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Abstract

A differential polynomial G is called a divisor of a differential polynomial F if any
solution of the differential equation G = 0 is a solution of the equation F = 0. We
design an algorithm which for a class of quasi-linear partial differential polynomials
of order k + 1 finds its quasi-linear divisors of order k.
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Introduction

The problem of factoring linear ordinary differential operators L = T ◦ Q was studied in
[15]. Algorithms for this problem were designed in [8], [16] (in [8] a complexity bound
better than for the algorithm from [15] was established). An algorithm is exhibited in
[10] for factoring a partial linear differential operator in two variables with a separable
symbol. In [9], an algorithm is constructed for finding all first-order factors of a partial
linear differential operator in two variables. A generalization of factoring for D-modules (in
other words, for systems of linear partial differential operators) was considered in [11, 17].
A particular case of factoring for D-modules is the Laplace problem [6, 19] (one can find
a short exposition of the Laplace problem in [12]).

The meaning of factoring for search of solutions is that any solution of operator Q is a
solution of operator L, thus, factoring allows one to diminish the order of operators.

Much less is known for factoring non-linear (even ordinary) differential equations.
We note that our definition of divisors is in the frame of differential ideals [14], rather

than the definition of factorization from [18, 4] being in terms of a composition of nonlinear
ordinary differential polynomials. In [4], a decomposition algorithm is designed.

We consider partial differential polynomials viewing them as polynomials in indepen-
dent variables x1, . . . , xn and in derivatives
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di1+···+inu

dxi1
1 · · · dxin

n

[14]. We study a class of quasi-linear differential polynomials in which the coefficients at all
its highest derivatives, i. e., with the biggest value of the order i1 + · · ·+ in, are constants.

We design an algorithm which for a given quasi-linear differential polynomial F of order
k + 1 finds the algebraic variety of all its quasi-linear divisors G of order k. Moreover, we
show that in this case, deg G ≤ deg F (treating F and G as algebraic polynomials). This
result generalizes [13] where an algorithm was designed for finding quasi-linear divisors for
quasi-linear ordinary differential polynomials F of order k = 2.

In Section 1, we bound the degree of a divisor, and in Section 2, we describe the
algorithm.

It would be interesting to find divisors of F of arbitrary orders (rather than just of k)
even in the case of ordinary differential equations. Also an extension to arbitrary differential
polynomials (rather than quasi-linear) looks as a challenge.

Another issue to be studied is constructing a common multiple of a pair of partial differ-
ential polynomials, i. e., a differential polynomial whose solutions contain the solutions of
both differential polynomials; for the case of quasi-linear ordinary differential polynomials,
an algorithm was designed in [13].

1 Bound on a Degree of a Divisor

We study partial differential polynomials, i. e., polynomials of the form

F (. . . ,
di1+···+inu

dxi1
1 · · · dxin

n

, . . . , x1, . . . , xn)

with coefficients over Q where the maximal value of i1 + · · ·+ in is denoted by ord F (the
order of F ) [14]. We denote the differential ring of all partial differential polynomials by
D.

Definition 1.1 A differential polynomial G is a divisor of F if any solution u from the
universal extension (see, e. g., p. 133 [14]) of the field of rational functions Q(x1, . . . , xn)
of equation G = 0 is a solution of F = 0 as well.

Due to the differential Nullstellensatz (see, e. g., Corollary 1 p. 148 [14]) a differential
polynomial G is a divisor of F iff F belongs to the radical differential ideal generated by
G. We mention that a bound being in general not primitive-recursive, for the differential
Nullstellensatz was established in [5].

We say that F of order k + 1 is quasi-linear if

F =
∑

i1+···+in=k+1

ai1,...,in ·
dk+1u

dxi1
1 · · · dxin

n

+ f
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where coefficients ai1,...,in ∈ Q and ord f ≤ k.
In the present section we provide an algebraic criterion for a quasi-linear G of order k

to be a divisor of F and bound the degree of G.
For the sake of simplifying notations we will assume that there are just two independent

variables x, y, i. e., n = 2. Denote a quasi-linear differential polynomial

F =
∑

0≤i≤k+1

ai ·
dk+1u

dxidyk+1−i
+ f. (1)

Let a quasi-linear differential polynomial

G =
∑

0≤i≤k

bi ·
dku

dxidyk−i
+ g (2)

be a divisor of F where ord g ≤ k−1 and b0, . . . , bk ∈ Q. Making a Q-linear transformation
of the independent variables x, y one can assume w.l.o.g. that b0 = 1.

Theorem 1.2 i) A quasi-linear differential polynomial G of order k is a divisor of a
quasi-linear differential polynomial F of order k + 1 (with deg F = d) iff G divides (as
polynomials) (

F − c1 ·
dG

dx
− c2 ·

dG

dy

)d

where

ord

(
F − c1 ·

dG

dx
− c2 ·

dG

dy

)
≤ k

for suitable (unique) c1, c2 ∈ Q.
ii) In this case, deg G ≤ deg F .

