
Authentication schemes

from actions on graphs, groups, or rings

Dima Grigoriev

CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France

Vladimir Shpilrain

Department of Mathematics, The City College of New York, New York, NY 10031

To Nikolai Alexandrovitch Shanin with deepest appreciation

Abstract

We propose a couple of general ways of constructing authentication schemes
from actions of a semigroup on a set, without exploiting any specific algebraic
properties of the set acted upon. Then we give several concrete realizations
of this general idea, and in particular, we describe several authentication
schemes with long-term private keys where forgery (a.k.a. impersonation)
is NP-hard. Computationally hard problems that can be employed in these
realizations include Graph Colorability, Diophantine Problem, and many oth-
ers.

Keywords: authentication, one-way function, NP-hard

1. Introduction

In this paper, we propose several general Feige-Fiat-Shamir-like [3] con-
structions of authentication schemes (with long-term private keys) from arbi-

∗corresponding author
Email addresses: dmitry.grigoryev@math.univ-lille1.fr (Dima Grigoriev),

shpil@groups.sci.ccny.cuny.edu (Vladimir Shpilrain)
1Research of the first author was partially supported by the Federal Agency of the

Science and Innovations of Russia, State Contract No. 02.740.11.5192
2Research of the second author was partially supported by the NSF grant DMS-

0914778.

Preprint submitted to Annals of Pure and Applied Logic August 12, 2010



trary actions. For a general theory of public-key authentication (a.k.a. iden-
tification) as well as early examples of authentication protocols, the reader
is referred to [10].

Suppose a (partial) semigroup S acts on a set X, i.e., for s, t ∈ S and
x ∈ X, one has (st)(x) = s(t(x)) whenever both sides are defined. For
cryptographic purposes, it is good to have an action which is “hard-to-invert”.
We deliberately avoid using the “one-way function” terminology here because
we do not want to be distracted by formal definitions that are outside of the
main focus of this paper. For a rigorous definition of a one-way function, we
just refer to one of the well-established sources, such as [5]. It is sufficient
for our purposes to use an intuitive idea of a hard-to-invert action which is
as follows. Let X and Y be two sets such that complexity (or ”size”) |u| is
defined for all elements u of either set. A function f : X → Y is hard-to-
invert if computing f(x) takes time polynomial in |x| for any x ∈ X (which
implies, in particular, that complexity of f(x) is bounded by a polynomial
function of |x|), but there is no known algorithm that would compute some
f−1(y) in polynomial time in |y| for every y ∈ f(X).

In our context of actions, we typically consider hard-to-invert functions of
the type fx : s → s(x); in particular, a secret is usually a mapping s, which
makes our approach different from what was considered before. This idea
allows us to construct several general Feige-Fiat-Shamir-like authentication
schemes (with long-term private keys) from arbitrary actions, see Section
3. Then, in the subsequent sections, we give several concrete realizations
of this general idea, and in particular, we describe several authentication
schemes where recovering the prover’s long-term private key from her public
key is an NP-hard problem. We note however that what really matters
for cryptographic security is computational intractability of a problem on a
generic set of inputs, i.e., the problem should be hard on “most” randomly
selected inputs. For a precise definition of the “generic-NP” class, we refer
to [11]. Here we just say that some of the problems that we employ in the
present paper, e.g. Graph Colorability, are likely to be generically NP-hard,
which makes them quite attractive for cryptographic applications.

We also address an apparently easier task of forgery (a.k.a. misrepresen-
tation, a.k.a. impersonation), and show that in most of our schemes this,
too, is equivalent for the adversary to solving an NP-hard problem. To be
more specific, by forgery we mean the scenario where the adversary enters
the authentication process at the commitment step, and then has to respond
to the challenge properly.

2



Finally, we note that there were other attempts at constructing authen-
tication schemes based on NP-hard problems (e.g. [1], [2]), but these con-
structions are less transparent, and it is not immediately clear how or why
they work.

