Ê) and is finite of degree d(Ê) when
X∗

Ê
= X

Ê
(since φΛ is an automorphism of TM);

6. the irreducible component V ∗ ∋ IN of V̂ ∗ is a torus V ∗ =
X∗

E with the choices for parametrizing V ∗ consisting of exponents
E ⊂ Zn , n := N − r , such that the columns of E as a matrix form a
Z-basis of Ker Ê ∩ ZN .

Proof. To prove the last (less immediate) statement we note that for

{w̃ ∈ TN : w̃τ = IM} parametrizations x 7→ w̃ = xẼ are determined
by the Z-bases of Zn →֒ ZN , implying the claim by means of the
automorphism w = w̃λ of TN and the correspondence E := λ·Ẽ . �

Consequently for affine binomial varieties the following holds.

Property A. Cosets [g] ∈ Γ := V̂ ∗/V ∗ of g ∈ V̂ ∗ uniquely identify the

irreducible components of V̂ as g · V ∗ , V̂ ∗ ⊂ Reg V̂ , cf. Remark 5.2.

Claim 3.2. The affine toric variety XE ∋ 0 iff Conv (E) 6∋ 0 .

Proof. Indeed, the ‘only if’ follows since if Conv (E) ∋ 0 then there are
E ′ ⊂ E and {pe ∈ Z+}e∈E ′ such that

∑
e∈E ′ pe · e = 0 , which implies

that XE ⊂ {w :
∏

e∈E ′ wpe
e = 1} . ‘If’ follows by choosing η ∈ Zm ⊂

(Rm)dual with η(e) > 0 for e ∈ E since then 0 ∈ Xη(E) ⊂ XE . �

The proofs of the claims of this section are in Section 5 or included
here.

Claim 3.3. The torus X∩TN of an affine m-dimensional toric variety
X admits a parametrization φE with exponents E ⊂ (Z+)

m iff 0 ∈ X.

Lemma 3.4. Pick ~ξ ∈ Ker Ê ∩ (Z+ ∪ {0})N . There exists (~ξ)i > 0

iff i 6∈ I , where I is from Section 1.2 (i.e. wi for V̂ is a ‘y-variable’).



Nash desingularization as an Euclidean division : polynomial complexity 9

Corollary 3.5. There exists ~ξ+ ∈ Ker Ê ∩ (Z+ ∪ {0})N such that

(~ξ+)i > 0 iff wi is a ‘y-variable’. Also, (0, IN−L) ∈ XE+ ⊂ V̂ for

E+ := {(~ξ+)i}i ⊂ Z .

The ideal of V̂ := V ∗(f̂) in terms of equations f̂ is identified by

Claim 3.6. A polynomial P ∈ K[w] vanishes on V̂ if and only if

(y1 · . . . · yL)l · P ∈ (f̂) for some l ∈ Z+ .

Theorem 3.7. For any affine binomial variety V̂ →֒ AN and V := V ∗

B. The variety π(V̂ ) = π(V̂ ∗) is binomial and closed in AN−L ,

while V̂ ∩ (AL × IN−L) = V ∗(f̂) ∩ (AL × IN−L) and the latter variety
has an irreducible toric component Y =: XEY , EY ⊂ ZdimY , with

Ŷ := V ∩ (AL × IN−L) .
C. There exists EZ ⊂ Zn−dimY such that V ∗ = X∗

(EY ||EZ) and, more-

over, π(V ∗) →֒ AN−L and Z := X∗
EZ

→֒ V ∗ are closed in AN−L and

AN respectively. The morphisms π|Z : Z → π(V ) and multiplication

µ : Z × Ŷ → V are surjective iff field K is perfect and are finite of
degree d := d(π(E tr

Z )) with all fibres of size equal [d] = #(Ŷ ∗/Y ∗) .
Both morphisms are étale isomorphisms iff d 6= 0 in K .
Also, µ|Z×(g·Y ) for g ∈ Ŷ ∗ are surjective (when K is perfect) and

finite of degree d .

To connect with the notations of Section 1.2 note that ŶV := Ŷ is
binomial (due to B.), while YV := Y is an irreducible component of Ŷ
containing IN and is toric due to A. .

Remark 3.8. The degree of µ in C. is dimµ∗(K(V ))K[Z × Ŷ ] · S−1 ,
where K(V ) is the field of rational functions on V and S :=
µ∗(K[V ] \ {0}) .
Example 3.9. Note that µ|Z×Y : Z × Y → V need not be an
étale isomorphism, e. g. if V := {y21 = z1 · y22 , z1 · z2 = 1} then
Y = {z1 = z2 = 1 , y1 = y2} ( Z := {z1 = y1 = y22 , z1 · z2 = 1}
satisfies the assumptions of Theorem 3.7 C.) and there are two étale
irreducible components of V at the points of V ∩ {y1 = y2 = 0} ,
while Z × Y is nonsingular, and hence étale irreducible at every
point. Nevertheless the local étale irreducible components of an affine
binomial variety V̂ are isomorphic to the respective étale germs of
Z × Y due to Theorem 3.7.
Note that µ and µ|Z×Y are finite since K[Z×Y ] ≃ K[t , s , s−1]

and K[Z × Ŷ ] ≃ K[y1 , y2 , s , s
−1]/(y21 − y22) are integral over
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K[t · s2 , t · s , s2 , s−2] ≃ µ|∗Z×Y (K[V ]) →֒ K[Z×Y ] and, respectively,

K[y1 · s2 , y2 · s , s2 , s−2]/(y21 − y22) ≃ µ|∗
Z×Ŷ

(K[V ]) →֒ K[Z × Ŷ ] .

Claim 3.10. For Z from the second line of Theorem 3.7 C. the distinct
irreducible components of Ŷ are g ·Y , where g ∈ Γ̃ := (π|Z)−1(IN−L)

and #(Γ̃) = #(Ŷ ∗/Y ∗) . The map µ|Z×(g·Y ) is surjective and finite

for all g ∈ Γ̃ iff it is the case for some g ∈ Γ̃ .

Proof. Identify V ∗ with Tn via the bijection φ(EY ||EZ) with EZ ⊂ Zn−m

from Theorem 3.7 C. . The equalities #(Ŷ ∗/Y ∗) = d(π(E tr
Z )) =

#(π|−1
Z (IN−L)) follow by replacing Ê by π(E tr

Z )tr in Remark 3.1 . (Note

that by replacing Ê by EŶ in Remark 3.1 , where EŶ is any exponent

matrix of the equations of Ŷ , it also follows that #(Ŷ ∗/Y ∗) = [d(EŶ )] ;

and the matrix with the rows of Ê followed by the rows of (0||IdN−L)

could be used as EŶ if d(Ê) = 1 or, equivalently, if V̂ = V .)

All irreducible components of Ŷ ∗ are of the form g · Y ∗ for some
g ∈ Ŷ ∗ (Property A.) and the multiplication µ|Z×Y ∗ : Z × Y ∗ → V ∗ is
a bijection (since φ(EY ||EZ) is). Therefore Y

∗∩(π|Z)−1(IN−L) = {IN} and
Z ∩g ·Y ∗ 6= ∅ for any g ∈ V ∗ . Hence distinct points of the subgroup Γ̃
belong to distinct irreducible components of Ŷ and, respectively, every
irreducible component intersects Γ̃ implying the first claim.
The remainder is a consequence of multiplication by g ∈ Γ̃ →֒ Z

being an isomorphism of Z → Z , of V → V and of Y → g · Y . �

Claim 3.11. Let Ẽ tr be any Z-basis of Ker Ê∩ZN . Then d(π(Ẽ tr)) (as
determined by 3. of Remark 3.1) depends only on V ∗ →֒ TN and coin-
cides with d(π(E tr

Z )) , where the choice of EZ is as in Theorem 3.7 C.

Proof. Note that X∗
(EY ||EZ) = V ∗ = X∗

Ẽ
due to the choice of EZ and 6.

of Remark 3.1 . Also, obviously, π((EY )tr) = {0} . Furthermore, the
‘z-coordinates’ of Ẽ tr , i. e. π(Ẽ tr) , generate over Z a sublattice

Span Z(π(Ẽ tr)) ⊂ ZN−L ∩ Span Q(π(Ẽ tr)) = ZN−L ∩ π(Ker Ê)

that depends only on V ∗ →֒ TN , implying that d(π(Ẽ tr)) = d(π(E tr
Z ))

and the remainder of the claim. �

Remark 3.12. An outline of the initial arguments of the proof of The-
orem 3.7 in Section 5. The sets of exponents parametrizing the tori of
Y and V are the rows of the matrices whose columns must be Z-bases
EY of Ker Ê∩ (ZL×0) and EV := (EY ||EZ) of Ker Ê (Remark 3.1).
Hence, φ

(π(Etr
Z
))tr

= π|Z ◦ φE
Z

implying (when π(V ∗) = π(V ) and

Z are closed) that the properties of π|Z : Z → π(V ∗) listed in part
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C. are equivalent to the analogous properties of φ
(π(Etr

Z
))tr

. Of course

π(E tr
Z ) is a Q-basis of π(Ker Ê)∩ZN−L , but (as in the Example 3.9)

it need not be a Z-basis. Respectively π|Z need not be an isomor-
phism, but is only a finite map of degree d as in part C.. Finally,
the properties of µ listed in C follow from the respective properties of
π|Z by making use of the coordinatewise multiplication action by Z
on V (the missing details are in Section 5).

We refer to Y →֒ V̂ as an essential subvariety. With π as above, and
with a convention of identifying AL × IN−L ≃ AL and 0 × IN−L ≃ 0
we find that the variety Y itself is essential , i. e. 0 ∈ Y , due to
Corollary 3.5 .

Claim 3.13. Essential varieties are distinguished by the property of
having the origin as their most singular point, i. e. all singularities of
these varieties occur in any neighbourhood of their respective origins.

Proof. Consider the automorphisms of Y induced by the coordinatewise
multiplication by g ∈ XE+ with XE+ from Corollary 3.5. Then for any
point P ∈ Y \Y ∗ the germs of Y at g ·P , g ∈ X∗

E+ , are isomorphic and
the origin of Y coincides with (P ·XE+) \ (P ·X∗

E+) , as claimed. �

The remainder of this section contains applications of Theorem 3.7 .

Claim 3.14. Assume that the morphism µ of Theorem 3.7 C asso-
ciated with a binomial variety V̂ is an étale isomorphism, e. g. true
when field K has characteristic equal to 0 . The irreducible com-
ponents of the local étale germs of a GAB-variety Ṽ that occurs as
the V̂ -admissible subvariety of an AB-variety V̂ are isomorphic to the
products of nonsingular germs with the respective germs of the sub-
variety ŶV of V̂ (from Claim 3.11 , Theorem 3.7 B). Hence these

components are nonsingular iff ŶV is not singular, and the conclu-
sions of Remark 1.2 and of Remark 3.15 apply to all GAB-varieties.
Any quasi-binomial variety is in the GAB class.

For Nash and normalized Nash blowings up Theorem 3.7 implies

Remark 3.15. The ‘towers’ of Nash (as well as normalized Nash)
blowings up for mutually isomorphic (due to Property A.) components

g · V of V̂ , where g ∈ V̂ ∗ and [g] ∈ Γ , are of course themselves
mutually isomorphic. Therefore it suffices to study the effect of this
process on a single irreducible component V to make them all smooth
in the respective ‘tower’ for V̂ . Moreover, Remark 1.2 implies that the
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stabilization of the sequence of Nash blowings up (respectively normal-
ized Nash blowings up) of an affine binomial variety is equivalent to the
stabilization of the respective sequence for its essential toric subvariety.

Theorem 3.7 C. also implies a criterion of nonsingularity for an ar-
bitrary affine toric variety XẼ in terms of the exponents Ẽ ⊂ Zn of
an arbitrary monomial parametrization of the torus X∗

Ẽ
of XẼ . In

the simpler case of XẼ being an essential variety, which in terms of

Ẽ means 0 6∈ Conv (Ẽ) (Claim 3.2), the criterion is

Criterion 3.16. An essential toric variety Y := XẼ is not singular

iff the exponents Ẽ ⊂ Zn of an arbitrary monomial parametrization
of the torus of Y are generated over Z+ by dimY among them.

Proof. Of course the ‘if’ implication is obvious. For the ‘only if’ im-
plication note that under the nonsingularity assumption, Y near 0
coincides with a graph of an étale map-germ, say G , at 0 and, also,
that Y is the closure of the image under a monomial parametrization,
say φE+ , of the torus of Y with exponents E+ ⊂ (Z+)

n (Claim 3.3 ).
It follows, by making use of the uniqueness of the Taylor series expan-
sion of the composition G ◦φE+ , that the map G is monomial, which
obviously implies the conclusion of the ‘only if’ implication. �

The latter criterion of Sing Y = ∅ depends on the assumption 0 6∈
Conv (Ẽ) , i. e. on Y being essential, as demonstrated by

Example 3.17. The closure XẼ of φẼ((C
∗)4) ⊂ C6 for a monomial

map (C∗)4 ∋ x 7→ φẼ(x) := (x1 , x2 , x3 , x4 , x
−1
3 , x3 ·x−1

4 ) ∈ (C∗)6 is
nonsingular, 4-dimensional and its essential subvariety Y = C2×{I4} .
But Ẽ is not generated over Z+ by any subset of 4 vectors.

3.1. Criteria of nonsingularity. In this section we derive as a con-
sequence of Theorem 3.7 C and Criterion 3.16 simple combinatorial
criteria for nonsingularity for arbitrary affine toric varieties and, also,
for the blowings up of affine space An at ideals generated by monomials.
We start with a criterion for SingX

Ẽ
= ∅ . To that end note that the

subset of ‘y-coordinates’ forX
Ẽ
among all coordinates we , e ∈ Ẽ ⊂ Zn ,

on AN can be identified as

E ′ = {e : ∃η ∈ (Qn)dual , η(e) > 0 , η|Ẽ ≥ 0} ,(3.1)

due to Corollary 3.5 . As a straightforward consequence of the defini-
tions the subset of ‘z-coordinates’ Ẽ \ E ′ ⊃ E ′′ := ∪l≥1El , where the

subsets El \ El−1 ⊂ Ẽ \ El−1 , l ≥ 1 , are taken to be minimal with
respect to Conv (El\El−1)∩Span Q(El−1) 6= ∅ , l ≥ 2 , and, respectively,
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Conv (E1) ⊃ E0 := {0} . Of course then Conv (Ẽ\E ′′)∩Span Q(E ′′) = ∅ ,
implying that exists η ∈ (Qn)dual vanishing on set E ′′ and positive
on Ẽ \ E ′′ and then the values of η on the rows of Ẽ provide the
~ξ+ of Corollary 3.5 . Consequently, Lemma 3.4 implies

Ẽ = E ′ ∪ E ′′ .(3.2)

(The latter algorithm is single exponential, while that of identifying
E ′ in Ẽ via formula (3.1) is polynomial, cf. Section 7.2.) Finally

Criterion 3.18. V := XẼ is nonsingular iff all local étale irreducible
components of V are nonsingular and V is étale irreducible. Due to
Theorem 3.7 C. and Claim 3.11 our criterion for the étale irreducibility
of Ŷ is ( d(π(Ẽ tr)) = d(π(E tr

Z )) = 1 or) that the collection of all ρ×ρ
minors of matrix E ′′ generate the unit ideal, where ρ := rank (E ′′) .
Let m := n− ρ .
Then the étale irreducible components of XẼ are nonsingular iff

E ′ ⊂ Zn is generated over Z+ (mod Span Q(E ′′) ) by a subset con-
sisting of m elements of E ′ .