Introduce the highest order derivatives forms being homogeneous polynomials

A :=
∑

0≤i≤k+1

ai · vi · wk+1−i, B :=
∑

0≤i≤k

bi · vi · wk−i ∈ Q[v, w]

of the differential polynomials F and G, respectively.

Lemma 1.3 If a quasi-linear differential polynomial G with ord G = k is a divisor of a
quasi-linear differential polynomial F with ord F = k + 1 then there exist unique c1, c2 ∈ Q
such that (c1 · v + c2 ·w) ·B = A, in other words B|A. Moreover, in this case ord(F − c1 ·
dG
dx
− c2 · dG

dy
) ≤ k.

Proof of Lemma. Due to the differential Nullstellensatz we have for suitable integer m

Fm =
∑

q

Hq ·Gq (3)
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where Gq are certain partial derivatives of G and Hq ∈ D. Introduce variables ui,j for
di+ju
dxidyj and making use repeatedly of relations

dui,j

dx
= ui+1,j,

dui,j

dy
= ui,j+1 we can consider

(3) as an equality of polynomials in the variables {ui,j}i,j, x, y. Let a derivative of G of an
order higher than 1 occur in (3) and denote by s ≥ 2 the highest order of derivatives of G
occurring in (3).

Taking appropriate Q-linear combinations of the equations

dsG

dxidys−i
= 0, 0 ≤ i ≤ s,

and considering their highest order derivatives one can express the variables

uj,s+k−j =
∑

s<l≤s+k

cl · ul,s+k−l + gj, 0 ≤ j ≤ s (4)

for suitable coefficients cl ∈ Q and differential polynomials gj with ord gj < s + k. Substi-
tuting expressions (4) into (3) we get rid of all the derivatives Gq of G of order s. Observe
that these substitutions do not change the left-hand side of (3). After that substitute 0
in all Hq for variables ul.s+k−l, s < l ≤ s + k and for all variables ui,j with i + j > s + k,
we obtain a formula similar to (3) with orders of derivatives Gq of G less than s and with
variables ui,j occurring in Gq and Hq satisfying i + j < s + k.

Continuing in this way, we get rid of all the variables ui,j in the right-hand side of (3)
with i + j > k + 1.

After that we employ formulae (4) with s = 1 to achieve that the differential polynomial
F0 := F − c1 · dG

dx
− c2 · dG

dy
does not contain derivatives u0,k+1, u1,k for suitable c1, c2 ∈ Q.

Then (3) implies that

Fm
0 = H(1) · dG

dx
+ H(2) · dG

dy
+ H(0) ·G (5)

for some differential polynomials H(1), H(2), H(0) of orders at most k + 1. Now substitute
formulae (4) with s = 1 in formula (5), this results in

Fm
0 = H ·G (6)

for appropriate H ∈ D. Therefore, since F0 contains derivatives of order k+1 with constant
coefficients, all these coefficients vanish, thus, ord F0 ≤ k, hence ord H ≤ k. Consequently,

F0 = f − c1 ·
dg

dx
− c2 ·

dg

dy
(7)

(see (1), (2)) and (c1 · v + c2 · w) ·B = A. The Lemma is proved. 2

Proof of Theorem. Substitute formulae

dg

dx
=

∑
i+j≤k−1

∂g

∂ui,j

· ui+1,j +
∂g

∂x
;

dg

dy
=

∑
i+j≤k−1

∂g

∂ui,j

· ui,j+1 +
∂g

∂y
(8)
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in (7), and we substitute the obtained expression for F0 in the left-hand side of (6), then
we substitute in the resulting formula the expression for u0,k = −

∑
1≤i≤k bi · ui,k−i − g

from (2). After the latter substitution, the right-hand side of (6) vanishes, and we deduce
(taking into account (2)) the equality

0 = f |(u0,k=−
∑

1≤i≤k bi·ui,k−i−g) − c1 · (
∑

i+j≤k−1

∂g

∂ui,j

· ui+1,j +
∂g

∂x
)+ (9)

c2 · (
∂g

∂u0,k−1

(
∑

1≤i≤k

biui,k−i + g)−
∑

i+j≤k−1, (i,j) 6=(0,k−1)

∂g

∂ui,j

ui,j+1 −
∂g

∂y
) (10)

One can rewrite

f |(u0,k=−
∑

1≤i≤k bi·ui,k−i−g) = f |(u0,k=−
∑

1≤i≤k bi·ui,k−i) + h · g

for suitable h ∈ D. Therefore, (9) and (10) imply the following divisibility relation

g|(f |(u0,k=−
∑

1≤i≤k bi·ui,k−i) − c1 · (
∑

i+j≤k−1

∂g

∂ui,j

· ui+1,j +
∂g

∂x
)+ (11)

c2 · (
∂g

∂u0,k−1

·
∑

1≤i≤k

bi · ui,k−i −
∑

i+j≤k−1, (i,j)6=(0,k−1)

∂g

∂ui,j

· ui,j+1 −
∂g

∂y
)) (12)

Denote the polynomial in the variables {ui,j}i,j, x, y in the right-hand side of (11), (12) by
P .