2. When a composition of functions is hard-to-invert

Here we prove a simple but useful proposition about composing a hard-to-
invert function with another function, which is not necessarily hard-to-invert.

Proposition 1. Let A,B and C be sets, and let ϕ : A → B and ψ : B → C be
two functions such that computing ϕ(x) as well as ψ(x) takes time polynomial
in |x| for any x for which the corresponding function is defined.

(a) If ψ is hard-to-invert and the domain of ψ is contained in the range of
ϕ, then the composition ϕψ = ψ(ϕ) is hard-to-invert.

(b) If ϕ is hard-to-invert, ψ is injective (i.e., one-to-one), and the domain of
ψ contains the range of ϕ, then the composition ϕψ = ψ(ϕ) is hard-to-invert.

Proof. (a) Let f = ψ(ϕ) : A → C. By way of contradiction, suppose there
is an algorithm A that computes some f−1(c) in polynomial time in |c| for
every c ∈ f(A).

Now let y ∈ ψ(B). Since the domain of ψ is contained in the range of
ϕ, this implies y ∈ f(A). Then we apply the algorithm A to y to get some
a ∈ A. This takes polynomial time in |y|, and, in particular, the size of a is
polynomial in |y|. Then we apply ϕ to a to get an element b ∈ B. This takes
polynomial time in |a|, and therefore also in |y|. Since now ψ(b) = y, we
have found a preimage of y under ψ in polynomial time in |y|, contradicting
the assumption on ψ to be hard-to-invert.

(b) Again, let f = ψ(ϕ) : A → C and suppose, by way of contradiction, that
there is an algorithm A1 that computes some f−1(c) in polynomial time in
|c| for every c ∈ f(A).

Now let y ∈ ϕ(A). Since the domain of ψ contains the range of ϕ, we
can apply ψ to y to get ψ(y) = c ∈ C. This takes polynomial time in |y|.
Then we apply the algorithm A1 to c to obtain some a = f−1(c). This takes
polynomial time in |c|, and therefore also in |y|. Now we claim that ϕ(a) = y,
for if it was not the case, we would have y1 6= y such that ψ(y) = ψ(y1) = c
(since f(a) should be equal to c), contradicting the assumption on ψ to be
injective.

3



3. Three protocols

In this section, we give a description of three generic authentication pro-
tocols (or, rather, “meta-protocols”, or “primitives”, since we do not give any
implementation details in this section). Here Alice is the prover and Bob the
verifier.

3.1. Protocol I

Suppose a set S acts on a set X, i.e., for any s ∈ S and x ∈ X, the
element s(x) ∈ X is well-defined.

1. Alice’s public key consists of a set X, a (partial) semigroup S, an
element x ∈ X, and an element u = s(x) for some randomly selected
s ∈ S; this u is her long-term private key.

2. To begin authentication, Alice selects an element t ∈ S and sends the
element v = t(s(x)) ∈ X, called the commitment, to Bob.

3. Bob chooses a random bit c, called the challenge, and sends it to Alice.

• If c = 0, then Alice sends the element t to Bob, and Bob checks
if the equality v = t(u) is satisfied. If it is, then Bob accepts the
authentication.

• If c = 1, then Alice sends the composition ts to Bob, and Bob
checks if the equality v = ts(x) is satisfied. If it is, then Bob
accepts the authentication.

3.2. Protocol II

Yet another protocol involving a composition of actions (or mappings) is
as follows.

1. Alice’s public key consists of a set X, a (partial) semigroup S whose
elements may act on X, an element x ∈ X, and an element z = r(x)
for some randomly selected r ∈ S; this z is her long-term private key.

2. To begin authentication, Alice selects an element y ∈ X, together with
two elements s, t ∈ S such that s(x) = y and t(y) = z. She then sends
the element y (the commitment) to Bob.

3. Bob chooses a random bit c, the challenge, and sends it to Alice.

• If c = 0, then Alice sends the element s to Bob, and Bob checks
if the equality s(x) = y is satisfied. If it is, then Bob accepts the
authentication.