Proof. It remains to prove only the claim of the last two lines of the
criterion. The case of E ′ = Ẽ is fully explained in Criterion 3.16. The
reduction to the E ′ = Ẽ case follows by means of identifying the torus
Y ∗ of the toric component Y of V ∩(∩e∈E ′′{we = 1}) and by means of a

parametrization of Y ∗ χ→֒ T#(E ′) →֒ TN . (Note that φE ′ = χ◦φẼ .) Let
M be the matrix of size n×m with entries in Z and with columns a Z-
basis of the orthogonal complement to Span Q(E ′′) ⊂ Rn . Then (due to

Remark 3.1) the map φM is a parametrization of φ−1

Ẽ
(Y ∗) →֒ Tn ∼→V ∗ ,

implying that φẼ ◦ φM is a parametrization of Y ∗ →֒ TN . It follows
that the set E ⊂ Zm of the rows of the product matrix E ′ ·M provides
the exponents of a monomial parametrization φE of χ(Y ∩ TN) (since
χ ◦ φẼ ◦ φM = φE ′ ◦ φM = φE ′·M). Of course there are m rows of
the matrix E ′ generating over Z+ all rows of E ′ modulo KerMtr =
Span Q(E ′′) iff there are m rows of the matrix E ′ · M generating
over Z+ all rows of E ′ · M . But the latter is the Criterion 3.16 of
nonsingularity for Y . Also, due to Theorem 3.7 C. and Property A.,
Y = YV is nonsingular iff all étale irreducible components of XẼ are
nonsingular. Combining the equivalences of the last three sentences
completes the proof. �

Criterion 3.19. Let I →֒ K[x] be an ideal generated in K[x] by mono-
mials M = {xe}e∈E , E ⊂ (Zn∩ (Q+)

n)\{0} , such that proper subsets

of M do not generate I , and denote by ΓE ⊂ E the set of vertices of
Conv (∪e∈E(e+ Rn

+)) . Let σI : X → An be the blowing up with center
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at ideal I . Then SingX = ∅ if and only if for all e ∈ ΓE the sets
Ee := {e′ − e : e′ ∈ E} ∪ {(j)}1≤j≤n are generated over Z+ by some of
their subsets of n elements.

Proof. By definition of the blowing up X is the closure of the graph
of the monomial map ΨE := Tn ∋ x 7→ [. . . : xe : . . . ]e∈E ∈ PN ,

where N := #E − 1 , and the blow up σI is the restriction to X of the
projection An × PN → An . Let Ue := PN \ {we = 0} ≃ AN , where
we’s are the homogeneous coordinates on PN . Then PN = ∪e∈EUe .
Consequently the variety X = ∪e∈EXe with each Xe := X ∩ (An × Ue)
being the closure of the torus φEe(T

n) in An+N and the sets Ee as
introduced above.
Moreover, X = ∪e∈Γ

E
Xe with ΓE ⊂ E as introduced above, since

whenever e0 ∈ E ∩ (Conv (ΓE)+Rn
+) it follows that there is a nonempty

subset I0 ⊂ ΓE with {qe}e∈I0 ⊂ Z+ and ω ∈ Zn ∩ Qn
+ such that(∏

e∈I0
(we/we0

)qe · xω
) ∣∣

Xe0

= 1 . Consequently the chart Xe0
⊂ Xe

for any e ∈ I0 ⊂ ΓE . Then X is nonsingular iff all Xe , e ∈ ΓE , are
nonsingular, and the nonsingularity Criterion 3.18 in terms of the sets
Ee , e ∈ ΓE , applies. But the special case at hand provides a substan-
tial simplification since among the exponents Ee for e ∈ ΓE exponents
corresponding to the ‘z-coordinates’ (as in the definition of E ′′ following
(3.1)) do not occur and therefore a simpler Criterion 3.16 applies, i. e.
that over Z+ the set Ee is generated by its n elements. Indeed, other-
wise the set (Ee)′′ 6= ∅ implying that there is a nonempty Ie ⊂ (Ee)′′
with

∑
~v∈Ie

q~v ·~v = 0 and {q~v}~v∈Ie ⊂ Z+ . Then Ie∩{e′−e : e′ ∈ E} 6= ∅
and so e ∈ (Conv (ΓE) + Rn

+) \ ΓE , contrary to our assumption. �

4. Reduction of the Nash algorithm to a combinatorial

one.

We introduced Nash blowings up and the Euclidean multidimen-
sional division algorithm in Sections 1.1 and 1.3 . For binomial vari-
eties the stabilization of the algorithm of successive Nash blowings up
reduces to the stabilization of the same algorithm for their respective
essential affine toric subvarieties (due to Remark 1.2 and Theorem 3.7 ,
as summarized in Remark 3.15). In this section we establish the equiv-
alence of the Nash algorithm for the latter varieties of dimension m
to the Euclidean m-dimensional division algorithm. To that end we
first establish in Constructions 4.4 and 4.5 a combinatorial ‘bookkeep-
ing’ for the sequences of successive Nash blowings up of these varieties.
We then in Claim 4.6 show that Nash blowings up of the essential
affine varieties admit coverings by varieties from the same class. In
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Claim 4.9 , we show that a criterion for the stabilization of the Nash
algorithm corresponds to the termination criterion of the corresponding
Euclidean division algorithm. We conclude this section by summariz-
ing in Section 4.3 the well-known combinatorial translation of the effect
of normalization for affine toric varieties. Finally, in this section K

denotes an algebraically closed field of characteristic zero.

4.1. Gauss map and Nash blow up of an essential subvariety.

Let {~δi × 0}1≤i≤m ⊂ ZN , where ~δi := (δ1i, . . . , δLi) , generate the

integral lattice of Ker Ê ∩ (QL × 0) ⊂ QN over Z and denote

E := {~∆j}1≤j≤L ⊂ Zm , where each ~∆j := (δj1, . . . , δjm) . Then

(φE)j(x) :=
∏

1≤i≤m

x
δji
i , 1 ≤ j ≤ L; (φE)s ≡ 1, L < s ≤ N ,(4.1)

are components of the isomorphism φE : (K∗)m → Y ∗ := Y ∩(K∗)N →֒
KL of tori ( φ := φE in this section). The closure Y →֒ KL of Y ∗

contains 0 ∈ KL (Corollary 3.5) and one may choose δji ∈ Z+

(Claim 3.3).

Remark 4.1. The map φ|(R+ \{0})m : (R+ \{0})m → Y ∩ (R+ \{0})N
is an isomorphism. Therefore, also its tangent (at Im ∈ Rm ) map

(Rm)dual ∋ h 7→ (h(~∆1), ..., h(~∆L))× 0 ∈ Ker Ê ∩ (RL × {0})

is an isomorphism. Then, due to the choice of the vector ~ξ+ from
Corollary 3.5, there is a functional h+ ∈ (Qm)dual such that each

h+(~∆j) = (~ξ+)j > 0 . Hence 0 6∈ Conv (E) ⊂ Rm for E introduced
above (4.1).

The latter essential property of E ⊂ Zm (hereditary due to Claim 4.6)
enables ‘bookkeeping’ of the Nash (and/or normalized Nash) algorithm
by following the changes in the successive sets of the exponents E .
To ‘control’ the closure of the torus Y ∗ we prove (in Section 5 ) the

following lemma.

Lemma 4.2. For every point P ∈ Y \ Y ∗ there exist g ∈ Y ∗ and a

vector ~ξ ∈ Ker Ê ∩ ((Z+)
L × {0}) such that {P} = g · (XE+ \X∗

E+) ,

where the set E+ := {(~ξ)j}j consists of coordinates (~ξ)j of ~ξ . (Of

course g · X∗
E+ →֒ Y ∗.) Moreover, every coordinate of ~ξ is positive

or is equal to zero depending on the respective coordinate of P being
equal to zero or not.
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When δji < 0 , the map φ would not extend to all of Km and even if
all δji > 0 , as in Claim 3.3 , the map φ : Km → Y may not be surjective.
Nevertheless, every P ∈ Y \ Y ∗ is in the closure of the φ-image of a
translation of {(th1 , . . . , thm}t∈K∗ →֒ (K∗)m, where (h1, . . . , hm) ∈ Zm,
due to the following corollary.

Corollary 4.3. For any P ∈ Y \ Y ∗ there is an h ∈ (Qm)dual ∩ Zm

such that {P} = g · (Xh(E) \X∗
h(E)) . (Of course for h ∈ (Qm)dual∩Zm ,

the set Xh(E) \X∗
h(E) 6= ∅ iff either all h(~∆j) ≥ 0 or all h(~∆j) ≤ 0 .)

Proof. Apply Remark 4.1 to pick an h ∈ (Qm)dual ∩ Zm such that

h(~∆j) = q · (~ξ)j ∈ Z+ ∪ {0} , q ∈ Z+ , with E+ = {(~ξ)j}j ⊂ Z from

Lemma 4.2 . Of course replacing the vector ~ξ and the set E+ by q · ~ξ
and h(E) = q · E+ does not change the outcome of Lemma 4.2. �

In particular, by identifying KL with KL × IN−L →֒ KN and by
making use of Corollary 3.5 and Claim 3.2 , it follows that the origin
of KL is in Y . Equivalently, there is an h+ ∈ (Qm)dual such that for

1 ≤ j ≤ L the values h+(~∆j) = (~ξ+)j > 0 , which is also equivalent

to E := {~∆j}1≤j≤L ⊂ Zm being essential, i. e. Conv (E) 6∋ 0 .

Construction 4.4. Explicit construction of the composition GY ◦ φ .

Let Gm(K
L) →֒ KP(

L

m)−1 be the embedding of the Grassmanian
Gm(K

L) of the m-dimensional subspaces of KL by means of Plücker
coordinates. Consider the composition of the Gauss map GY of Y
on Y ∗ with a monomial parametrization (4.1) of Y ∗ . Also, iden-
tify GY (φ(x)) ∈ Gm(K

L) with Tφ(x)Y , which coincides with the
image of TxK

m ≃ Km under the tangent map to φ at x ∈ (K∗)m .
The homogeneous (Plücker) coordinates w̃ = [ ... : w̃J : ... ] of
GY (φ(x)) = Im ∂φ

∂x
(x) are the subdeterminants detJ(Jφ)(x) of the

m × m size submatrices of the jacobian matrix Jφ(x) of the map
y = φ(x) and are listed by the choices of J = {j1, . . . , jm} ⊂
{1, . . . , L} of m distinct rows of the L × m matrix Jφ , i. e.

w̃J = detJ(Jφ(x)) = detJ(δ) · x
∑

j∈J
~∆j/(x1 · ... · xm) , where detJ(δ)

are the respective subdeterminants of the exponent matrix δ in (4.1) .
Denote S := S(E) := {J : detJ(δ) 6= 0} and L∗ := #S − 1

(the notation S(E) is justified since dimQ Span Q{~∆j}j∈J = m iff

detJ(δ) 6= 0 ). Let KPL∗

:=
⋂

{J :detJ (δ)=0}{w̃J = 0} →֒ KP(
L

m)−1 .

Then GY ◦ φ(x) ∈ KPL∗

for all x ∈ (K∗)m . Moreover, then
GY ◦ φ : (K∗)m → ∩J∈S{w̃J 6= 0} =: T .
Of course each WJ := {w̃J 6= 0} ≃ KL∗

and via this isomorphism
T is identified with (K∗)L

∗ ⊂ KL∗

. In abuse of notation let then W∗
J
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denote T →֒ WJ . Similarly, denote UJ := KL ×WJ , U∗
J := (K∗)L ×

W∗
J and, also, the affine charts N(Y )J := N(Y ) ∩ UJ , N(Y )∗J :=

N(Y )∩U∗
J . Of course the tori N(Y )∗J0 = ∩J∈SN(Y )J for any J0 ∈ S .

For the sake of convenience we replace coordinates w̃J by wJ :=
(detJ(δ))

−1 · w̃J .

Construction 4.5. Charts N(Y )J and parametrizations of their tori:

As a consequence of the preceeding construction, U∗
J →֒ UJ is isomor-

phic to (K∗)L+L∗ →֒ KL+L∗

and the affine toric variety N(Y )J is
the closure of the image N(Y )∗J of the torus (K∗)m ⊂ Km , under an
algebraic group monomorphism x 7→ ψ(x) := (φ(x) , GY ◦φ(x)) . For
J ∈ S let ~∆J :=

∑
j∈J

~∆j . An explicit formula for GY ◦φ of Construc-

tion 4.4 (in the wJ -coordinates of KPL∗

) and, consequently, for the map
ψ (in the affine coordinates of chart UJ0 , for J0 ∈ S) is the monomial

map φEJ0
whose exponent set is EJ0 := {~∆j}1≤j≤L∪{~∆J−~∆J0}J∈S\{J0} .

Corollary 4.3 implies that, for any J0 ∈ S ‘one may reach’ all points
P̃ ∈ N(Y )J0 \ N(Y )∗J0 by means of g ·X∗

h(EJ0 )
→֒ Y ∗ with g ∈ Y ∗ ,

i. e. {P} = g · (Xh(EJ0 )
\X∗

h(EJ0 )
) , where h ∈ (Qm)dual ∩ Zm . Also,

h(EJ0) ⊂ Z+ ∪ {0} since Xh(EJ0 )
\X∗

h(EJ0 )
6= ∅ . Moreover, the affine

chart N(Y )J0 contains the origin of UJ0 ≃ KL+L∗

, i. e. is essential,

iff there is h̃ ∈ (Qm)dual such that h̃(EJ0) ⊂ Z+ . The latter is also
equivalent (Lemma 3.4) to all coordinates on UJ0 being ‘y-variables’
for N(Y )J0 . Equivalently (Corollary 4.3 ) Conv (EJ0) 6∋ 0 .

Claim 4.6. Assuming 0 ∈ Y = XE →֒ KL ≃ KL × IN−L it follows
that N(Y ) = ∪J∈S′N(Y )J , where S ′ is the subset of all J ∈ S such
that the affine charts N(Y )J are essential.

Proof. Due to Claim 3.2 and Corollary 4.3 our assumption is Conv (E) 6∋
0 . Let the cone C̃ := {h ∈ (Rm)dual : h|E ≥ 0} and, likewise, for every

J ∈ S let C̃J := {h ∈ C̃ : h|EJ ≥ 0} . Then h+ from Corollary 4.3 is

in the interior of the cone C̃ (in particular dimR C̃ = m ). We refer
to h = (h1, . . . , hm) ∈ (Rm)dual with dimQ Span Q{h1, . . . , hm} = m

as an irrational point of (Rm)dual . For any irrational h ∈ C̃ there is
(a unique) J ∈ S such that h is in the interior of C̃J . Therefore
dimR C̃J = m iff Conv (EJ) 6∋ 0 . The latter is equivalent to J ∈ S ′

implying C̃ = ∪J∈S′ C̃J .
Consider any J0 ∈ S . The torus N(Y )∗J0 coincides with the image

ψ((K∗)m) ⊂ ∩J∈S′N(Y )J . Let P ∈ N(Y )J0 \ N(Y )∗J0 . Then, as in

Corollary 4.3 , there are g ∈ N(Y )∗J0 and h ∈ (Qm)dual∩Zm such that

{P} = g ·(Xh(EJ0 )
\X∗

h(EJ0 )
) . Moreover, the values h(~∆j) , 1 ≤ j ≤ L ,
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and all h(~∆J−~∆J0) , J ∈ S\{J0} , are positive or vanish depending on
the respective coordinates of P being equal to zero or not (Lemma 4.2).
Thus h ∈ C̃ = ∪J∈S′ C̃J and, therefore, there exists J1 ∈ S ′ such that
h ∈ C̃J1 . As a consequence h(~∆J0) = h(~∆J1) . It follows that the ratio
wJ0/wJ1 of the homogeneous coordinates is identically one on X∗

h(EJ0 )
.

Consequently it is constant on g ·X∗
h(EJ0 )

and coincides with the ratio

wJ0(g)/wJ1(g) . Hence P ∈ N(Y )J1 \N(Y )∗J1 , as required. �

In the next two sections we summarize our ‘translation’ of Nash and
normalized Nash blowings up into respective combinatorial versions.
These combinatorial versions are in terms of the smallest subsets of
generators for additive semigroups Z+(E) generated by E ⊂ Zm and
Q+(E)Z := Span Z(E)∩ Span Q+(E) \ {0} , where sets E are finite and
Conv (E) 6∋ 0 .
For an additive semigroup without zero, say G+ , we introduce a

notion of the set Extreme(G+) of all Z+-extremal points of G+ , i. e.
of all g ∈ G+ such that g 6= g1 + g2 for any g1 , g2 ∈ G+ .
Let ∇(J) := Conv (J∪{0}) and int(∇(J)) := the interior of ∇(J) .

Claim 4.7. Assume that the set E ⊂ Zm is finite and essential. Then
(i) The set Extreme(Q+(E)Z) is finite and it generates the semi-

group Q+(E)Z (the set Extreme(Z+(E)) ⊂ E is obviously finite and it
generates Z+(E));
(ii) E ′ = Extreme(Q+(E ′)Z) , where E ′ = Extreme(Q+(E)Z) ;
(iii) Let S ′ be as in Claim 4.6 . If E = Extreme(Q+(E)Z) and

J ∈ S ′ then int(∇(J)) ∩Q+(E)Z = ∅ .

