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ABSTRACT. We consider computation trees which admit as gate functions along with
the usual arithmetic operations also algebraic or transcendental functions like exp,
log, sin, square root (defined in the relevant domains) or much more general, Pfaffian
functions. A new method for proving lower bounds on the depth of these trees is
developed which allows to prove a lower bound €2(v/log N) for testing membership
to a convex polyhedron with N facets of all dimensions, provided that N is large
enough.

I. Pfaffian Computation Trees.

Definition 1. By a Pfaffian computation tree 7 we mean a generalization of an
algebraic decision tree (see e.g. [1, 4, 12, 28, 29, 30]) in which at any node v of 7 a
Pfaffian function f, in the variables Xi,..., X, (see the definition A2 in the Appen-
dix) is attached, which satisfies the following properties. Let fu,,..., fo, fo,n = fo
be the functions attached to all the nodes along the branch 7, of 7 leading from the
root vy to v. We assume that Pfaffian function f, satisfies the following differential

equation

df, = Z gv,j(Xla--'vXn7 fvoa-"vazva)de

1<5<n

with ¢, ; € R[Xy,..., X, Up,...,Ust1]. The tree T branches at v to its three sons
according to the sign of f, (cf. [1]). Thereby, to each node v one can naturally assign
a semi-Pfaffian set U, C R™ (see the definition A3 in the Appendix) consisting of
all the points for which the sign conditions for functions along the branch 7, are

valid. Thus, to three sons of v one assigns the semi-Pfaffian sets U, N {f, > 0},

Typeset by A S-TEX



2 D. GRIGORIEV AND N. VOROBJOV

U,Nn{f, =0}, U, N {f, < 0}, respectively. We assume that f, is defined on a
certain domain (see the definition A2) containing U,. To any leaf of 7 an output
either “yes” or “no” is assigned and we say that 7 tests the membership problem
to the set of all points (z1,...,2,) € R™ for which the outputs of the corresponding

leaves of T are “yes” (see [1]).

Note that a more general notion of a Pfaffian sigmoid was introduced in [10] and
a method for obtaining lower bound on the (parallel) complexity was developed.

If we take only arithmetic operations as the gate Pfaffian functions f, in 7 then
we come to the algebraic computation trees (see e.g. [1]). As examples of gate
Pfaffian functions f, one could take exp (f,,), log(fs,), where log is defined on
the positive half-line, \/E, where square root is defined on the positive half-line,
sin( f,, ), where sin is defined on the interval (=, 7), tan( f,, ), where tan is defined
on the interval (—x/2,7/2), 0 < ¢ < (. Other examples one can find in section Al
of the Appendix. Trees 7 restricted to some special classes of Pfaffian functions
(for instance, the mentioned above) can be of a particular interest, but since we
are interested in the complexity lower bounds we shall consider arbitrary Pfatfian
functions.

Suppose that the degrees deg g, ; of the polynomials occurring in the definition
of the gate functions f, in 7, are less than d.

Now we are able to formulate the main result of the paper. This result was

annownced in [15].

Theorem. Let a Pfaffian computation tree T test a membership problem to a
closed convex polyhedron P C R"™, having N facets of all the dimensions. Then the
depth K of T is greater than Q(+/log N), provided that N > (dn)Q("41°g d),

In [11] a particular case of the theorem for n = 2, so when P is a polygon, was
proved.
Several methods based on topological characteristics are known for obtaining

complexity lower bounds for algebraic computation trees testing membership to
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a semialgebraic set S C R™ In [1], the bound (logC') was proved, where C
is the number of connected components of S or its complement, in [3,4,28] the
bound Q(log x) was proved, where y is the Euler characteristics. The most general
(among the listed) bound Q(log B) was proved in [3,29], where B is the sum of

Betti numbers of S.

Actually one could directly extend these results to Pfaffian computation trees,
replacing in the proofs the references to Milnor’s bound [23] on the sum of Betti
numbers of a semialgebraic set by the references to Khovanskii’s bound [20] for the
sum of Betti numbers of a semi-Pfaffian set. This leads to the following proposition
[11]. If a Pfaffian computation tree tests the membership problem to a semi-Pfaffian
set W with the sum of Betti numbers B, then the depth of the tree is greater than
Q(vlog B) [11].