4



• If c = 1, then Alice sends the element t to Bob, and Bob checks
if the equality t(y) = z is satisfied. If it is, then Bob accepts the
authentication.

We note that selecting an element y at the commitment step of this
protocol may be non-trivial; later in this paper we show how to implement
this step in particular realizations of Protocol II.

Proposition 2. Suppose that after several runs of steps (2)-(3) of the above
Protocol II, both values of c are encountered. Then successful forgery in such
a protocol is equivalent to compromising Alice’s long-term private key, i.e.,
to finding r′ ∈ S such that z = r′(x).

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes
with the commitment step by sending her own commitment y′ ∈ X to Bob,
such that s′(x) = y′ and t′(y′) = z for some s′, t′ ∈ S. Since she should
be prepared to respond to both challenges c = 0 and c = 1, she should
be able to produce s′ as well as t′. Therefore, she is able to also produce
their composition t′s′. The result now follows from: z = t′(y′) = t′(s′(x)) =
(t′s′)(x), so that r′ = t′s′.

3.3. Protocol III

In this protocol, the hardness of obtaining the long-term private key for
the adversary can be based on “most any” search problem; we give some
concrete examples in the following sections, whereas in this section, we give
a generic protocol.

1. Alice’s public key consists of a set S that has a property P . Her
long-term private key is a proof (or a “witness”) that S does have this
property. We are also assuming that the property P is preserved by
isomorphisms.

2. To begin authentication, Alice selects an isomorphism ϕ that can be
applied to S, and sends the set S1 = ϕ(S) (the commitment) to Bob.

3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ϕ to Bob, and Bob
checks (i) if ϕ(S) = S1 and (ii) if ϕ is an isomorphism.

• If c = 1, then Alice sends a proof of the fact that S1 has the
property P to Bob, and Bob checks its validity.

5



The following proposition says that in the Protocol III, successful forgery
is equivalent for the adversary to finding Alice’s private key from her public
key, which is equivalent, in turn, to giving a proof (or a “witness”) that S
does have the property P . The latter problem can be selected from a large
pool of NP-hard problems (see e.g. [4]).

Proposition 3. Suppose that after several runs of steps (2)-(3) of the above
Protocol III, both values of c are encountered. Then successful forgery in such
a protocol is equivalent to finding a proof of the fact that S has the property
P.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes
with the commitment step by sending her own commitment S ′1 to Bob. Since
she should be prepared to respond to the challenge c = 0, she should know an
isomorphism ϕ′ : S → S ′1. On the other hand, since she should be prepared
for the challenge c = 1, she should know a proof of the fact that S ′1 has
the property P . Therefore, since ϕ′ is invertible, this implies that she can
produce a proof of the fact that S has the property P . This completes the
proof in one direction.

The other direction is trivial.

Remark 1. We note that finding a proof of the fact that a given S has a
property P is not a decision problem, but rather a search problem (sometimes
also called a promise problem), so we cannot formally allocate it to one of
the established complexity classes. However, we observe that, if there were
an algorithm A that would produce, for any S having a property P, a proof
of that fact in time bounded by a polynomial P (|S|) in the “size” |S| of S,
then, given an arbitrary S ′, we could run the algorithm A on S ′, and if it
would not produce a proof of S ′ having the property P after running over the
time P (|S ′|), we could conclude that S ′ does not have the property P, thereby
solving the corresponding decision problem in polynomial time.

4. Subgraph isomorphism (Protocol II)

There is a classical realization of the Protocol I from Section 3 (actually,
it also fits in with the Protocol III), based on the Graph Isomorphism prob-
lem, see [6]. We note that this decision problem is in the class NP, but it is
not known to be NP-hard. Moreover, generic instances of this problem are

6



easy, because two random graphs are typically non-isomorphic for trivial rea-
sons. However, the problem that is actually used in [6] is a promise problem:
given two isomorphic graphs, find a particular isomorphism between them.
This is not a decision problem; therefore, if we are to allocate it to one of
the established complexity classes, we need some kind of “stratification” to
convert it to a decision problem. This can be done as follows. Any isomor-
phism of a graph Γ on n vertices can be identified with a permutation of
the tuple (1, 2, . . . , n), i.e., with an element of the symmetric group Sn. If
we choose a set of generators {gi} of Sn, we can ask whether or not there
is an isomorphism between two given graphs Γ and Γ1, which can be repre-
sented as a product of at most k generators gi. To the best of our knowledge,
the question of NP-hardness of this problem has not been addressed in the
literature, but it looks like a really interesting and important problem.