Proof. (i) is a consequence of Gordan’s lemma (Prop.1 in 1.2 [5] ) since
Span Q+(E) coincides with the dual cone (C̃)dual of its own dual cone

C̃ and Q+(E)Z is the set of its integral points (meaning the points in
Span Z(E)).
To show (ii) note, by making use of (i), that Z+(E ′) = Q+(E)Z ⊂

Span Q+(E) = Span Q+(E ′) . The latter implies Q+(E ′)Z = Q+(E)Z .
Thus (ii) follows.
We prove (iii) by contradiction. Indeed, if ~a ∈ int(∇(J))∩Q+(E)Z

let us choose an irrational h ∈ C̃ , as in Claim 4.6, such that h(~∆J) =

minJ ′∈S h(~∆J ′) . Let j0 ∈ J be such that h(~∆j0) = maxj∈J h(~∆j) .

Then ~a 6∈ E , since otherwise the collection J0 := (J ∪ {~a}) \ {~∆j0}
is in S , but h(~∆J0) < h(~∆J) . Consequently ~a ∈ Z+(E) , due to (i)

and the assumption on E . Therefore there is a vector ~b ∈ E such

that J1 := (J ∪ {~b}) \ {~∆j0} is in S , but h(~∆J1) < h(~∆J) because,
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if ~a ∈ ~b + Z+(E) , then the inequalities h(~∆j0) > h(~a) > h(~b) hold,
contrary to the choice of h . �

4.2. Multidimensional Euclidean division as a bookkeeping. In
this section we complete the translation of the process of Nash blowings
up into a combinatorial tree-like branching algorithm on finite essential
subsets of Zm . To that end we choose {(δ1i, . . . , δLi)}1≤i≤m ⊂ ZL as in
( 4.1). The input of this algorithm is the collection Extreme(Z+(E)) ,
where E = {~∆j = (δj1, . . . , δjm)}1≤j≤L is the essential collection (see
Corollary 4.3 ) of exponents of a monomial parametrization of the torus
Y ∗ of an essential variety Y ; we may assume that E = Extreme(Z+(E)) .
In the notations of Claim 4.6 the record of changes (derived in Sec-

tion 4.1) in the collections of exponents parametrizing the tori of the
essential charts of Nash blowings up starting with the variety Y is the

Multidimensional Euclidean algorithm on essential collections:
Let S = S(E) be the set of all m-tuples of linearly independent vectors

in a finite essential (input) collection E = {~∆j}j ⊂ Zm . We extend

E to a collection EJ by adjoining the set {~∆J ′ − ~∆J}J 6=J ′∈S provided
that J ∈ S ′(E) := {J ′ ∈ S : EJ ′ is essential } , i. e. J determines
branching. Then the finite set NJ(E) := Extreme(Z+(EJ)) is essen-
tial. It generates the semigroup Z+(EJ) and it is the output of the
branching algorithm corresponding to the choices of J ∈ S ′ .

A branch of this algorithm terminates at a node with an associated
collection E = {~aj}j ⊂ Zm whenever #(E) = m .

Remark 4.8. Note that the differences ~∆J ′ − ~∆J with #(J ′\J) = 1
generate over Z+ all other differences in the collections EJ . That
is, it suffices to include in EJ only these differences in EJ . Indeed,
the matrix (aji)j∈J ′ , i∈J transforming the basis J of Qm into the
basis J ′ is nondegenerate. This implies the existence of a bijection
J ′ ∋ j 7→ i = i(j) ∈ J with all aj i(j) 6= 0 and ~∆J ′ − ~∆J =∑

j∈J ′(~∆j − ~∆i(j)) =
∑

j∈J ′(~∆J∪j\i(j) − ~∆J) , as required.

The Nash desingularization of the essential affine toric subvariety Y
of an affine binomial variety V̂ leads to a Nash desingularization of
V̂ by making use of Property A., Theorem 3.7 C. and of Remark 1.2 .
The variety Y ′ resulting from a sequence of Nash blowings up of Y
is a union of the essential affine charts Y ′ ∩ U ′ →֒ U ′ ≃ KL′

due to
Claim 4.6 . Every affine chart Y ′∩U ′ corresponds to a node of a branch
of our combinatorial ‘bookkeeping’ algorithm. Let {~aj}1≤j≤L′ ⊂ Zm

be the essential collection associated with the latter node. It follows
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that the essential affine toric variety Y ′ ∩ U ′ corresponding to the
node admits a monomial parametrization of its torus by (K∗)m in
coordinates y′j , 1 ≤ j ≤ L′ , on U ′ as follows: y′j = (Φ)j(x) :=

x~aj , 1 ≤ j ≤ L′ . Finally, we show below that the stabilization of the
sequence of Nash blowings up of Y is equivalent to the termination
of our combinatorial algorithm.

Claim 4.9. A branch B of the multidimensional analogue of Euclidean
division algorithm terminates at a node iff the essential affine chart
Y ′ ∩ U ′ corresponding to this node of B is nonsingular.

Proof. Assume E ′ = {~aj}1≤j≤k is the collection corresponding to a
node of the branch B . Let Y ′ ∩ U ′ →֒ U ′ ≃ KL′

be the corre-
sponding essential affine chart. Then the exponents of the monomial
parametrization y′j = x~aj , 1 ≤ j ≤ L′ , of the torus (Y ′ ∩ U ′)∗ =

(Y ′∩U ′)∩ (K∗)L
′

include the collection E ′ and, moreover, they are in
Z+(E ′) . That is, they can be expressed as nonnegative integral linear
combinations ~aj =

∑
1≤l≤k njl · ~al , k + 1 ≤ j ≤ L′ .

Therefore, if the branch terminates, i. e. the collection E ′ associated
with its terminal node is of size m , then Y ′∩U ′ is nonsingular because
it is the graph of the map y′j = (y′1)

nj1 · ... · (y′m)njm , m+1 ≤ j ≤ L′ .
Conversely, as in Criterion 3.16, if Y ′ ∩ U ′ is nonsingular at the

origin of U ′ , it follows that it is the graph of an étale map-germ G
at the origin over a coordinate subspace V := Km ⊂ KL′

. Since the
closure Y ′ ∩ U ′ of the torus (Y ′ ∩ U ′)∗ contains the origin 0 of
U ′ ≃ KL′

, Claim 3.3 implies that there is a monomial parametrization
y′j = x~ωj , 1 ≤ j ≤ L′ , of (Y ′∩U ′)∗ with {~ωj}1≤j≤L′ ⊂ Zm

+ . Then the
map-germ G is monomial. This is so because of the uniqueness of the
Taylor series expansion of the composition of G with the components
of the parametrization y′jl = x~ωjl , 1 ≤ l ≤ m , associated with V .
We may conclude now that the vectors ~aj , 1 ≤ j ≤ L′ , are generated
over Z+ by a subset of {~aj}1≤j≤L′ (of size m ) corresponding to the
coordinate subspace V of the previous sentence. �

Remark 4.10. The proof of Claim 4.9 shows that an essential toric
variety is nonsingular iff it is nonsingular at the origin.

4.3. Effect of normalization. The normalization N (Y ) of an es-
sential affine variety Y adjoins as regular functions on N (Y ) all
monomials M in coordinates yj , 1 ≤ j ≤ L , on KL whenever
Md for some d ∈ Z+ coincides on Y with another monomial M′ in
yj’s with non negative integral exponents (see Section 2.1 in [5]). Since

the torus Y ∗ is parametrized by monomials yj = x
~∆j , 1 ≤ j ≤ L ,
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normalization translates into a combinatorial algorithm:
augment an essential input set E = {~∆j}j ⊂ Zm to a semigroup
Q+(E)Z generated by its finite essential subset N (E) := Extreme(Q+(E)Z)
(Remark 4.7 (i)) - the output of combinatorial normalization.

Of course a sequence of compositions of normalized Nash blowings
up followed by normalization coincides with normalization followed by
the sequence of Nash blowings up composed with normalizations. For
the convenience of exposition (and reflecting the latter observation) the

essential collection N (E) , with E = {~∆j}1≤j≤L from (4.1), is the
initial input for the

Normalized multidimensional Euclidean division algorithm:
for each step of the algorithm the input is an essential collection E =
N (E) , J ∈ S ′(E) := {J ′ ∈ S : EJ ′ is essential } determines the
branching and the output is the essential collection N (NJ(E)) .

The latter algorithm records a sequence of normalized Nash blow ups
(followed by normalization) of an essential toric variety Y . By defini-
tion a branch of this tree-like algorithm terminates at a node with an
essential collection E provided that the size of E is m .
The proof of Claim 4.9 applies to show that a branch B̃ of the

normalized multidimensional Euclidean division terminates iff the es-
sential chart corresponding to the terminal node of B̃ is nonsingular.
Since normalization separates all local étale irreducible components
(and due to PropertyA., Theorem 3.7 C. and Remark 1.2 ) the lengths
of the normalized Nash desingularization of the essential subvariety Y
of an affine binomial variety V̂ and that of V̂ coincide.

5. Structure of binomial varieties, proofs.

In this section we prove several assertions from Section 3 . We again

consider affine binomial varieties V̂ := V ∗(f̂) in AN determined by

a set f̂ := {f̂j}1≤j≤M of binomials from (2.1). Also, V ∗ denotes the

irreducible component of V ∗(f̂) that contains IN .

Construction 5.1. Calculation of binomials f with V ∗(f) = V ∗ :

Let Ê be the exponent matrix of V̂ , as in Section 3 . Set r :=
rank Ê , n := N − r . Denote by E = {Eji} a matrix of size r ×N

with rows being a basis over Z of (Ê)tr(QM) ∩ ZN . Then the ideal
generated in Z by all r×r minors of the matrix E is the unit ideal,
i. e. d(KerE) = 1 (Remark 3.1), which is equivalent to
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(Z) {ξ ∈ RN : Eξ ∈ Zr} = KerE ∩ RN + ZN ⊂ RN .
Let αji := max{Eji , 0} , βji := −min{Eji , 0} . Furthermore, let

V ∗(f) := {w ∈ TN : fj(w) = 0 , 1 ≤ j ≤ r} , with binomials given by

fj := w
αj1

1 · · ·wαjN

N − w
βj1

1 · · ·wβjN

N .(5.1)

Both V ∗(f) ⊂ V ∗(f̂) are subgroups of TN . Also, V ∗(f̂) ⊂ Reg V̂ .

Since KerE = Ker Ê , the sets of exponents parametrizing V ∗ and
V ∗(f) coincide (Remark 3.1). Consequently V ∗ = V ∗(f) and V =

V ∗(f) . (Recall that V is defined as V
∗

in Theorem 3.7 and is an

irreducible component of V̂ that contains IN due to Property A.)

Let G := {w ∈ V̂ ∗ : |w| = IN} →֒ TN , where |w| ∈ RN is the point
with coordinates being the absolute values |wj| of coordinates wj of
w ∈ CN , and G0 := {w = exp(2π

√
−1 ·h) : h ∈ RN , Eh = 0} →֒ G ,

where exp((h1, . . . , hN)) := (eh1 , . . . , ehN ) . Note that G and G0 are

subgoups of V̂ ∗ := V ∗(f̂) . Recall that Γ is defined as V̂ ∗/V ∗ .

Remark 5.2. Γ coincides with G/G0 when K = C.

To see this, first note that G0 = G ∩ V ∗(f) due to the property
( Z ) of the matrix E . Moreover, Γ ≃ G/G0 , since |w| ∈ V ∗ and

g := w · |w|−1 ∈ G for any w ∈ V̂ ∗ . The map ξ 7→ exp(2π
√
−1 · ξ)

provides a bijection onto Γ of an additive group Γ∗ := {ξ ∈ RN :

Ê(ξ) ∈ ZM}/(ZN + KerE) . Also, Γ∗ is finite, since for any choice

of a basis {~hj}1≤j≤r of Ê(RN) ∩ ZM over Z there is a choice of

{~ξj}j ⊂ QN with each ~hj = Ê(~ξj) .

We will make use of the following

Claim 5.3. Assume P ∈ V̂ \ V ∗(f̂) and that upon splitting all vari-
ables wj , 1 ≤ j ≤ N , into w = (u, v) the u-coordinates of P
vanish. Let b := v(P) ∈ TN ′′

. Then there are a ∈ TN ′

, where

N ′ := N −N ′′ , and ~ξ ∈ (Z+)
N ′ × {0} such that g ·X∗

E+ →֒ V ∗(f̂) ,

where g := (a, b) ∈ TN and E+ := {(~ξ)j}1≤j≤N ⊂ Z .
In particular, the point {P} = (g ·XE+) \

(
g ·X∗

E+

)
.

Proof. Let X →֒ V̂ be an irreducible curve with P ∈ X . Then the
normalization N (X) of X is a nonsingular curve and the morphism
NX : N (X) → X is finite and surjective. Let Q ∈ (NX)

−1(P) . Since

N (X) is nonsingular (at Q) it follows that the completion Ô (in the

Krull topology) of the local ring O →֒ Ô of N (X) at Q is the ring
F[[t]] of the formal power series expansions in one variable, say t ,
with coefficients in the residue field F of O (hence [F : K] < ∞ ).
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Denote by γj(t) ∈ F[[t]] the pull back (NX)
∗(wj|X) ∈ O →֒ Ô

of the restriction wj|X of the wj-coordinate to X . It follows

that γ(t)Ê = IM in F[[t]]M and that w(P) = (0, b) = γ(0) .
For each j , 1 ≤ j ≤ N ′ , let the initial form of γj(t) be in(γj) =
aj · tξj , aj ∈ F∗ and ξj ∈ Z+ . Then a := (a1, . . . , aN ′) ∈ (F∗)N

′

and ~ξ := (ξ1, . . . , ξN ′ , 0, . . . , 0) ∈ ZN satisfy X∗
E+ →֒ V ∗(f̂) and

(a, b)Ê = IM , i. e. are as required. �

Corollary 5.4. (a) the equality V̂ ∩(AL×IN−L) = V ∗(f̂) ∩ (AL × IN−L)
of Theorem 3.7 B., (b) Lemma 4.2 and (c) Lemma 3.4 hold :

Proof. To prove (a) we apply Claim 5.3 to P ∈ V̂ ∩ (AL × IN−L) and

obtain g ∈ V ∗(f̂) and ~ξ ∈ ZN such that

(i) each coordinate of ~ξ is either in Z+ or vanishes depending on whether
the respective coordinate of P vanishes or not and, moreover,

(ii) g and ~ξ satisfy the conclusions of Claim 5.3 .

Therefore it follows that P ∈ V ∗(f̂) ∩ (AL × IN−L) , as required.
Claims (b) and (c) follow by applying the proof of (a) with an ap-

propriate choice of the point P . �

Remark 5.5. The equality Ker Ê = KerE and Lemma 3.4 imply that
the splitting of variables w into y- and z-variables for the variety
V̂ ⊂ AN and for the irreducible component V ∋ IN of V̂ coincide.

Define the matrices (Ω̂ Ξ̂) := Ê and (Ω Ξ) := E with the

columns of Ω̂ and Ω corresponding to y- and the columns of Ξ̂
and Ξ to z-variables. The following Claim implies that π(V ) is a
closed binomial variety and completes the proof of Theorem 3.7 B.
(using Property A. of Remark 3.1)

Claim 5.6. π(V ∗(f̂)) is closed in AN−L , equals π(V̂ ) and is binomial.

Proof. Let the matrix T of size M ′×M , M ′ :=M − rank (Ω̂) , have

as rows a basis over Z of Ker (Ω̂)tr ∩ZM . Then KerH = π(Ker Ê)

for H := T · Ξ̂ . Moreover

Lemma 5.7. π(V ∗(f̂)) = {z ∈ TN−L : zH = IM ′} .

We return to proving Claim 5.6 following the proof of this Lemma.

Proof. The matrix T admits (cf. Construction 5.1) a right inverse
matrix L with entries in Z , i. e. T · L = IdM ′ . Therefore
T · (IdM −L·T ) = 0 , (Ker T )∩ (Im L·T ) = {0} , Im L = Im L·T .
Hence QM = Im (IdM − L · T ) ⊕ Im L · T which implies that
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Im (IdM − L · T ) = Ker T = Im Ω̂ . Of course there are square
matrices Λ and λ with entries in Z , det(Λ) = 1 = det(λ) and such

that the matrix τ := Λ · Ω̂ · λ has a diagonal upper left corner of size
M ′ ×M ′ and zero entries otherwise. Then Im τ = Im Λ · Ω̂ = Im θ ,
where θ := Λ · (IdM − L · T ) . This implies for any v ∈ TM the

existence of y∗ ∈ TL with yτ∗ = vθ , which for v := zΞ̂ with zH = IM ′

and y := y−λ
∗ implies y−Ω̂ = zΞ̂ . Consequently, we proved that if

zH = IM ′ then z ∈ π(V ∗(f̂)) , while the converse is obvious. �

In other words π(V ∗(f̂)) is the vanishing set of binomials and H

is a matrix associated with the variety Ŵ = π(V ∗(f̂)) for which all

variables are the ‘z-variables’ (follows using ~ξ+ of Corollary 3.5).