Our goal is to prove that deg g ≤ deg f . Suppose the contrary. Then (11), (12)
entail that deg P ≤ deg g (taking into account that deg f ≤ deg g by the supposition) and
whence P = c · g for appropriate c ∈ Q. Consider a linear deglex ordering ≺ of monomials
in {ui,j}i+j≤k−1, x, y in which ui,j ≺ ul,s when i+ j > l + s (the remaining requirements on
the ordering do not matter). We observe that the highest (w.r.t. ≺) monomial in g cannot
occur in P since deg f < deg g by the supposition. This leads to a contradiction with
the equality P = c · g which proves inequality deg g ≤ deg f . Summarizing, we conclude
Theorem 1.2 ii).

To prove Theorem 1.2 i) in the direction when G is a divisor of F we apply Lemma 1.3
and note that one can take m = d in (6) owing to Theorem 1.2 ii) because if G|Fm

0 for
some m then G|F deg G

0 . To prove the converse we observe that G|(F0 − c1 · dg
dx
− c2 · dg

dy
)d

implies (3) (with m = d). 2

We present the following simple example just to illustrate the notations.

Example 1 Here we use the notations ux = ∂u
∂x

and so on.
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G = ux + uy + g(x, y);

F = uxx + 5uxy + 6uyy +
∂g

∂x
+ 3

∂g

∂y
+ H(x, y, u, ux, uy) · (ux + 2uy + g);

c1 = 1, c2 = 3, A = v2 + 5vw + 6w2, B = v + 2w;

F0 = F − uxx − 2uxy −
∂g

∂x
− 3(uxy + 2uyy +

∂g

∂y
) = H ·G.

2 Algorithm to Find the Algebraic Variety

of All the Divisors

Now we proceed to an algorithm which for a quasi-linear F ∈ D with ord F = k+1, deg F =
d yields the algebraic variety of all its divisors of order k (let k ≥ 1). Making a Q-linear
transformation of independent variables x, y one can assume w.l.o.g. that the coefficient
a0 = 1 (see (1)), this is compatible with the assumption b0 = 1 due to Lemma 1.3.

First the algorithm factorizes the highest order derivatives form A =
∑

0≤i≤k+1 ai ·
vi · wk+1−i ∈ Q[v, w] (see Lemma 1.3), say with the help of [2], [7]. Pick one of its at
most of k + 1 factors with degree k as a candidate for the highest order derivatives form
B =

∑
0≤i≤k bi ·vi ·wk−i ∈ Q[v, w] of a divisor G of F . One can assume w.l.o.g. that b0 = 1

(if b0 = 0 we discard this candidate). Hence (c1 · v + c2 · w) · B = A for some c1, c2 ∈ Q
(actually, c2 = 1 since a0 = b0 = 1).

Due to Theorem 1.2 ii) deg G ≤ deg F , and we write a candidate for G as a polynomial
with indeterminate coefficients over Q. In view of Theorem 1.2 i) one has to verify whether
G divides (F − c1 · dG

dx
− c2 · dG

dy
)d employing (8) (cf. also (9), (10), (11), and (12)). For

this goal we introduce H (see (6)) with indeterminate coefficients over Q and verify the
condition (

F − c1 ·
dG

dx
− c2 ·

dG

dy

)d

= H ·G (13)

as a system of polynomial equations invoking the quantifier elimination algorithm from [3]
(eliminating the indeterminate coefficients of H). The latter algorithm finds the irreducible
components of the algebraic variety of all divisors G.

To estimate the complexity of the designed algorithm one has to specify how does
the algorithm represent the coefficients of F from Q. A customary way to this end is to
represent them as elements from an appropriate finite extension of Q (see e. g. [1, 2, 7, 3]).
Denote by L a bound on the bit-size of such a representation (say, in a particular case of
rational numbers p/q its bit-size is defined as dlog2(p + 1)(q + 1)e).

Denote

N0 :=

(
k + n

n

)
+ n, N :=

(
N0 + d2

d2

)
.
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The complexity of the designed algorithm is majorated by the complexity of solving (13)
which leads to the quantifier elimination for a system of polynomials in at most of N
indeterminates being the coefficients at the monomials of degrees d for polynomial G and
of degrees d2−d for polynomial H in N0 variables {ui1,...,in : i1+· · ·+in ≤ k}∪{x1, . . . , xn}.
The degrees of these polynomials do not exceed d, and their number is bounded by N .
The bit-sizes of the coefficients of these polynomials are less than L + O(log N). The
complexity of the quantifier elimination algorithm [3] applied to this system does not
exceed a polynomial in L, dN2

. Summarizing and utilizing the notations introduced above,
we conclude with

Theorem 2.1 There is an algorithm which for a given quasi-linear differential polynomial
of an order k+1 produces the irreducible components of the algebraic variety of all its quasi-
linear divisors of order k. The complexity of the algorithm can be bounded by a polynomial
in L, dN2

.
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