Anyway, in this section, we describe a realization of the Protocol II from
Section 3, based on the Subgraph Isomorphism problem. It is very similar to
the Graph Isomorphism problem, but unlike the Graph Isomorphism prob-
lem, it is known to be NP-hard, see e.g. [4, Problem GT48]. We also note
that this problem contains many other problems about graphs, including
the Hamiltonian Circuit problem, as special cases. The Subgraph Isomor-
phism problem is: given two graphs Γ1 and Γ2, find out whether or not Γ1 is
isomorphic to a subgraph of Γ2.

1. Alice’s public key consists of two graphs, Γ and Γ2. Alice’s private key
is a subgraph Γ1 of Γ2 and an isomorphism ϕ : Γ → Γ1.

2. To begin authentication, Alice selects an “intermediate” graph Λ, which
is a subgraph of Γ2, and an isomorphic embedding ψ : Γ → Λ, with
ψ(Γ) = Γ1. Then she sends the graph Λ (the commitment) to Bob,
while keeping the embeddings ψ : Γ → Λ and τ : Λ → Γ2 to herself.

3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the embedding ψ to Bob, and Bob
checks if ψ is actually an embedding of Γ into Λ.

• If c = 1, then Alice sends the embedding τ to Bob, and Bob checks
if τ is actually an embedding of Λ into Γ2.

We point out here the following corollary to our Proposition 2:

Corollary 1. Suppose that after several runs of steps (2)-(3) of the above
protocol, both values of c are encountered. Then successful forgery in such a

7



protocol is equivalent to compromising Alice’s long-term private key, i.e., to
finding an embedding ϕ′ of Γ into Γ2.

We note that the problem alluded to at the end of this corollary (the
Subgraph Isomorphism problem) is NP-complete, see e.g. [4, Problem GT48].

A few more comments are in order.

• As it is usual with Feige-Fiat-Shamir-like authentication protocols,
steps (2)-(3) of this protocol have to be iterated several times to prevent
a successful forgery with non-negligible probability.

• When we say that Alice “sends” (or “publishes”) a graph, that means
that Alice sends or publishes its adjacency matrix. Thus, the size of
Alice’s public key is roughly 2n2, where n is the number of vertices in
Γ.

• When we say that Alice “sends a subgraph” of a bigger graph, that
means that Alice sends the numbers {m1,m2, . . . ,mn} of vertices that
define this subgraph in the bigger graph. When she sends such a
subgraph together with an isomorphism from another (sub)graph, she
sends a map (k1, k2, . . . , kn) → (m1,m2, . . . , mn) between the vertices.

• Alice can construct the “intermediate” graph Λ at Step 2 of the protocol
by simply discarding some randomly selected vertices (together with
incident edges) of the graph Γ2 that do not belong to Γ1. Since Alice
knows an embedding of Γ into Γ2, she will then know an embedding of
Γ into Λ, too.

5. Graph homomorphism (Protocol I)

In this section, we use the Graph Homomorphism problem that is known
to be NP-complete, see [4, Problem GT52]. We have to briefly describe this
problem first.

Given two graphs, Γ1 and Γ2, the Graph Homomorphism problem asks
whether or not there is a homomorphism f : Γ1 → Γ2, i.e., a mapping from
the vertex set of Γ1 onto the vertex set of Γ2 such that for any two adjacent
vertices v1, v2 of Γ1, their images f(v1) and f(v2) are adjacent in Γ2. We note
that the Graph Homomorphism problem remains NP-complete even if Γ2 is
a triangle, see [4, Problem GT52].