Therefore π(V ∗(f̂)) is a closed binomial variety and coincides with

π(V̂ ) . This completes the proof of Claim 5.6 and, also, the proof of
Theorem 3.7 B. �

Corollary 5.8. It follows that π(V ) = π(V ∗(f)) = π(V ∗) →֒ TN−L

is a torus (Remark 3.1) closed in AN−L and, being nonsingular, is a

connected component of π(V̂ ) .

Next we prove Theorem 3.7 C.

Proof. We start by showing the claim of existence in part C.. Namely,
following the arguments of Criterion 3.18 let V ∗ = X∗

Ẽ
and split the

exponents of the set Ẽ ⊂ Zn into subsets E ′ and E ′′ according to
the splitting of all coordinates w on AN into y and z-coordinates.

Let the matrix M̃ complete the matrix M of Criterion 3.18 to a

square size matrix with det(M̃) = 1 and entries in Z by attaching
a matrix M of size n × (n − m) as the last n − m columns.
Then, respectively, the columns of the matrices EY := Ẽ · M and

EV := Ẽ · M̃ form Z-bases of KerE ∩ (ZL × {0}) and KerE ∩ ZN

implying that Y ∗ = X∗
EY

→֒ TN and X∗
Ẽ
= X∗

EV
. Moreover, letting

EZ := Ẽ · M it follows that EZ is a Z-basis and that as the set of
exponents EV = (EY ||EZ) , as required.
We next prove that the torus Z∗ := X∗

EZ
is closed in AN . Applying

the projection π to the columns of matrices EV and EZ it follows that
Span Z(π(E tr

V )) = Span Z(π(E tr
Z )) implying dimQ(Span Q(π(E tr

Z ))) =
dimQ(Span Q(E tr

V )) − dimQ(Span Q(E tr
Y )) = dimQ(Span Q(E tr

Z )) . (Note
though that π(E tr

Z ) is not necessarily a Z-basis of Span Q(E tr
Z ) as

Example 3.17 demonstrates.) The inclusion π(Z) ⊂ π(V ) ⊂ TN−L

(Corollary 5.8) implies that all ‘z-variables’ for V̂ are the ‘z-variables’
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for Z and then the criterion of the iterative construction preceding
(3.2) implies that all wj variables, 1 ≤ j ≤ N , are the ‘z-variables’
for Z , i. e. TN ⊃ Z = Z , as required.
The properties of the morphism π|Z : Z → π(V ) follow (Re-

mark 3.12) from the analogous properties of φ
(π(Etr

Z
))tr

: Tn−m → π(V ) .

The surjectivity of the latter (when K is perfect) is a consequence

of Corollary 5.8. Applying Remark 3.1 by replacing the matrix Ê
by (π(E tr

Z ))tr implies that the morphism π|Z is finite of degree

d = d((π(E tr
Z ))tr) with the size of all fibres equal to [d] = #(Ŷ ∗/Y ∗)

(cf. Claim 3.10) and that it is an étale isomorphism iff d 6= 0 in K .

Next we establish the properties of µ : Z × Ŷ → V and of µ|Z×Y

listed in Theorem 3.7 C.. The surjectivity and the quasifiniteness of
both with all fibres of µ being of the same size [d] as those of
morphism π|Z are straightforward consequences of the surjectivity of
π|Z : Z → π(V ) as a group homomorphism and of the definition of

Ŷ := V ∩ (AL × IN−L) .
Besides the morphism µ being an étale isomorphism whenever [d] =

d (which we prove at the very end) it remains to show that both µ and
µ|Z×Y are finite morphisms of the same degree d as π|Z . The proof
is similar to the calculation in the special case of Example 3.9 . Thus,
we carry it out only in the case of the morphism µ . Indeed, since
Z →֒ AN is isomorphic to a closed torus Tn−m →֒ A2·(n−m) , the ring of
regular functions on Z is K[Z] ≃ K[s1 , . . . , sn−m , s−1

1 , . . . , s−1
n−m],

while K[Z × Ŷ ] ≃ (K[Z])[y]/I , where I is the ideal in (K[Z])[y]

generated by equations defining Ŷ in AL . We split the exponents
e ∈ EZ of the parametrization Tn−m ∋ s → φEZ (s) ∈ Z of Z
according to the y and z-coordinates. Consequently we arrive at
the formulas se

′
j = φ∗

EZ
(yj) , 1 ≤ j ≤ L , and se

′′
i = φ∗

EZ
(zi) ,

1 ≤ i ≤ N − L , where s = (s1 , . . . , sn−m) . It follows that

K[Z] ≃ K[se
′
1 , . . . , se

′
L , se

′′
1 , . . . , se

′′
N−L ] ,

K[π(Z)] ≃ K[se
′′
1 , . . . , se

′′
N−L ] and

µ∗(K[V ]) ≃ K[π(Z)][y1 · se
′
1 , . . . , yL · se′L ]/I →֒ (K[Z])[y]/I .

Recall that π(Z) = π(V ) and (π|V )∗ : K[π(Z)] →֒ K[V ] . We conclude

that K[Z × Ŷ ] is integral over µ∗(K[V ]) since K[Z] is integral over
K[π(Z)] , because of the finiteness of π|Z , and since each element

s−e′j ∈ K[Z] , 1 ≤ j ≤ L .
Next, the degree of π|Z is d . This means that dimFK[Z] · S̃−1 = d ,

where S̃ := K(π(Z))\{0} and F := K(π(Z)) . Note that K[Z]·S̃−1 ≃
F[se

′
1 , . . . , se

′
L ] and µ∗(K[V ]) · S̃−1 ≃ F[y1 · se′1 , . . . , yL · se′L ]/I .
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Also (yj · se
′
j) ∈ µ∗(K[V ]) , yj ∈ K[Z × Ŷ ] , 1 ≤ j ≤ L and the el-

ement yj ∈ (yj · se
′
j) ·K[Z] ⊂ (yj · se

′
j) ·K[Z] · S̃−1 ⊂ K[Z × Ŷ ] · S̃−1 .

Then K[Z] · S̃−1 ⊗K(π(Z)) K(V ) ≃ K[Z × Ŷ ] · S−1 . This implies that

dimµ∗(K(V ))K[Z× Ŷ ] ·S−1 = dimK(π(Z))K[Z] · S̃−1 = d , cf. Remark 3.8 .
Finally, the property of the morphism µ to be an étale isomorphism

is a consequence of the analogous property for π|Z : Z → π(V ) (proved
above to be equivalent to [d] = d ). In the special case of K = C the
étale inverse (πZ,a)

−1 is an analytic map from π(Z) to Z (from a
neighbourhood in the classical topology of π(a) to that of a ). Then
the étale inverse (µ̂(a,b))

−1 of µ as an analytic map germ (at the

point (a, b) ) is

Vµ(a,b) ∋ v 7→ ((πZ,a)
−1(π(v))× [(πZ,a)

−1(π(v))]−1 · v) ∈ (Z× Ŷ )(a,b) ,

where [g]−1 : v → [g]−1 · v is the action of g := (πZ,a)
−1(π(v)) ∈ Z

on V and Vµ(a,b) , (Z× Ŷ )(a,b) are the germs as analytic sets at the

respective points µ(a, b) ∈ V , a ∈ Z and b ∈ Ŷ . In the general case
we exploit the calculations of the previous two paragraphs.
For any prime ideal p ∈ Spec (K[Z × Ŷ ]) and q := p ∩ µ∗(K[V ]) ∈

Spec (µ∗(K[V ])) consider the respective localizations at p and q

followed by the completions in the Krull topologies. We must show
that the latter local rings are isomorphic. Note that, since π|Z is an
étale isomorphism, the analogous procedure starting with prime ideals
p̃ := p ∩ K[Z] and q̃ := q ∩ K[π(Z)] leads to the same ring, say Ô .

It suffices to show that adjoining (K[Z] \ p̃)−1 to K[Z × Ŷ ] and
(K[π(Z)]\ q̃)−1 to µ∗(K[V ]) , followed by the completions in the Krull
topologies induced by the powers of the ideals generated by p̃ and
q̃ in the respective rings, leads to isomorphic rings (even prior to the
localizations at p and q followed by the respective completions).
But the partial localizations followed by the respective completions of
the previous sentence transform the rings µ∗(K[V ]) →֒ K[Z × Ŷ ] into

the pair of rings Ô[y1 · se′1 , . . . , yL · se′L ]/I →֒ Ô[y]/I , which are of

course isomorphic since each element s−e′j ∈ K[Z] →֒ Ô , 1 ≤ j ≤ L .
This completes the proof of Theorem 3.7 C. . �

We now prove (in the respective order) Claims 3.14 , 3.3 and 3.6 .

Proof. of Claim 3.14 . The binomial variety π(V̂ ) = π(V̂ ∗) ⊂ TN−L

and therefore is nonsingular. Consequently, its irreducible compo-
nents are pairwise disjoint and smooth. To prove the first statement
of Claim 3.14 it suffices (due to property A. of Remark 3.1 and Re-
mark 5.5) to consider a nonsingular subvariety W of the component
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π(V ) and a subvariety Ṽ of V , obtained by restricting the original z-
variables to a nonsingular subvariety W . Similarly, we define Z̃ →֒ Z
by restricting the z-variables to W . Then Z̃ is nonsingular since
µ is an étale isomorphism. Moreover, the morphism π|Z̃ : Z̃ → W

and the coordinatewise multiplication µ : Z̃ × ŶV → Ṽ are surjective
étale isomorphisms and π|Z̃ is finite (due to Theorem 3.7 C.), which
proves the first half of Claim 3.14 .
Next we show that a quasi-binomial variety, say X̃ , arises from a

special case of the preceding construction. Without loss of generality
we may assume that quasi-binomial equations defining X̃ are linear
combinations of two monomials with the first coefficients being equal
1 . We start by replacing the ‘second’ coefficients of quasi-binomial
equations (one per each) by minus a variable, say −cj , introducing
simultaneously another variable c̃j and a binomial equation cj ·c̃j = 1 .
We thus construct a binomial variety, say X , with all of the new
variables among the ‘z-variables’ for X . Let π(X) be the projection
of the binomial variety X to the affine subspace of its z-variables.
It suffices to show that the intersection W of the projection π(X)
with the specialization of variables cj (according to their values in the

quasi-binomial equations defining the variety X̃ ) is nonsingular. This
will reduce the claim to a special case of the construction of the previous
paragraph. Due to Theorem 3.7 B. π(X) = π(X∗) and is a closed
binomial variety (implying W is a quasi-binomial variety). Therefore
π(X) = π(X∗) ⊂ TN−L . Consequently W = W ∗ := W ∩ TN−L ⊂
RegW . The latter is due to the algebraic group structure of TN−L

(similarly to the ‘Gauss elimination’ argument of Remark 3.1 and the

analogous claim V̂ ∗ ⊂ Reg V̂ of Remark 3.1). �

Proof. of Claim 3.3 . The ‘only if’ implication is obvious. Assume
that 0 ∈ X . It follows that there are no z-coordinates. Then
Corollary 3.5 implies the existence of ~ξ+ ∈ KerE ∩ (ZN

+ ) . Say m :=
dimX = N − rankE . To construct a monomial parametrization of
the torus of X with positive integral exponents E = { ~∆j}1≤j≤N ⊂
Zm it suffices to find a Z-basis {~δi}1≤i≤m of KerE ∩ ZN with
positive coordinates, as in Remark 3.1. The construction of the latter
is provided by the lemma below. �

Lemma 5.9. For any matrix E of size M ×N with entries in Q

and m := N − rankE the following properties are equivalent:
(i) there is ~v ∈ KerE ∩ (ZN

+ ) ;

(ii) there is a Q-basis {~δi}1≤i≤m ⊂ ZN
+ of KerE ∩QN ;
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(iii) there is a Z-basis {~δi}1≤i≤m of KerE ∩ ZN with all posi-

tive coordinates (equivalently, there exists a Q-basis {~δi}i ⊂ ZN
+ of

KerE ∩QN such that I = Z , where I = I(~δ1 ∧ · · · ∧~δm) is the ideal

generated in Z by all coordinates of ~δ1 ∧ · · · ∧ ~δm in the standard
basis {(j1) ∧ · · · ∧ (jm)}1≤j1<···<jm≤N ).

Remark 5.10. (i) of Lemma 5.9 is equivalent to (Im Etr)∩QN
+ = {0} .

Proof. (Also, cf. Gordan theorem from [2] , communicated to us by
Dima Pasechnik.) Our proof is based on simple linear algebra. To
prove that (i) implies (ii) it suffices to choose any basis {~vi}i ⊂ ZN of

KerE∩QN with ~v1 := ~v ; then let ~δ1 := ~v and ~δi := t ·~v+~vi , i > 1 .
Then (ii) follows for a sufficiently large t ∈ Z+ .
The proof of the remaining implication “(iii) follows from (ii)” is

slightly harder. Let {~δi}1≤i≤m ⊂ ZN
+ be a Q-basis of KerE ∩ QN .

Also, let s ∈ Z+ be the generator of the ideal I , i. e. (s · Z) = I .

If s = 1 we are done. Otherwise, we modify the basis {~δi}1≤i≤m

by reducing the size of s . Pick a prime factor p of s . Denote

the field Z/(p · Z) by Fp . Now our collection of vectors {~δi}1≤i≤m ,
considered modulo the ideal (p · Z) in (Fp)

N is linearly dependent,

i. e.
∑

1≤i≤m λi · ~δi = 0 in (Fp)
N for a collection of coefficients

{λi}1≤i≤m ⊂ (Fp)
m \{0} . Choose λ̃i ∈ Z so that λi = λ̃i (mod p) and

0 ≤ λ̃i < p , 1 ≤ i ≤ m . Then λ̃i0 6= 0 for some i0 , 1 ≤ i0 ≤ m ,

and ~δ0 := (1/p) ·∑1≤i≤m λ̃i · ~δi ∈ ZN
+ . It follows that all coordinates

of the modified Q-basis of KerE ∩ QN obtained by replacing the

vector ~δi0 of {~δi}1≤i≤m by the vector ~δ0 are positive integers and,

also, that I(~δ1∧ · · · ∧~δi0−1∧~δ0∧~δi0+1∧ · · · ∧~δm) = λ̃i0 · (s/p) ·Z . Due

to the choice of {λ̃i}1≤i≤m in Zm the size of λ̃i0 · (s/p) is smaller
than the size of s , which suffices. �

Remark 5.11. The complexity of the construction of a basis satisfying
property (iii) of the algorithm arising in the proof of ‘(ii) implies (iii)’
is polynomial in the maxima of the absolute values of the coordinates

of ~δ1 ∧ · · · ∧ ~δm in the standard basis for the initial Q-basis {~δi}1≤i≤m .
That is, it is exponential in the binary size of the input, unlike the

construction of a basis {~δj}1≤j≤m of (ii) which is a typical problem of
linear programming and carries a polynomial cost in the binary size of
the input. But we do not need the output with property (iii) for the
algorithms of this article.

Proof. of Claim 3.6 . The ‘if’ implication is obvious. We first prove
the ‘only if’ implication in the case that there are no y-coordinates,
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i. e. we must show that in this case (f̂) is a radical ideal when

V̂ = V̂ ∩ TN = V ∗(f̂) . We have that V ∗(f̂) ⊂ Reg V̂ due to
Remark 3.1. Therefore, assuming that the polynomial P ∈ K[w]

vanishes on V̂ it follows that the polynomial P belongs to the ideals
Im generated by the ideal (f̂) in the local rings Om of the localizations
of the polynomial ring K[w] at its maximal ideals m . The result
follows by the standard ‘partition of unity’ argument of commutative
algebra. Indeed, for every m there is a polynomial Qm ∈ K[w] with

Qm /∈ m such that Qm · P ∈ (f̂) . Since the ideal generated by all
Qm in K[w] is not in any maximal ideal m of K[w] it follows that
it coincides with K[w] . Therefore there is a finite linear combination∑

k hk ·Qmk
= 1 , for an appropriate choice of polynomials hk ∈ K[w] ,

commonly refered to as a partition of unity. Expressing the inclusions
Qmk

· P ∈ (f̂) as equalities Qmk
· P =

∑
j Gmk,j · f̂j it follows that

P =
∑

k hk ·Qmk
· P =

∑
j(
∑

k hk ·Gmk,j) · f̂j .
Finally, we reduce to the special case considered in the preceding

paragraph. Let v := (v1, . . . , vL) and gi := yi · vi − 1 denote aux-

iliary variables and polynomials. We have that V̂ ∩ {(y, z) ∈ AN :

y1 · ... · yL 6= 0} = V ∗(f̂) , by definition of the y-variables. Therefore

the assumption that P ∈ K[w] vanishes on V̂ (and equivalently

on V ∗(f̂) ) implies that the polynomial P ∈ K[w] ⊂ K[w, v] van-

ishes on V ∗(f̂ , g) ⊂ AN+L . Obviously all (w, v) variables for the

collection F of binomials {f̂j}j ∪ {gi}i are, as we refer to them, the
‘z-variables’. Therefore the case we considered first implies that the
polynomial P (w) is in the ideal generated by polynomials from F
in the ring K[w, v] . Substitution of vj = 1/yj , 1 ≤ j ≤ L , in the
equality expressing the inclusion of the previous sentence, followed by
‘clearing’ the denominators, i. e. (in our setting) by multiplying by a
sufficiently high power of y1 · ... · yL , completes the proof. �

Part 2. Essential dimension m = 2 .

The main results of Part 2. are Theorems 6.6 and 6.8 proved in
Sections 6.2 and 7.1. In Theorem 6.6 we establish an explicit apriori
bound for the termination of the normalized Euclidean 2-dimensional
division algorithm and then improve it in Theorem 6.8 . The latter
allows us to establish in Sections 7.2 and 7.3 a polynomial complexity
of this algorithm.
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6. Termination of normalized Euclidean division: dim = 2.

Conjecture 6.1. The tree T associated with the multidimensional
Euclidean algorithm is finite for any initial data.

By König’s lemma the latter is equivalent to the property that the
algorithm terminates along every branch of the tree T . In dimension
> 2 the ‘normalized’ version of 6.1 is the following

Conjecture 6.2. The tree T associated with the normalized multidi-
mensional Euclidean algorithm is finite for any initial data.

We start with an example from the Introduction of a normal toric
surface in C3 whose Nash blow up is not normal. It also illustrates
the kind of calculations we deal with in Sections 6 and 7 .

Example 6.3. With φ : (x1, x2) 7→ (x1 · x2 , x1 · x22 , x31 · x22) let

S := φ(T2) ⊂ C3 . Exponents E := {(1, 1) , (1, 2) , (3, 2)} ⊂ Z2

generate over Z+ the integral points Z2 ∩ Span Q+(E) of the cone
Span Q+(E) ⊂ Q2 spanned by E . Indeed, det((3, 2) , (1, 1)) = 1 =
det((1, 1) , (1, 2)) implies that the cones Span Q+({(3, 2) , (1, 1)})
and Span Q+({(1, 1) , (1, 2)}) are, respectively, generated by the pairs
of vectors {(3, 2) , (1, 1)} and {(1, 1) , (1, 2)} . Since the union of
these two cones is exactly the cone generated by E , this implies the
claim. Then, due to a criterion of Section 2.1 in [5], it follows that the
surface S is normal. Next, with reference to Section 4.2 there are
exactly two elements in the set S(E)′ , namely: J1 = {(1, 1) ; (1, 2)}
and J2 = {(1, 1) ; (3, 2)} , - and the Nash blow up N(S) of S is
covered by two respective affine charts N(S)Jj , j = 1, 2 , as explained
in Claim 4.6 . (In the remainder of this example we follow the notations
of Construction 4.5 .) It turns out that N(S)J1 ⊂ C5 is not normal,
i. e. the collection of exponents EJ1 of the monomial parametrization

ψ : (x1, x2) 7→ (x1 · x2 , x1 · x22 , x31 · x22 , x21 · x2 , x21)
of the torus N(S)∗J1 does not generate Z2 ∩ Span Q+(EJ1) over Z+ .
Indeed, obviously the point (1, 0) ∈ Z2 ∩ Span Q+(EJ1) \ Z+(EJ1) , but
(1, 0) 6∈ Z+(E ∪ {(2, 1) , (2, 0)}) , which implies that N(S) is not
normal. Note, that ψ3(x) = ψ1(x) · ψ4(x) , i. e. the exponent (3, 2)
is generated over Z+ by ‘others’, illustrating the passage from EJ
to Extreme(Z+(EJ)) in the combinatorial algorithm recording Nash
blowing up.

Consider a node τ of a tree T associated with the normalized
multidimensional Euclidean division for the initial essential collection
N (E) with E from Remark 4.1 . Let Cτ ⊂ Z2 denote the essential
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collection associated with the node τ . In an abuse of notation we
will not indicate the dependence of Sτ := S(Cτ ) and S ′

τ := S(Cτ )
′

on τ . For the definitions of S(E) and S ′ see Construction 4.4 and
Claim 4.6. Note that int(∇(J)) ∩ Span Z(Cτ ) = int(∇(J)) ∩Q+(Cτ )Z
for J ∈ Sτ . Also, J ∈ S ′

τ implies that int(∇(J)) ∩ Q+(Cτ )Z = ∅ ,
see Remark 4.7 (ii) , (iii) . Clearly, Span Z(Cτ ) = Span Z(E) for any
node τ . We may assume that Zm = Span Z(E) , otherwise we ‘rescale’
replacing the latter span by Zm . Finally, we refer to the initial node
τ0 of T as its root and to the collection of the ‘immediate descendants’
of τ in T as child nodes of τ - terms commonly used in the ‘theory
of trees’.

6.1. An apriori bound in (essential) dimension m = 2 on
the length of desingularization by normalized Nash blow ups.
Below we assume that m = 2 , nodes τ0 and τ are not terminal and
associate with node τ an integer V(τ) := 2 × the area of Conv (Cτ ) .
Note that (ii) of Theorem 2.1 is a consequence of the decrease of V(τ)
at least by a factor of 2 after two steps of the normalized Euclidean
division algorithm, see Theorem 6.8 below. The behavior of V(τ) after
one step of the normalized Euclidean division algorithm is recorded by
Theorem 6.6 . A detailed plan of the cases to be considered for the out-
come of the first step of the algorithm (and the proof of Theorem 6.6
in Section 6.2) can be found following Remark 6.11 . For the outcome
of the second step of the normalized Euclidean division algorithm ad-
ditional splittings into subcases have to be considered. The latter and
the proof of Theorem 6.8 in Section 7 are placed following the outcome
of the respective cases of the first step of the algorithm in Section 6.2 .
Consider vectors {~∆ji}i=1,2 ⊂ E := {~∆j}1≤j≤L ⊂ Z2 in the inter-

section of E with two extremal rays of the cone generated by E
over R+ , having minimal length. We refer to such vectors as the
extremal vectors of E . The extremal vectors of the input N (E) for
the normalized 2-dimensional Euclidean division are the same vectors.
The integer D of Theorem 2.1 (ii) equals | det(~∆j1 , ~∆j2)| . In an
abuse of notation we will not distinguish in this section between the
subsets J ∈ Sτ of indices of vectors in collections Cτ and the sets
of the corresponding vectors themselves. Let b1, , b2 ∈ Cτ be the
extremal vectors of Cτ . Denote D(τ) := | det(b1 , b2)| and pick a
2-tuple J := {uj}j=1,2 ∈ S ′ . In other words, J corresponds to a
child node τ of τ and determines the branching of T at node τ .
Then Cτ = Extreme(Q+(Cτ )Z) .
Every J ∈ S ′ is a frame, i. e. is a collection of linearly independent

vectors, and moreover is a minimal frame of Cτ . By minimal we
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mean that, for an irrational functional h positive on the convex hull
of the collection Cτ ⊂ Z2 the value of h(~∆J) , where ~∆J := u1+u2 ,

is smaller than the value of h(~∆J ′) for any other choice of J ′ ∈
S . This property of frames J ∈ S ′ does not depend on the choice
of irrational h , provided h is positive on the convex hulls of the
collections Cτ ⊂ Z2 corresponding to τ , and provides a bijective
correspondence between the minimal frames of Cτ and the child nodes
τ of τ , cf. Claim 4.6 . We identify in explicit geometric terms the
sets involved in the proof of an apriori bound Theorem 2.1 (ii) (see
Corollary 6.9 below) in the following

Claim 6.4. The generators Extreme(Q+(E)Z) of any subset E ⊂ Z2

with Conv (E) 6∋ 0 and Span Z(E) = Z2 are the integral points of the
bounded edges Γ of K := Conv (Q+(E)Z) . For any node τ of the tree
T

D(τ)− V(τ) = #(Cτ )− 1(6.1)

Proof. The inclusion of the integral points of the bounded edges Γ of
K in Extreme(Q+(E)Z) is obvious. To show the opposite inclusion
we pick any pair J of adjacent integral points {u1 , u2} on any
bounded edge Γ of K . Then the only integral points of the triangle
∇(u1 , u2) are its vertices. Therefore the only integral points in the
parallelogram P (J) spanned by the vectors u1 , u2 are its extremal
points, which implies (by tiling of R2 by translations of P (J) ) that
Span Z(J) = Z2 . Consequently, Z2 ∩ Span Q+(J) \ {0} = Z+(J)
and Span Q+(J)∩ E = J , which is equivalent to 1 = | det(u1 , u2)| =
2 · area(∇(u1 , u2)) for any pair of adjacent integral points u1 , u2
of any bounded edge Γ of Conv (Q+(E)Z) implying (6.1) for any node
τ . Also the remainder of the claim (“the opposite inclusion”) follows
from the decomposition Span Q+(E) = ∪JSpan Q+(J) , where the union
is over pairs J of the adjacent integral points of the bounded edges
of K . �

Remark 6.5. Any J = {u1 , u2} ∈ S(E)′ must lie on a bounded
edge Γ of Conv (Q+(E)Z) . Moreover, the frame J is a minimal
frame iff u1 , u2 ∈ Γ are adjacent integral points of the edge Γ
and at least one of them is a vertex of Γ , since J ∈ S(E)′ iff
dim C̃J = 2 (see proof of Claim 4.6). The fact that | det(u1 , u2)| = 1
for any pair {u1 , u2} of adjacent integral points on a bounded edge
of Conv (Q+(E)Z) is a byproduct of the proof of Claim 6.4 above.
Moreover, the converse also holds. Namely, let u1, . . . , uk ∈ Q+(E)Z
be such that u1 , uk are extremal vectors of E . Assume that
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| det(ui , ui+1)| = 1 , 1 ≤ i < k , and that | det(ui , uj)| ≥ 2
whenever i ≥ j + 2 . Then Extreme(Q+(E)Z) = {u1, . . . , uk} and
the points ui , ui+1 , 1 ≤ i < k , are the adjacent integral points on a
bounded edge of Conv (Q+(E)Z) .
Clearly V(τ) = 0 for a terminal node τ . Also, if the node τ is not

terminal but V(τ) = 0 , then there are exactly two child nodes of node
τ and both are terminal due to a simple argument of the case 2a of the
proof in Section 6.2 of the following weak version of Theorem 2.1 (ii)

Theorem 6.6. Assume τ is not terminal. With every step of the
normalized 2-dimensional Euclidean algorithm the integer V(τ) de-
creases, i. e. V(τ) > V(τ) .
Corollary 6.7. The normalized 2-dimensional Euclidean algorithm
terminates after at most V(τ0) + 1 ≤ D(τ0)− 1 steps.

We derive Theorem 2.1 (ii) as a consequence of the following

Theorem 6.8. Assume τ is not terminal. It follows that either
V(τ) < V(τ)/2 or V(τ) ≤ V(τ)/2 < V(τ)/2 .

Of course Theorem 2.1 (ii) follows, namely

Corollary 6.9. The normalized 2-dimensional Euclidean algorithm
terminates after at most 2 · log2(V(τ0) + 2) ≤ 2 · log2D(τ0) steps.

Claim 6.10. For any node τ 6= τ0 the collection Cτ contains at
most 6 vectors. Moreover, Conv(Q+(Cτ )Z) contains at most 3
bounded edges. If there are at least 2 bounded edges then no edge
can have more than 4 integral points. If there are just 3 bounded
edges then the middle edge among them has exactly two integral points
and no edge can have more than 3 integral points. Finally, at most
3 child nodes of τ can be nonterminal.

We begin with a proof of the weaker bound of Theorem 6.6. The
proofs of Theorem 6.8 and Claim 6.10 we placed in Section 7.

6.2. Proof of Theorem 6.6 .

Proof. Fix an irrational h ∈ C̃J for a J ∈ S ′
τ . By reindexing arrange

that h(b1) < h(b2) . Let b′1 , b
′
2 ∈ Cτ be the extremal vectors

of Cτ . Also, let b̃′1 , b̃
′
2 ∈ NJ(Cτ ) be the minimal vectors in the

intersection of NJ(Cτ ) with two extremal rays of the cone generated
by NJ(Cτ ) over R+ . Clearly, the latter cone does not change under
‘normalization’, i. e. coincides with the cone generated by Cτ over
R+ , see Section 4.3 . In particular, it follows that after an appropriate
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choice of indices, the extremal vectors b̃′1 , b̃
′
2 preceding normalization

are proportional to the extremal vectors b′1 , b
′
2 with coefficients from

Z+ .

Remark 6.11. The node τ is terminal iff | det(b1 , b2)| = 1 , iff
#(Cτ ) = 2 , iff {b1 , b2} is a minimal frame in Cτ . To establish
the only nonobvious implication (i. e. that the last property implies
the first) it suffices to apply Claim 6.4 . The latter reference and the
node τ not being terminal also imply that if J 6⊂ int∇(b1 , b2) , then
#({b1 , b2}∩ J) = 1 and b2 6∈ J ; otherwise h(b1) < minh|J < h(b2)
contrary to the choice of the irrational functional h ∈ C̃J .

Plan : Our proof of the decrease of V(τ) splits into several cases
identified below. First we consider the case that J ⊂ int∇(b1 , b2) .
Otherwise we may assume that b1 ∈ J , b2 6∈ J (due to Remark 6.11)
and, also, b1 ∈ {b′1 , b′2} due to the equality Span Q+(J) ∩ Cτ = J
established in Claim 6.4 , cf Figures 1 , 2 and 3 . Say b′1 = b1 and
u1 = b1 . The remaining cases are split according to whether u2 6∈
int∇(b1 , b2) (and then τ is terminal contrary to our assumption) or
otherwise; then according to #(Cτ ) = 3 (when #(Cτ ) = 2 the node is
terminal) or #(Cτ ) ≥ 4 . We show that in the last case #(Z2 ∩ Γ) > 2
for the bounded edge Γ ⊃ J of Conv (Q+(Cτ )Z) . Then the node τ must
be terminal, which is contrary to our assumption. In the previous case
of u2 ∈ int∇(b1 , b2) and #(Cτ ) = 3 the arguments of our proof differ
depending on D(τ) being even or odd : if D(τ) = 2k − 1 is odd
then it turns out that Cτ = {b1 , u2 , b2 − (k − 1) · u2 , b2 − b1}
and V(τ) − V(τ) = 1 , on the other hand if D(τ) = 2k is even then
Cτ = {b1 , u2 , (b2 − b1)/2} and V(τ) − V(τ) = V(τ)/2 + 1 . In each
of the cases (with the nodes τ and τ not being terminal) we establish
that (after ‘normalization’) the integer V(τ) decreases. We now start
with

1. Points u1 , u2 in the interior of ∇(b1 , b2) .
Then after one step of 2-dimensional Euclidean division (and prior

to normalization) each extremal vector b̃′l = a(l) − ujl for appropriate
points a(l) ∈ Cτ∩ (int(∇(b1 , b2))∪{b1 , b2}) , l = 1 , 2 , jl ∈ {1 , 2} .
Also, after one step of the normalized 2-dimensional Euclidean algo-
rithm the extremal vectors b′1 , b

′
2 are proportional to their respective

counterparts b̃′1 , b̃
′
2 with positive coefficients majorated by 1 , so

that D(τ) ≤ | det(b̃′1 , b̃′2)| . Denote by H and AH the convex hull
of {a(1) , a(2) , uj1 , uj2} and its area. Clearly, the areas of triangles
∇(b1 , b2) and ∇(b′1 , b

′
2) are D(τ)/2 and, respectively, D(τ)/2 .
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Figure 1. Cτ = { b1 , a(1) , u1 , u2 , b2 } .