Now the authentication protocol is as follows.

8



1. Alice’s public key consists of two graphs, Γ1 and Γ2. Alice’s long-term
private key is a homomorphism α : Γ1 → Γ2.

2. To begin authentication, Alice selects a graph Γ together with a ho-
momorphism β : Γ → Γ1 and sends the graph Γ (the commitment) to
Bob, while keeping β to herself.

3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the homomorphism β to Bob, and Bob
checks whether β(Γ) = Γ1 and whether β is a homomorphism (i.e.,
whether β takes adjacent vertices to adjacent ones).

• If c = 1, then Alice sends the composition αβ = β(α) to Bob, and
Bob checks whether αβ(Γ) = Γ2 and whether αβ is a homomor-
phism.

We now give a couple of comments on the above protocol.

• To generate her public key, Alice starts with a random graph Γ2 and
constructs Γ1 as follows. She selects randomly a subset V ′ of the vertex
set of Γ2, and for each vertex v from V ′ does the following. First, she
replaces v by several new vertices u1, . . . , uk. These vertices are going to
be mapped onto the vertex v by the homomorphism that Alice is trying
to construct. Thus, Alice arbitrarily connects each ui to some other
vertices adjacent to v. She repeats this procedure with each vertex
from V ′ and obtains her private homomorphism α as a composition of
intermediate homomorphisms.

The same way Alice can construct a graph Γ from Γ1 at the commitment
step.

• We note that, instead of trying to find a homomorphism between given
graphs, Eve can try to find any graph Γ′ that would map homomorphi-
cally onto both Γ1 and Γ2, together with the corresponding homomor-
phisms. Then she can interfere at the commitment step and send this
Γ′ to Bob, which will allow her to respond to either challenge by Bob
successfully. The problem of finding such a graph Γ′ (a “common mul-
tiple” of two given graphs, so to speak) is of independent interest. We
do not know whether it has been previously addressed in the literature.

9



6. Graph colorability (Protocol III)

Graph colorability (more precisely, k-colorability) appears as problem
[GT4] on the list of NP-complete problems in [4]. We include an authenti-
cation protocol based on this problem here as a special case of the Protocol
III from Section 3. We note that a (rather peculiar) variant of this problem
was shown to be NP-hard on average in [16] (the latter paper deals with
edge coloring though). As we have pointed out in our Section 3, “most any”
search problem can be used in Protocol III; we choose the graph colorability
problem here just to illustrate this point, i.e., we do not claim that this is
the best choice of underlying problem in terms of security, say.

1. Alice’s public key is a k-colorable graph Γ, and her private key is a
k-coloring of Γ, for some (public) k.

2. To begin authentication, Alice selects an isomorphism ψ : Γ → Γ1, and
sends the graph Γ1 (the commitment) to Bob.

3. Bob chooses a random bit c and sends it to Alice.

• If c = 0, then Alice sends the isomorphism ψ to Bob. Bob verifies
that ψ is, indeed, an isomorphism from Γ onto Γ1.

• If c = 1, then Alice sends a k-coloring of Γ1 to Bob. Bob verifies
that this is, indeed, a k-coloring of Γ1.

Again, a couple of comments are in order.

• It is obvious that if Γ is k-colorable and Γ1 is isomorphic to Γ, then Γ1

is k-colorable, too.

• When we say that Alice “sends a k-coloring”, that means that Alice
sends a set of pairs (vi, ni), where vi is a vertex and ni are integers
between 1 and k such that, if vi is adjacent to vj, then ni 6= nj.

• Alice’s algorithm for creating her public key (i.e., a k-colorable graph Γ)
is as follows. First she selects a number n of vertices; then she partitions
n into a sum of k positive integers: n = n1 + . . . + nk. Now the vertex
set V of the graph Γ will be the union of the sets Vi of cardinality ni.
No two vertices that belong to the same Vi will be adjacent, and any
two vertices that belong to different Vi will be adjacent with probability
1
2
. The k-coloring of Γ) is then obvious: all vertices in the set Vi are

colored in color i.

10



Proposition 4. Suppose that after several runs of steps (2)-(3) of the above
protocol, both values of c are encountered. Then successful forgery is equiva-
lent to finding a k-coloring of Γ.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes
with the commitment step by sending her own commitment Γ′1 to Bob. Since
she should be prepared to respond to the challenge c = 0, she should know an
isomorphism ψ′ between Γ and Γ′1. On the other hand, since she should be
prepared for the challenge c = 1, she should be able to produce a k-coloring
of Γ′1. Since she knows ψ′ and since ψ′ is invertible, this implies that she can
produce a k-coloring of Γ. This completes the proof in one direction.

The other direction is trivial.

7. Endomorphisms of groups or rings (Protocol I)

In this section, we describe a realization of the Protocol I from Section 3
based on an algebraic problem known as the endomorphism problem, which
can be formulated as follows. Given a group (or a semigroup, or a ring, or
whatever) G and two elements g, h ∈ G, find out whether or not there is an
endomorphism of G (i.e., a homomorphism of G into itself) that takes g to
h.

For some particular groups (and rings), the endomorphism problem is
known to be equivalent to the Diophantine problem (see [12, 13]), and there-
fore the decision problem in these groups is algorithmically unsolvable [9],
which implies that the related search problem does not admit a solution in
time bounded by any recursive function of the size of an input.

We also note at this point that there is evidence (see e.g. [14]) that
finding an isomorphism (or a nontrivial homomorphism) between (finite-
dimensional) algebras over Q is hard.

Below we give a description of the authentication protocol based on the
endomorphism problem, without specifying a platform group (or a ring), and
then discuss possible platforms.

1. Alice’s public key consists of a group (or a ring) G and two elements
g, h ∈ G, such that ϕ(g) = h for some endomorphism ϕ ∈ End(G).
This ϕ is Alice’s private key.

2. To begin authentication, Alice selects an automorphism ψ of G and
sends the element v = ψ(h) (the commitment) to Bob.

3. Bob chooses a random bit c and sends it to Alice.

11



• If c = 0, then Alice sends the automorphism ψ to Bob, and Bob
checks whether v = ψ(h) and whether ψ is an automorphism.

• If c = 1, then Alice sends the composite endomorphism ψϕ = ψ(ϕ)
to Bob, and Bob checks whether ψϕ(g) = v and whether ψϕ is an
endomorphism.

Here we point out that checking whether a given map is an endomorphism
(or an automorphism) depends on how the platform group G is given. If,
for example, G is given by generators and defining relators, then checking
whether a given map is an endomorphism of G amounts to checking whether
every defining relator is taken by this map to an element equal to 1 in G.
Thus, the word problem in G (see e.g. [8] or [11]) has to be efficiently solvable.

Checking whether a given map is an automorphism is more complex, and
there is no general recipe for doing that, although for a particular platform
group that we describe in subsection 7.1 this can be done very efficiently.
In general, it would make sense for Alice to supply a proof (at the response
step) that her ψ is an automorphism; this proof would then depend on an
algorithm Alice used to produce ψ.

Proposition 5. Suppose that after several runs of steps (2)-(3) of the above
protocol, both values of c are encountered. Then successful forgery is equiv-
alent to finding an endomorphism ϕ such that ϕ(g) = h, and is therefore
NP-hard in some groups (and rings) G.

The proof is similar to that of Proposition 4. We also note that in [7], a
class of rings is designed for which the problem of existence of an endomor-
phism between two given rings from this class is NP-hard.

A particular example of a group with the NP-hard endomorphism problem
is given in the following subsection.