Then the claimed inequality follows from

V(τ) < D(τ) ≤ | det(b̃′1 , b̃′2)| = 2 · AH ≤ V(τ) .
Remark 6.12. In the proofs of Theorem 6.8 and Claim 6.10 we will
distinguish between the following subcases of case 1.

1a The minimal frame {u1 , u2} ⊂ Γ is not the set of all
integral points of a bounded edge Γ of Conv(Q+(Cτ )Z) .

Then, due to Remark 6.5 , we may assume that u2 is an endpoint
of Γ and that the points u1 , u2 are adjacent integral points of Γ .
Then there is also an integral point a(1) in Γ adjacent to u1 and
of course a(1) − u1 = u1 − u2 . Also, there is a bounded edge Γ′ ∋ u2
of Conv(Q+(Cτ )Z) and an integral point, say a(2) ∈ Γ′ , adjacent
to u2 . Then u1 + a(2) = l · u2 for an integer l ≥ 3 since due to
Remark 6.5 det(u1 + a(2) , u2) = 0 and det(u1 , u1 + a(2)) ≥ 3 . We
will refer to the subcases of 1a with integer l being even or odd as
1a+ and, respectively, 1a– .

1b {u1 , u2} = Z2∩Γ for a bounded edge Γ of Conv(Q+(Cτ )Z) .

Then there are bounded edges Γi ∋ ui , i = 1 , 2 , of Conv(Q+(Cτ )Z)
distinct from the edge Γ . Say a(i) ∈ Γi are the integral points ad-
jacent to ui , i = 1 , 2 . Once again due to Remark 6.5 there are
integers l1 , l2 ≥ 3 such that u2 + a(1) = l1 · u1 , u1 + a(2) = l2 · u2 .
We refer to the subcases of 1b with l1 , l2 being even or both odd as
1b++ and, respectively, 1b– – . Otherwise it is subcase 1b+ – .

If case 1 does not hold then
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2. The extremal vector b1 ∈ {u1 , u2} .

Since τ is not terminal b2 6∈ J = {u1 , u2} and b1 ∈ {b′1 , b′2} (see

‘Plan’). Set both b′1 = b1 and u1 = b1 , i. e. b′1 = b̃′1 = b1 = u1
for the remainder of the proof. We split Case 2. into several subcases
starting with

2a. Assume u2 6∈ int∇(b1 , b2) .

Then, with reference to Claim 6.4 , u2 is on the open edge (b1 , b2)
(i. .e. excluding the endpoints b1 , b2 ) of the triangle ∇(b1 , b2) .

Therefore Cτ ⊂ [b1 , b2] := (b1 , b2)∪{b1 , b2} . Then b̃
′

2 = a−u2 6= 0
for the point a ∈ Cτ ∩ [u2 , b2] adjacent to u2 which implies that

b′2 = b̃
′

2 = u2−u1 . Hence, with reference to Claim 6.4 , | det(b′1 , b′2)| =
| det(u1 , u2)| = 1 and τ is terminal (Remark 6.11 ).

In the remaining subcases of case 2, u2 ∈ int∇(b1 , b2) and the
assumptions of the subcase 2b below imply that τ is terminal.

2b. Assume u2 ∈ int∇(b1 , b2) , #(Cτ ) ≥ 4 and #(Z2∩Γ) > 2
for the bounded edge Γ of Conv (Q+(Cτ )Z) such that Γ ⊃ J .

Then, with reference to Claim 6.4 , b̃
′

2 = a − u2 6= 0 for the point
a ∈ Cτ ∩ Γ \ {u1} adjacent to u2 which implies (as in the previous

case) that b′2 = b̃
′

2 = u2−u1 , that | det(b′1 , b′2)| = | det(u1 , u2)| = 1
and, finally, that τ is a terminal node, contrary to initial assumption.
Note that the proof remains valid without our assumption #(Cτ ) ≥ 4 .

2c. Assume u2 ∈ int∇(b1 , b2) , #(Cτ ) ≥ 4 and #(Z2∩Γ) = 2
for the bounded edge Γ ⊃ J of Conv (Q+(Cτ )Z) .

Then Z2∩Γ = J , #(Cτ \J) ≥ 2 and, with reference to Remark 6.5 ,
there is a bounded edge Γ′ ∋ u2 of Conv (Q+(Cτ )Z) distinct from

Γ and an integral point a ∈ Γ′ adjacent to u2 with b̃′2 = a − u1 .
Therefore the integer V(τ) − 2 · area(u1 +∇(u2 − u1 , a − u1)) > 0

implying | det(b̃′1 , b̃′2)| = 2 + 2 · area(u1 + ∇(u2 − u1 , a − u1)) ≤
2 + (V(τ) − 1) . Combining with (6.1) and Remark 6.11 proves the
inequality V(τ) < V(τ) , as required:

2 + V(τ) ≤ D(τ) ≤ | det(b̃′1 , b̃′2)| ≤ 1 + V(τ) .
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Figure 2. The area of Conv (Cτ \ {u2}) ≥ 1 .

Remark 6.13. With a from case 2c above and again due to Re-
mark 6.5 (as in the argument in Remark 6.12 1a) there is an integer
l ≥ 3 with u1+a = l ·u2 . In the proofs of Theorem 6.8 and Claim 6.10
we will refer to the subcases of case 2c with integer l being even or
odd as 2c+ and, respectively, as 2c– .

2d. Assume u2 ∈ int∇(b1 , b2) and #(Cτ ) = 3 .
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Figure 3. D(τ) = 2k or 2k − 1 ⇒ #Cτ = 3 or 4 respectively.
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Let e be the point of intersection of the edge (b1 , b2) with the ray
R+ · u2 , say λ · u2 = e , λ > 0 . Due to Claim 6.4 ∇(b1 , b2) ∩ Z2 \
{0 , b1 , b2} ⊂ Z+ ·u2 and | det(b2 , u2)| = 1 = | det(u2 , b1)| implying

that b̃′2 = b2 − b1 and that the areas of the triangles ∇(b2 , e) and
∇(b1 , e) coincide. Hence e = (b1+b2)/2 and, also, λ = | det(e , b1)| =
D(τ)/2 . The arguments in the remainder depend on D(τ) being even
or odd and accordingly we split case 2d into the following two subcases.

2d+ Assume D(τ) is even and let k := D(τ)/2 .

Then b′2 = b̃′2/2 since {(b2 − b1)/2} = Z2 ∩ (0 , b̃′2) . Therefore
| det((b2 − b1)/2 , u2)| = |(det(b2 , u2) + det(u2 , b1))/2| = 1 , which
implies that Cτ = {b1 , u2 , (b2 − b1)/2} (Remark 6.5).

Remark 6.14. Claim 6.10 in case 2d+ is a consequence.

Finally, with reference to (6.1), it follows that

V(τ) + 2 = D(τ) = | det(b1 , (b2 − b1)/2)| = D(τ)/2 = (V(τ) + 2)/2

which implies that V(τ)− V(τ) = V(τ)/2 + 1 , as required.

Remark 6.15. Of course Theorem 6.8 in case 2d+ follows.

2d– Assume D(τ) is odd and let k := (D(τ) + 1)/2 .

Then there are no integral points on the edge (b1 , b2) (as well as on

the ‘interval’ (0 , b̃′2) ) implying that b′2 = b̃′2 = b2 − b1 . Denote the
point a := b2−(k−1)·u2 = (u2+b

′
2)/2 . Then, since | det(b′2 , u2)| = 2 ,

it follows that | det(b′2 , a)| = | det(a , u2)| = 1 . Now, with reference
to Remark 6.5 it follows that Cτ = {b1 , u2 , b2−(k−1) ·u2 , b2−b1} .

Remark 6.16. Note that Claim 6.10 in case 2d– follows.

The latter formula for Cτ and (6.1) imply that

V(τ) + 3 = D(τ) = | det(b′1 , b′2)| = D(τ) = V(τ) + 2 .

Therefore V(τ)−V(τ) = 1 , which completes the proof of Theorem 6.6.
�

7. Sharp apriori bound and polynomial complexity. Proofs.

7.1. Proofs of Theorem 6.8 and Claim 6.10. We establish both re-
sults separately for all the cases introduced in the course of the proof of
Theorem 6.6 (exluding the cases already covered by Remarks 6.14 , 6.15 ,
6.16 and cases 2a and 2b, when τ is terminal). We start with the
case 1a+.
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Under the assumptions of case 1a+ the integer l is even. Let
k := l/2 . Then, due to Remark 6.5

Cτ = { u1 − u2 , u2 , a(2) − ku2 = (a(2) − u1)/2 } ,
unless k − 1 = | det(u1 − u2 , (a(2) − u1)/2)| = 1 which implies that

Cτ = { u1 − u2 , (a(2) − u1)/2 }
and then, due to Remark 6.11 , that τ is terminal. The latter proves
Claim 6.10 in case 1a+ . Moreover, then also

V(τ) = | det(u1 − u2 , (a(2) − u1)/2)| − 2 =

k − 3 < k − 1 = | det(u1 − u2 , a(2) − u2)|/2 < V(τ)/2
(unless k = 2 and τ is terminal, as we showed above), which
establishes Theorem 6.8 in case 1a+ .
Under the assumptions of case 1a– the integer l is odd. Let k :=

(l + 1)/2 . Then, due to Remark 6.5, it follows that

Cτ = { u1 − u2 , u2 , a(2) − (k − 1)u2 , a(2) − u1 }
with the points u2 , a(2) − (k − 1)u2 , a(2) − u1 lying on a bounded
edge of Conv(Q+(Cτ )Z) and a(2) − (k − 1)u2 = (u2 + (a(2) − u1))/2
(unless 2k − 3 = | det(u1 − u2 , a(2) − u1)| = 1 , which implies that

Cτ = { u1 − u2 , a(2) − u1 }
and then, due to Remark 6.11 , that τ is terminal). This proves
Claim 6.10 in case 1a– . Then

V(τ) = | det(u1 − u2 , a(2) − u1)| − 3 = 2k − 6 < 2k − 3 =

| det(a(1) − u2 , a(2) − u2)|/2 ≤ V(τ)/2
(unless k = 2 and τ is terminal, as proved above), which establishes
Theorem 6.8 in case 1a– .
Under the assumptions of case 1b++ both of the integers l1 and

l2 are even . Let ki := li/2 , i = 1, 2 . Then, due to Remark 6.5,

Cτ = { a(1)−k1·u1 = (a(1)−u2)/2 , u1 , u2 , a(2)−k2·u2 = (a(2)−u1)/2 }
(unless | det(a(1) − u2 , a(2) − u1)| = 4 in which case

Cτ = { (a(1) − u2)/2 , (a(2) − u1)/2 }
and then, due to Remark 6.11 , that τ is terminal). This proves
Claim 6.10 in case 1b++ . Then

V(τ) = | det((a(1) − u2)/2 , (a(2) − u1)/2)| − 3 <

| det(a(1) − u2 , a(2) − u1)|/4 ≤ V(τ)/4
(unless | det(a(1) − u2 , a(2) − u1)| = 4 and τ is terminal, as we
proved), which establishes Theorem 6.8 in case 1b++ .
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Under the assumptions of case 1b+– the integers l1 , l2 are re-
spectively odd and even (or vice versa, which is a similar case). Let
k1 := (l1 + 1)/2 and k2 := 1 + l2/2 . Then, due to Remark 6.5,

Cτ = { a(1)−u2 , a(1)−(k1−1)·u1 , u1 , u2 , a(2)−(k2−1)·u2 =
a(2) − u1

2
}

with the first three points a(1) − u2 , a(1) − (k1 − 1) · u1 , u1 lying
on a bounded edge of Conv(Q+(Cτ )Z) and a(1) − (k1 − 1) · u1 =
(a(1) − u2 + u1)/2 (unless | det(a(1) − u2 , a(2) − u1)| = 2 , in which
case

Cτ = { a(1) − u2 , (a(2) − u1)/2}
and then, due to Remark 6.11 , that τ is terminal). This proves
Claim 6.10 in case 1b+– . Then

V(τ) = | det(a(1) − u2 , (a(2) − u1)/2)| − 4 <

| det(a(1) − u2 , a(2) − u1)|/2 ≤ V(τ)/2
(once again unless | det(a(1) − u2 , a(2) − u1)| = 2 and, consequently,
τ is terminal), which establishes Theorem 6.8 in case 1b+– .

Under the assumptions of case 1b– – both of the integers l1 and
l2 are odd. Let ki := (li + 1)/2 , i = 1, 2 . Then, due to Remark 6.5,

Cτ = { a(1)−u2 , a(1)−(k1−1)·u1 , u1 , u2 , a(2)−(k2−1)·u2 , a(2)−u1 }
with the first three points a(1)−u2 , a := a(1)−(k1−1)·u1 , u1 lying on
a bounded edge of Conv(Q+(Cτ )Z) and a = (a(1)−u2+u1)/2 . Also,
all of the last three points u2 , b := a(2)−(k2−1) ·u2 and a(2)−u1 lie
on one bounded edge of Conv(Q+(Cτ )Z) and b = (u2 + a(2) − u1)/2
(unless | det(a(1) − u2 , a(2) − u1)| = 1 , in which case

Cτ = { a(1) − u2 , a(2) − u1}
and then, due to Remark 6.11, that τ is terminal). Therefore

V(τ) = | det(a(1) − u2 , a(2) − u1)| − 5 ≤ V(τ)− 5

(unless | det(a(1) − u2 , a(2) − u1)| = 1 and τ is terminal, as we
proved) and Claim 6.10 is proved in case 1b– – . It remains to prove
Theorem 6.8 (passing from node τ to τ ), but we will need to examine
several options for choosing the minimal frames J ′ = {u′1 , u′2} of Cτ

associated with the child node τ of τ (unlike in the previously
considered cases).
To begin with we assume that u1 , u2 are the endpoints of a bounded

edge Γ of Conv(Q+(Cτ )Z) .
The choice of J ′ = {u1 , u2} is an option (see Remark 6.5). Then

V(τ) < | det((a(1) − u2 + u1)/2− u2 , (a(2) − u1 + u2)/2− u1)| <
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| det(a(1) − 2 · u2 , a(2) − 2 · u1)|/2 ≤ V(τ)/2 ,

which establishes Theorem 6.8 in this subcase of case 1b– –.
With the same assumption on {u1 , u2} another possibility for the

choice of a minimal frame J ′ of Cτ is u′1 = (a(1)−u2+u1)/2 , u′2 = u1 .
Then, with reference to 1a (passing from the node τ to the node τ ),

V(τ) < | det((a(1) − u2 + u1)/2− u1 , (a(1) − u2 + u1)/2− u2)| =

| det(a(1) − 2 · u2 , u2 − u1)|/2 < V(τ)/2 ,

which implies Theorem 6.8 in this subcase.
Once again with the same assumption on {u1 , u2} , we choose

J ′ := {u′1 = a(1)−u2 , u′2 = (a(1)−u2+u1)/2} . It follows with reference
to case 2b (passing from the node τ to τ ) that the node τ is terminal.
With the same assumption on {u1 , u2} the remaining options for the
choice of a minimal frame J ′ and, consequently, of a child node τ are
either J ′ := {(u2+a(2)−u1)/2 , a(2)−u1} , which is similar to the case
just considered, or J ′ := {u2 , (u2 + a(2) − u1)/2} , which is similar to
the case considered in the previous paragraph. Consequently, in these
cases Theorem 6.8 follows by means of analogous arguments.
To complete the proof of Theorem 6.8 in the case 1b– – it remains to

consider the case when u1 , u2 are not the endpoints of one bounded
edge of K := Conv(Q+(Cτ )Z) . Then, following the constraints estab-
lished in the first paragraph of case 1b– –, there are at most 2 bounded
edges of K . In the case that there is exactly one bounded edge Γ of
K there are exactly two possible choices of minimal frames {u′1 , u′2}
of Cτ , cf. Remark 6.5 . Both choices lead to case 2a (passing from
the node τ to the node τ ) and therefore V(τ) = 0 establishing The-
orem 6.8 in this case. In the case that there are exactly two bounded
edges of K , it follows by making use of Remark 6.5 that there are
exactly 4 possible choices of minimal frames J ′ := {u′1 , u′2} of Cτ .
We distinguish these choices only by the property of the intersection of
the two edges being in J ′ or not. The latter case is the case 2b (for
passing from the node τ to the node τ ). Consequently, it implies
that the node τ is terminal, establishing Theorem 6.8 in this case. In
the former case we are in the setting of case 1a (but for passing from
the node τ to the node τ ). The inequalities on the values of V(·)
proved in both subcases of 1a applied in our setting imply the second
alternative of Theorem 6.8 in this last subcase of 1b– –, as required.