7.1. Platform: free metabelian group of rank 2

A group G is called abelian (or commutative) if [a, b] = 1 for any a, b ∈ G,
where [a, b] is the notation for a−1b−1ab. This can be generalized in different
ways. A group G is called metabelian if [[x, y], [z, t]] = 1 for any x, y, z, t ∈
G. The commutator subgroup of G is the group G ′ = [G,G] generated by
all commutators, i.e., by expressions of the form [u, v] = u−1v−1uv, where
u, v ∈ G. The second commutator subgroup G′′ is the commutator of the
commutator of G.

12



Definition 1. Let Fn be the free group of rank n. The factor group Fn/F ′′
n

is called the free metabelian group of rank n, which we denote by Mn.

Roman’kov [13] showed that, given any Diophantine equation E, one can
efficiently (in linear time in the “length” of E) construct a pair of elements
u, v of the group M2, such that to any solution of the equation E, there corre-
sponds an endomorphism of M2 that takes u to v, and vice versa. Therefore,
the endomorphism problem in M2 is NP-hard (see e.g. [4, Problem AN8]).
Thus, if a free metabelian group is used as the platform for the protocol in
this section, then, by Proposition 5, forgery in that protocol is NP-hard.

7.2. Platform: Z∗p
Here the platform group is Z∗p, for a prime p. Then, since Z∗p−1 acts on Z∗p

by automorphisms, via the exponentiation, this can be used as the platform
for the Protocol II. In this case, forgery is equivalent to solving the discrete
logarithm problem, by Proposition 5.

Acknowledgement. The first author is grateful to Max Planck Institut für
Mathematik, Bonn for its hospitality during the work on this paper.

References

[1] P. Caballero-Gil and C. Hernández-Goya, Strong Solutions to the Iden-
tification Problem, in: 7th Annual International Conference COCOON
2001, Lecture Notes Comp. Sc. 2108 (2001), 257–262.

[2] P. Caballero-Gil and C. Hernández-Goya, A Zero-Knowledge Identifi-
cation Scheme Based on an Average-Case NP-Complete Problem, in:
Computer Network Security, MMM-ACNS 2003, St. Petersburg, Rus-
sia. Lecture Notes Comp. Sc. 2776 (2003), 289–297.

[3] U. Feige, A. Fiat and A. Shamir, Zero knowledge proofs of identity,
Journal of Cryptology 1 (1987), 77–94.

[4] M. Garey, J. Johnson, Computers and Intractability, A Guide to NP-
Completeness, W. H. Freeman, 1979.

[5] O. Goldreich, Foundations of cryptography, Cambridge University Press,
2001.

13



[6] O. Golderich, S. Micali, A. Wigderson, Proofs that yield nothing but their
validity, or all languages in NP have zero-knowledge proof systems, J.
ACM 38 (1991), 691–729.

[7] D. Grigoriev, On the complexity of the “wild” matrix problems, of the
isomorphism of algebras and graphs, Notes of Scientific Seminars of
LOMI 105 (1981), 10–17 (in Russian) [English translation in J. Soviet
Math. 22 (1983), 1285–1289].

[8] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Ergebnisse
der Mathematik, band 89, Springer 1977. Reprinted in the Springer
Classics in Mathematics series, 2000.

[9] Yu. Matiyasevich, Hilbert’s 10th Problem (Foundations of Computing),
The MIT Press, 1993.

[10] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryp-
tography, CRC-Press 1996.

[11] A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Group-based cryptog-
raphy, Birkhäuser 2008.

[12] V. A. Roman’kov, Unsolvability of the problem of endomorphic reducibil-
ity in free nilpotent groups and in free rings, Algebra and Logic 16
(1977), 310-320.

[13] V. A. Roman’kov, Equations in free metabelian groups, Siberian Math.
J. 20 (1979), 469-471.

[14] L. Rónyai, Simple Algebras Are Difficult, Proceedings of the Annual
ACM Symposium on Theory of Computing (1987), 398–408.

[15] A. Seress, Permutation Group Algorithms, Cambridge University Press,
2002.

[16] R. Venkatesan, L. Levin, Random Instances of a Graph Coloring Prob-
lem are Hard, Proceedings of the Annual ACM Symposium on Theory
of Computing (1988), 217–222.

14