The remaining cases to consider are 2c+ , 2c– and 2d–.
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Under the assumptions of case 2c+ the integer l is even. Let
k := l/2 . Then, due to Remark 6.5,

Cτ = { u1 , u2 , a− k · u2 = (a− u1)/2 } ,
which proves Claim 6.10 in case 2c+. Then

V(τ) = | det(u1 , (a− u1)/2)| − 2 = k − 2 < (l − 1)/2 =(7.1)

(| det(u1 − u2, a− u2)|+ 1)/2 ≤ V(τ)/2 ,
which establishes Theorem 6.8 in case 2c+.
Under the assumptions of case 2c– the integer l is odd. Let k :=

(l + 1)/2 . Then, due to Remark 6.5,

Cτ = { u1 , u2 , a− (k − 1) · u2 , a− u1 }
with the points u2 , a− (k− 1) · u2 , a− u1 lying on a bounded edge
of Conv(Q+(Cτ )Z) and a− (k−1) ·u2 = (u2+a−u1)/2 . This proves
Claim 6.10 in case 2c–.
Once again, to establish Theorem 6.8 in the latter case we will ex-

amine the options for choosing the minimal frames J ′ := { u′1 , u′2 }
in Cτ and, consequently, corresponding child nodes τ of the node
τ . There is an exception for k = 2 when Conv(Q+(Cτ )Z) has a
single bounded edge with four integral points from Cτ , which implies
that we are in the case 2a for the node τ and therefore the node τ
is terminal.

There are three options for the choice of a minimal frame J ′ .

The first choice is u′1 = u1 , u
′
2 = u2 . For an integer l1 ≥ 3 the

vector u1+(a−(k−1)·u2) = l1 ·u2 . If l1 is even then V(τ) < V(τ)/2
by inequality (7.1) with τ and τ in (7.1) respectively replaced by
τ and τ . If l1 = 2 · k1 − 1 is odd then the passage from τ to τ
is similar to the passage from τ to τ in case 2c– considered above.
Hence, with reference to Remark 6.5, and assuming k 6= 2 ,

Cτ = { u1 , u2 , a− (k− 1) · u2 − (k1 − 1) · u2 , a− (k− 1) · u2 − u1 }
with the points u2 , a−(k−1)·u2−(k1−1)·u2 , a−(k−1)·u2−u1 lying
on a bounded edge of Conv(Q+(Cτ )Z) and a−(k−1)·u2−(k1−1)·u2 =
(u2 + a− (k − 1) · u2 − u1)/2 . Consequently

V(τ) + 1 = | det(u1 , a− (k − 1) · u2 − u1)| − 2 = l1 − 2 =

| det(u1−u2 , a−(k−1) ·u2−u1)| =
| det(u1 − u2 , a− 2 · u1)|

2
=

V(τ)
2

and Theorem 6.8 follows in this subcase of 2c– .
Another option for the choice of J ′ is u′1 = a− (k − 1) · u2 , u′2 =

a−u1 which leads to case 2b for the node τ . It follows that V(τ) = 0 ,
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which suffices. The last option for the choice of J ′ is u′1 = u2 , u
′
2 =

a− (k− 1) · u2 . This choice leads to case 1a for the node τ . In both
of the latter subcases we derived the inequality V(τ) < V(τ)/2 , as
required in Theorem 6.8 .

This completes the proof of Claim 6.10 . But to complete the proof
of Theorem 6.8 it remains to consider case 2d–. (Remark 6.16 takes
care of Claim 6.10 in this case.) Under the assumptions of case 2d–

Cτ = {b1 , u2 , b2 − (k − 1) · u2 , b2 − b1}
with the points u2 , b2 − (k − 1) · u2 , b2 − b1 lying on a bounded
edge of Conv(Q+(Cτ )Z) and b2 − (k − 1) · u2 = (u2 + b2 − b1)/2 .
This is the setting of case 2c– and, therefore, implies its conclusion
V(τ) ≤ V(τ)/2 . This fully completes the proofs of both Claim 6.10
and Theorem 6.8 . 2

Example 7.1. The example below demonstrates that the bound of
Theorem 2.1 (ii), and of Corollary 6.9, is sharp. In the notations of case
2d+, consider u1 , u2 , b2 ∈ Z2 with | det(u1 , u2)| = | det(u2 , b2)| = 1
and u1 + b2 = 2l · u2 for an integer l > 0 , e. g. say u1 = (−1, 1) ,

u2 = (0, 1) , b
(l)
2 := (1 , 2l − 1) . Then V(τ0) = 2l − 2 . Let us choose

{u1 , u2} as a minimal frame and follow the arguments of case 2d+,

i.e. Cτ0 = {u1 , u2 , b(l−1)
2 } with b

(l−1)
2 = b

(l)
2 − 2l−1 · u2 = (b

(l)
2 − u1)/2 .

Then V(τ0) = 2l−1 − 2 . Therefore in this example the normalized 2-
dimensional Euclidean algorithm terminates after l = log2D(τ0) steps.

7.2. Complexity issues. We have constructed an algorithm by means
of Lemma 3.4 (via linear programming). We then apply the algorithm
of the first three lines of Section 4.1. Its input is the exponent matrix
Ê (from (2.1)) and the output is an essential collection E = {~∆j}1≤j≤L

of the exponent vectors of a monomial parametrization of (4.1). The
fact that the complexity of the designed algorithm is polynomial in the
binary size of the input relies on the following two subroutines, namely:
(i) The first one by means of linear programming [14] separates vari-

ables wj on KN into two groups of z-variables and y-variables.

(ii) The second ([4]) yields a Z-basis {(~δ1i , . . . , ~δLi) × 0}1≤i≤m

of the integral lattice in Ker Ê ∩ (QL × {0}) ⊂ QN and vectors from

the collection E are derived by means of the formulae for ~∆j =
(δj1 , . . . , δjm) for each j .

Combination of the latter two subroutines results in an algorithm
whose input is an exponent matrix of an affine binomial variety V̂ ⊂
KN . The output of the algorithm is the collection of exponents
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{~∆j}1≤j≤ L ⊂ Zm of a monomial parametrization Tm → Y ∩ TN →֒
V̂ ∩ (TL× IN−L) of the torus of the essential toric subvariety Y →֒ V̂ ,

defined by the formulae yj = x
~∆j , 1 ≤ j ≤ L . As explained

in Remark 3.15, normalized Nash desingularization of the variety Y
implies normalized Nash desingularization of the same length of the
variety V̂ . We also observe that Criterion 3.18 invokes only subrou-
tines (i),(ii) and thereby one can verify the nonsingularity of an affine
binomial variety within polynomial complexity.
When m = 2 the sequence of normalizations followed by Nash blow-

ings up stabilizes, as is proved in this section, and provides normalized
Nash desingularization of Y . This process is recorded by means of
a combinatorial algorithm on the exponents of monomial parametriza-
tions of the dense tori of the successive compositions of the normalized
Nash blowings up. We start with the normalization of the essential
toric variety Y and follow by the normalized 2-dimensional Euclidean
algorithm (described in Section 4.3 and in great detail here).
Below we estimate the complexity of both procedures in terms of

the number D from Section 1.2 (see Remark 7.2 for the normalized
Euclidean algorithm and Corollary 7.5 for the normalizing algorithm).
Consequently, the complexity of the normalized Nash desingularizatiom
of Y is polynomial in the binary size of the input, i. e. the exponents
of the binomial equations defining an affine binomial variety whose
essential toric subvariety is of dimension m ≤ 2 .

Remark 7.2. Let the set E = N (E) ⊂ Z2 be the input of the
algorithm from Section 4.3 . After each step of the normalized 2-
dimensional Euclidean algorithm the maximal binary size of the points
of the input increases at most by an additive constant. Since the
length of any branch of the algorithm is bounded by 2 · log2D (Theo-
rem 2.1 (ii)) and log2D is polynomial in the binary size of the initial
input (combining the bounds for the subroutines considered above), it
follows that the complexity of a single step of the algorithm as well as
the complexity along a single branch are polynomial in the binary size
of the initial input.

7.3. Polynomial complexity of normalization. Finally we estab-
lish a polynomial complexity bound for constructing the normaliza-
tion N (E) starting with an initial essential collection E ⊂ Z2 . Let
K := Conv(Q+(E)Z) have k bounded edges with l1 , . . . , lk integral
points, respectively. We denote these points by

v1,1 , v1,2 , . . . , v1,l1 := v2,1 , v2,2 , . . . , v2,l2 := v3,1 , v3,2 , . . . , vk,lk ,
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where each pair of consecutive points consists of adjacent integral
points, say A , B , on the boundary of K with det(A , B) = −1
(cf. Remark 6.5) and the points vi,1 , vi,2 , . . . , vi,li lie on the i-th
bounded edge with vi,1 , vi,li being its endpoints.
Denote vi := vi,2 − vi,1 = · · · = vi,li − vi,li−1 . Then

Remark 7.3. The point vi,li is a common vertex of two bounded
edges of K whenever vi,li + vi 6∈ K . Moreover, vi+1,2 = B(s) :=
vi+1,1 + vi + s · vi+1,1 for s = λ := det(vi , vi+1) ∈ Z+ , which implies
that λ is the smallest integer with B(λ) ∈ Q+(E) . This is because if
B(s) = vi+1,1+ t · vi+1 for some t , s ∈ R , then t = det(B , vi+1,1) =
det(vi , vi+1,1) = 1 and 1 + s = det(vi , B) = 1 + det(vi , vi+1) .
Finally D = − det(v1,1 , vk,lk) .

Proposition 7.4. l1 · · · li ≤ | det(v1,1 , vi,li)| , 1 ≤ i ≤ k .

Proof. By induction on i . The base of induction l1 = | det(v1,1 , v1,l1)|
is a consequence of Remark 6.5. For v ∈ R2 let h(v) be the distance
from v to the line SpanR(v1,1) . Then the inductive hypothesis is

2 · ||v1,1|| · h(vi,li) = | det(v1,1 , vi,li)| ≥ l1 . . . li

Note that h(vi+1,2 − vi,li) = h(vi+1,2)− h(vi,li) . With λ ≥ 1 it follows
that

h((vi,li + vi) + λ · vi,li) > h((λ+ 1) · vi,li) ≥ 2 · h(vi,li) ,
which implies | det(v1,1 , vi+1,2)| ≥ 2 · | det(v1,1 , vi,li)| . Similarly, for
j ≥ 2 , h(vi+1,j) = h(vi,li + (j− 1) · vi+1) = h(vi,li) + (j− 1) · h(vi+1,2 −
vi,li) > j ·h(vi,li) . Therefore | det(v1,1 , vi+1,j)| > j · | det(v1,1 , vi,li | >
j · l1 · · · li . Consequently, setting j = li+1 completes the inductive
step of the proof. �

Corollary 7.5. The number k of edges of K does not exceed log2D .

We describe, in dimension m = 2 , in greater detail the normaliza-
tion algorithm of Section 4.3 . Its input is E ⊂ Zm with Conv (E) 6∋ 0
and the output is N (E) := Extreme(Q+(E)Z) ⊂ Zm . To carry out the
normalized Euclidean algorithm with the initial input N (E) with E
of the preceding sentence it suffices to indicate on the i -th bounded
edge of K the endpoints vi,1 , vi,li and, also, the point vi,2 ,
which then yields vi = vi,2 − vi,1 and vi,li−1 = vi,li − vi . The nor-
malized Euclidean algorithm then starts by choosing a minimal frame
J ∈ S(N (E))′ , which are (Remark 6.5) of the form J = {vi,1 , vi,2}
or J = {vi,li−1 , vi,li} with 1 ≤ i ≤ k , and the output of its first step
for the choice of J is N (NJ(N (E))) .
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First the normalization algorithm finds, by means of linear program-
ming v′1,1 , v

′ ∈ E such that Q+(E) = Q+(v
′
1,1 , v

′) . Then, by
dividing the coordinates of the points by their greatest common di-
visors, it finds the minimal integral non-zero points v1,1 , v on the
corresponding rays Q+(v

′
1,1) , Q+(v

′) , i. e. the outcome is v = vk,lk
of the first paragraph of this subsection.
We execute the normalizing algorithm by recursion on i starting

with the points v1,1 , v . For the base of the recursion of the algorithm
we first find, by means of integer programming on the plane, an integral
point v′1,2 ∈ Q+(E) such that | det(v1,1 , v′1,2)| = 1 . We then set
v1,2 := v′1,2 + λ · v1,1 for the minimal integer λ such that v′1,2 + λ ·
v1,1 ∈ Q+(E) , cf. Remark 7.3. Next, once again by means of integer
programming, we construct v1,l1 := v1,1 + (l1 − 1) · (v1,2 − v1,1) for
the largest integer l1 such that v1,l1 ∈ Q+(E) . Clearly, the integral
points of the edge of K passing through v1,1 , v1,2 are the points
v1,j = v1,1 + (j − 1) · (v1,2 − v1,1) ∈ Q+(E) , 1 ≤ j ≤ l1 .
Assuming that we have constructed the point vi,li , and the vector

vi for an i ≥ 1 , we set (by applying integer programming) vi+1,2 :=
(λ+1) ·vi,li+vi for the smallest integer λ such that (λ+1) ·vi,li+vi ∈
Q+(E) (then λ ≥ 1 ), cf Remark 7.3 . Therefore vi+1 = vi+1,2 − vi,li .
Then, by applying again integer programming and by following our
algorithm, we set vi+1,li+1

:= vi,li + (li+1 − 1) · vi+1 for the largest
li+1 such that vi+1,li+1

∈ Q+(E) . Once again the integral points
of the edge of K passing through vi+1,1 , vi+1,2 are the points
vi+1,j = vi+1,1 + (j − 1) · vi+1 ∈ Q+(E) , 1 ≤ j ≤ li+1 . This completes
the recursive step and the description of the normalizing algorithm.
The points vi,1 , vi,2 , vi,li−1 , vi,li provided by the algorithm lie

in the triangle ∇(v1,1 , vk,lk) . This implies that the binary sizes of
these points are polynomial in the binary sizes of the input data. Now
Corollary 7.5 combined with Remark 7.2 implies that the complexity
of the algorithm of normalization is polynomial, as well as that of the
normalized 2-dimensional Euclidean division algorithm.

Corollary 7.6. The complexity of the normalized 2-dimensional Eu-
clidean division algorithm along a single branch (or equivalently of the
normalized Nash desingularization of affine binomial varieties of es-
sential dimension m ≤ 2 ) is polynomial in the binary size of the
input.

Finally, Corollary 7.5 combined with Claim 6.10 implies

Corollary 7.7. The tree T (of Section 6) associated with the normal-
ized 2-dimensional Euclidean algorithm applied to the normalization
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N (E) ⊂ Z2 of E ⊂ Z2 with Conv (E) 6∋ 0 contains less than
O(D2·log2 3 · logD) < O(D3.2) nodes.

We conclude this Section with two examples. The first one shows
that the bounded edges of K can contain more than D/2 integral
points, while the normalization algorithm of this section should not
(and does not as we have described it) produce too many integral points
on the edges, in order to proceed within the polynomial complexity (in
fact it would construct at most four points on each edge).

Example 7.8. Let v1,1 := (1 , 2) , v2,l2 := (l2 , 1) . Obviously
D = 2 · l2 − 1 . Then K has just two bounded edges, the first of
which contains two integral points (1 , 2) , (1 , 1) , while the second
of which contains l2 integral points (i , 1) , 1 ≤ i ≤ l2 .

The second example demonstrates the sharpness of the bound in
Corollary 7.5.

Example 7.9. Denote Φ1 := Φ2 := 1 and by Φi the i-th Fibonacci
number. Set v1,1 := (Φ2 , Φ1) , vk,2 := (Φ2k+2 , Φ2k+1) . Then K has
k bounded edges and the i-th among them contains just two integral
points (being its endpoints) (Φ2i , Φ2i−1) , (Φ2i+2 , Φ2i+1) .

8. Invariance of termination bounds.

This section is entirely devoted to the issue of the invariance of the
integer D introduced in Sections 1.2 , 2 and 6 in terms of which
the termination and complexity bounds are expressed. It has no evi-
dent bearing on the problem of termination of either normalized mul-
tidimensional Euclidean division or of its geometric counterpart for
m > 2 . In all three sections we considered the case of dimension
m = 2 . We associated a number D with a monomial parametrization

Tm ∋ x 7→ y = φE(x) ∈ Y ∗ , with components yj = (φE)j(x) := x
~∆j ,

of the torus Y ∗ of an essential toric subvariety Y of a binomial
variety V̂ ⊂ AN . We expressed D in terms of the exponents
E = {~∆j}1≤j≤L ⊂ Zm of the map φE as the area of a parallelo-
gram generated by the extremal vectors. The latter are the smallest
points of Span Z(E) on the (two) extremal rays of the cone spanned
over R+ by the exponents in E , see Section 6 .
Due to Theorem 3.7 , Corollary 3.5 and Claim 3.3 we may, as well,

assume all exponents to be strictly positive, i. e. that E ⊂ Zm
+ . Also,

we may assume without loss of generality that Span Z(E) = Zm . Re-
call that Y is ‘essential’, which means that Y ∋ 0 and is equivalent
to Conv (Z+(E)) 6∋ 0 , see Sections 3 and 4 . By extremal vectors for



48 DIMA GRIGORIEV AND PIERRE D. MILMAN

any m we mean a subset Extremal(E) ⊂ Extreme(Q+(E)Z) , where
Q+(E)Z = Span Z(E)∩ Span Q+(E) \ {0} . Extremal(E) consists of all
points of Extreme(Q+(E)Z) , which are minimal in size on the extremal
rays of the cone Span Q+(E) . In terms of the exponents E the ‘nor-
mality’ property of Y is equivalent to the equality Z+(E) = Q+(E)Z .
By construction this property is valid for both the input and the
output of the normalized algorithms (Nash and/or 2-dimensional Eu-
clidean) of Section 6 for which termination is proved. We may also
assume, without loss of generality, that E = Extreme(Q+(E)Z) since
the ‘left out’ exponents and corresponding affine coordinates are in
Z+(Extreme(Q+(E)Z)) and, respectively, coincide on Y with monomi-
als in the coordinates corresponding to elements in Extreme(Q+(E)Z) .
The definition of the number D admits a natural extension for an ar-
bitrary m in terms of the set E as the smallest D = D(E) ∈ Z+

such that D · ~∆j ∈ Z+(Extremal(E)) for all ~∆j ∈ E .
Next we restate the definition of the denominator D(E) as a local

invariant of Y (as well as of any irreducible component V of V̂ )
at any point o ∈ Y . The invariance we consider is with respect
to the germs at o of local étale isomorphisms preserving coordinate
hyperplanes that contain o . We restrict the variety X := Y (or
respectively X := V ) to affine charts Uo obtained by exclusion of all
coordinate hyperplanes off o , which we refer to as the origin. Recall
that the ‘y-variables’ of the varieties Y , V and even of V̂ coincide,
see Section 3 and Remark 5.5 . To be precise charts Uo are constructed
by introducing a ‘double’ z̃j of every affine coordinate zj := wj with

wj(o) 6= 0 , say j = 1, ..., L̃ , and setting

Uo := {(z, z̃) ∈ A2L̃ : zj · z̃j = 1 , 1 ≤ j ≤ L̃} × ALo →֒ ALo+2L̃ ,

with the y-variables of the variety X being the remaining Lo variables
induced by the original y-coordinates with yj(o) = 0 .
Then, according to Theorem 3.7 and Remark 3.12 , the germ Xo of

the variety X at o is isomorphic to the product of a germ Za of a non-
singular subvariety Z at a ∈ Z with a germ at b ∈ (π|X)−1(I2L̃) =: Ŷ

of the union of Ŷ and possibly several, mutually isomorphic subvari-
eties (including the germ Yb at b of the essential toric subvariety of
X) and o = µ(a, b) . Moreover, the germ Za is ‘étale identified’ with

π(Za) = π(Xo) →֒ A2L̃ for projections π : ALo+2L̃ → A2L̃ , whose
components are the z-coordinates (Theorem 3.7 C).
Therefore (using the Krull completion) the morphisms Oπ(Xo) →֒

Ôπ(Xo)
∼→ÔZa

and (π|Xo
)∗ : Oπ(Xo) →֒ OXo

allow to consider the base
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change Ro := (OXo
⊗Oπ(Xo)

ÔZa
) ⊗ÔZa

F , where F is the field of

fractions of ÔZa
. The morphism µ : Za × Ŷb → Xo is an étale

isomorphism and π|Xo
◦ µ coincides with π|Za

: Za × Ŷb ∋ (u× v) 7→
π|Za

(u) ∈ π|Za
(Za) , while Za × Yb is an irreducible component of

Za × Ŷb and is a product of germs at a , b of the torus Z and,
respectively, of the essential toric subvariety of X . Consequently, the
base change above corresponds (via the étale isomorphism µ ) to a

base change of Za× Ŷb and is isomorphic to a very simple base change
X̃b of Ŷb via − ⊗K F . Thus Ro is the local ring of a germ at
b (= 0 ∈ ALo) of the variety X̃ obtained from Ŷ by means of the
base change via −⊗K F . Also, the germ at b of the base change Ỹ
of Y via −⊗K F is an essential toric variety and is a component of
X̃ , cf. Ch.1 [9]. We use these constructions below.
By attaching the subscript o we indicate the dependence on the new

origin o ∈ X . Below we assume that all notations and assumptions
of the second paragraph of this section are associated with the toric
variety X →֒ Uo ; that includes the sets of the exponents Eo associated
with the essential subvariety Y of X →֒ Uo and the extremal vectors
Extremal(Eo) ⊂ Eo , as well as the numbers mo := dimYo and Do :=
D(Eo) . By reindexing yj ’s we may assume that Extremal(Eo) =
{yj}1≤j≤L′

o
. In abuse of notation we will write below j ∈ Extremal(Eo)

instead of yj ∈ Extremal(Eo) .
For the sake of invariance we must consider notions which allow us

to define the denominator D(Eo) in the respective local ring OX,o

(i.e. with X being the ‘original’ variety Y and/or V from the
first paragraph of this section), while in OX,o its ‘defining equations’
are no longer binomial. That is binomials do not generate the ideal of
relations between local parameters. This is so even though we include
among the latter all affine coordinates yj with yj(o) = 0 , which we
do since we examine the invariance with respect to the germs of local
isomorphisms preserving all germs of sets {yj = 0} . To overcome this

problem we consider a base change (as above) passing to the germ X̃b

of a binomial variety X̃ (defined over the field F ) and its local ring
Ro , whose maximal ideal mo is generated by the classes yj in Ro of
all affine coordinates yj with yj(o) = 0 . Of course, the collection (of
‘parameters’) Par(Ro) := {yj}1≤j≤Lo

⊂ mo induces a set that spans
mo/m

2
o over the field F .

Remark 8.1. Extremal(Par(Ro)) ⊂ Par(Ro) can be defined in
terms of Par(Ro) ⊂ Ro as follows: j ∈ Extremal(Par(Ro)) iff
(i) ypi = yqj , (p, q) ∈ Z2

+ , i 6= j , implies p < q , and
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(ii) yj is not in the integral closure in Ro of the subring of Ro

generated by yi’s such that ypi 6= yqj for any (p, q) ∈ Z2
+ .

Note that the ring Ro is the integral closure of its subring R →֒ Ro

generated by yj’s with j ∈ Extremal(Par(Ro)) (using Section 2.1
of [5] ). We may therefore introduce in terms of the collection Par(Ro)
the smallest positive integer D = D(Par(Ro)) such that for all
j , yDj ∈ R . Obviously, the value of the denominator D of Par(Ro)
coincides with Do = D(Eo), where Eo is the collection of the exponents

{~∆j}j of any monomial map φEo (including the nonpositive expo-
nents if there are any) parametrizing the torus Y ∗ of the essential
subvariety Y of X . Consequently, D(Eo) is a local invariant due
to the definition of D = D(Eo) being stated entirely in terms of the
collection Par(Ro) .

Remark 8.2. With reference to Section 4.3 the normalization N (Y )
of Y ⊂ AL is a toric variety in AL′

whose torus N (Y )∗ := N (Y )∩TL′

is parametrized by a map φE ′ : Tm ∋ x 7→ y = φE ′(x) ∈ N (Y )∗ with

components yj = (φE ′)j(x) := x
~∆j . The collection of exponents, say

E ′ := {~∆j}1≤j≤L′ ⊂ Span Z(E)∩Span Q+(E) ⊂ Zm
+ , extends the set E =

{~∆j}1≤j≤L so that Z+(E ′) = Span Z(E)∩Span Q+(E) \ {0} . It follows
that Z+(E ′) = Span Z(E ′)∩Span Q+(E ′)\{0} . In short, all assumptions
of the following lemma (except on the size of Extremal(E) when
m > 2 ) are satisfied for Y being replaced by its normalization N (Y ) .
Clearly, the elements of Extremal(E ′) and of Extremal(E) span the
same extremal rays with the extremal vectors of Extremal(E ′) being
(equal or) shorter than their counterparts in Extremal(E) .
For a matrix M of size m×m with entries in Z let den (M) ∈ Z+

denote the least d ∈ Z+ such that the entries of d ·M−1 are integers.
Obviously, the entries of the matrix d · M−1 generate the unit ideal
in Z . Also, if m = 2 and the entries of M have no common divisor
then den (M) = | det(M)| . Recall that a matrix whose columns are
elements of the collection E ⊂ Zm are denoted by the same letter E .

Lemma 8.3. If Span Z(E) = Zm , Zm∩Span Q+(E)\{0} = Z+(E) and
#(Extremal(E)) = m it follows that D(E) = den (Extremal(E)) .
Remark 8.4. Of course, if #(Extremal(E)) = m and D(E) = 1 ,
then the affine variety Y being of dimension m must be nonsin-
gular and, if m = 2 , then #(Extremal(E)) = m and D(E) =
| det(Extremal(E))| .
Proof. The inclusion den (Extremal(E)) ∈ D(E) · Z is a simple con-
sequence of the definitions. Therefore it suffices to show that for any
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prime number p and s ∈ Z+ if den (Extremal(E)) ∈ ps · Z then
D(E) ∈ ps · Z . Let M := den (Extremal(E)) · (Extremal(E))−1 .
Then the entries of M generate the unit ideal in Z and, there-

fore, there is a column ~λ of the matrix M with a nonvanishing

mod p entry. We modify the latter column to ~λ′ := ~λ + ps · t · Im
with a sufficiently large positive t ∈ Z+ so as to make all entries of
~λ′ positive. It follows that ~λ′ 6= 0 (mod p) . Therefore the vec-

tor Extremal(E) · ~λ′ ∈ (ps · Zm) ∩ Span Q+(E) \ {0} . It follows that
D(E) ∈ ps · Z , as required. �

Corollary 8.5. The denominator D(E) of the essential subvariety of

a binomial variety V̂ is the bound D appearing in Section 1.2 for
m = 2 (and is a local integral invariant of V̂ at 0).
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9. Appendix: Length bound 1 + log2(#Γ) on normalized

Nash resolution with Γ the dual graph of the

minimal resolution of a minimal surface singularity -

by M. Spivakovsky.

Let (S, ξ) be a normal surface singularity and π : X → S its minimal
desingularization.

Definition 9.1. The set π−1(ξ) ⊂ X is called the exceptional divi-
sor of the resolution of singularities π.

The exceptional divisor is a curve on X, which may, in general,

be reducible. Let π−1(ξ) =
n⋃

i=1

Ei be its decomposition into irreducible

components. Two basic combinatorial invariants are usually associated
to the singularity (S, ξ): the dual graph and the intersection matrix.
The dual graph has vertices {xi}1≤i≤n, one for each irreducible ex-
ceptional curve Ei; two vertices xi and xj are connected by an arc if
and only if Ei∩Ej 6= ∅. The intersection matrix is the n×n matrix
(Ei.Ej). Since (S, ξ) is normal, Zariski’s main theorem implies that
the exceptional divisor, and hence also the dual graph, are connected.
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By a well-known theorem of Mumford and Grauert, the intersection
matrix (Ei.Ej) is negative definite.

Remark 9.1. We note the following consequences of the Mumford–
Grauert theorem:

(1) We have E2
i < 0 for all i ∈ {1, . . . , n}.

(2) Take an index i ∈ {1, . . . , n} and assume that Ei
∼= P1. Then

E2
i ≤ −2. Indeed, if we had E2

i = −1 then such an exceptional
curve could be contracted to a non-singular point by Casteln-
uovo’s criterion, which would contradict the minimality of the
desingularization π.

(3) There exists a cycle of the form

(9.1) Z =
n∑

i=1

miEi,

such that all the mi are strictly positive integers and Z.Ei ≤ 0
for all i ∈ {1, . . . , n}.

Among all the cycles Z satisfying (9.1), we can choose one which
is componentwise minimal. Such a cycle is uniquely determined by
the intersection matrix; it is called the fundamental cycle of the
singularity (S, ξ).

Definition 9.2. The singularity (S, ξ) is called minimal if Ei
∼= P1 for

all i ∈ {1, . . . , n}, the intersections Ei ∩ Ej are transverse (whenever
Ei ∩ Ej 6= ∅), the dual graph of (S, ξ) is simply connected and the
fundamental cycle Z is reduced (that is, mi = 1 for all i ∈ {1, . . . , n}).
For more information on minimal singularities, we refer the reader

to the article [11] by Janos Kollar where they were originally defined.

Definition 9.3. The singularity (S, ξ) is a cyclic quotient if each
exceptional curve Ei intersects at most two other exceptional curves.

It follows easily from the definitions and Remark 9.1 (2) that every
cyclic quotient singularity is minimal. The cyclic quotient singularities
are precisely the toric ones among normal surface singularities (that is,
they are precisely those normal surface singularities which can be de-
fined by a binomial ideal in the ambient space). As the name suggests,
they are also characterized by the fact that they can be obtained as
quotients of the germ of a variety at a non-singular point by the action
of a finite cyclic group.
Let (S, ξ) be a minimal singularity. For a graph Γ, the notation #Γ

will stand for the number of vertices of Γ. For example, if Γ is the dual
graph of ξ, we have #Γ = n.
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Theorem 9.2. ([15], Lemma 2.5, p. 442) Let σ : S ′ → S denote the
normalized Nash blowing up of S, let ξ′ be a singular point of S ′ and
Γ′ its dual graph. Then (S ′, ξ′) is also a minimal singularity and

(9.2) #Γ′ ≤ n

2
.

This bound is sharp in the sense that there are many examples for
which equality holds in (9.2).

The simplest example of equality in (9.2) is the following. Let (S, ξ)
be the An singularity with n even. This is the singularity defined in the
three dimensional space by the equation xy− zn+1. It can be obtained
as the quotient of the two-dimensional space with coordinates (u, v) by
the cyclic group action (u, v) → (ζu, ζ−1v), where ζ is the n-th root of
unity. The dual graph of this singularity consists of n vertices, arranged
in a straight line. The intersection matrix is given by

E2
i = −2, i ∈ {1, . . . , n};(9.3)

Ei.Ei+1 = 1 for i ∈ {1, . . . , n− 1}(9.4)

Ei.Ej = 0 for all the other choices of i, j ∈ {1, . . . , n}.(9.5)

As is shown in [6], the normalized Nash blowing up S ′ of (S, ξ) has two
singular points ξ1, ξ2 of multipliciy three, and the dual graph of each
of the singularities (S ′, ξ1), (S

′, ξ2) has
n
2
vertices.

Corollary 9.3. The singularity (S, ξ) is resolved after at most [log2 n]+
1 normalized Nash blowings up.

Proof of the Corollary: Let l = [log2 n]+1. Consider the sequence

Sl
σl→ Sl−1

σl−1→ . . .
σ2→ S1

σ1→ S

of normalized Nash blowings up. We claim that Sl is non-singular. To
see this, we will assume that Sl contains a singular point ξl and deduce
a contradiction. Let ξi denote the image of ξl in Si, 0 ≤ i ≤ l (we adopt
the convention that S0 = S and ξ0 = ξ). Let ni denote the number of
vertices in the dual graph of ξi. Since ξl is assumed to be singular, we
have nl ≥ 1. By Theorem 9.2 and descending induction on i, we obtain
ni ≥ 2l−i so, in particular, n ≥ 2l, that is, l ≤ log2 n. This contradicts
the definition of l. 2
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