There is a conjecture that the bound in [20] could be improved (see the section
Al in the Appendix). This conjecture implies the lower bounds Q(log N') in the

theorem and Q(log B) in the proposition from [11] respectively.

Observe that as the sum of Betti numbers of a convex polyhedron equals to
1, the theorem does not follow, apparently, from the proposition. Note that in
[12] the complexity lower bound (log N') was proved for testing membership to
a polyhedron with N facets by an algebraic decision tree (for large enough N, cf.
the theorem). In [30] a similar bound was shown for a weaker model of linear
decision trees. The method from [12] cannot be directly generalized to Pfaffian
computation trees, since in [12] the efficient quantifier elimination procedure for
the first-order theory of reals (see [9, 14, 17, 24]), was essentially used whereas for
the theories involving Pfaffian functions (in particular, elementary transcendental),

the quantifier elimination does not exist.

We remark that the computations involving other functions, rather than arith-
metic, were considered in several papers: in [18] for the computations involving

root extractions a lower bound for computing an algebraic function was obtained,
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in [13] this result was extended for the computations involving exp and log.

We mention that for testing membership to a polyhedron an upper bound O(log N)no(l)
was shown in [22] even for linear decision trees.

Now we proceed to the proof of the theorem which will continue up to the end
of section III.

We start with introducing some necessary concepts and notations. In section II
we introduce the notion of ¢-angle points and prove that the set of :-angle points
has the dimension at most ¢. This notion differs from the concept of sharp points
introduced and used in [12], the latter does not work for Pfaffian computation
trees. In section III we introduce and study another important technical concept,
flat points. All necessary information about Pfaffian functions and sub-Pfaffian
sets we included in the Appendix (in which the numbering of all the statements,
definitions and sections begins with A).

For an m-plane @ C R™ and a point @ € R”™ denote by Q(x) the m-plane,
collinear to Q and containing x. For a facet II of the polyhedron P denote by IT
the dim(II)-plane, containing II (we assume a facet to be open, i.e. without its
boundary).

Two planes @)1, Q2 or arbitrary dimensions are called transversal if

dim(Q1(0) N Q2(0)) = max{0, dim(Q1(0)) + dim(Q2(0)) — n}

The proofs of the following two easy lemmas one can find in [12] (lemma 1 is

also proved in [5]).

Lemma 1. For each j with 1 < j < n there exists a family A; consisting of
J(n —7)+ 1 j-subspaces in R™ such that for any i-subspace Q@ C R", 1 < i <n

there is a j-subspace R € A; which is transversal to Q.

Lemma 2. There exists a rotation of coordinates Xy, ..., X,, such that after this
rotation for every j, every Q € A; and for every facet Il of P, the subspace ) and

the plane II become transversal.
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In what follows we suppose that the coordinate system meets the requirements
of lemma 2. Now we reduce consideration to the case when the polyhedron P is
bounded. The next construction follows the beginning of the proof of lemma 5 [12].

Let t be the minimal dimension of facets of P. Fix a certain t-facet P; of P, then
t-plane Py is contained in P. On each facet II of P choose a point z; € II. Take an
arbitrary hyperplane o transversal to Py and such that the points zr for all facets
IT of P lie in the same of two open half-spaces of R" \ ¢ (denote this half-space by
Y). Consider the polyhedron P N (¥ U o), it contains a facet of a dimension less
than ¢. Continuing this process while ¢t > 1, we come eventually to the case t = 0,
i.e., polyhedron P’ obtained as a result of this process has a vertex.

There exists a linear form L = 51Xy + - + 5, X, with 3; e R, 1 <17 < n such
that for every v € R an intersection P = {L +~v > 0} N P' is compact. Take v
such that iy € {L +~ >0} N P’ for all II.

In order to reduce consideration to the compact polyhedron P, observe that
from a Pfaffian computation tree of depth K for the membership problem to P,
one can easily produce a Pfaffian computation tree of a depth at most K +n for the
membership problem to P'. Assuming that the theorem is valid for the compact
P and thus K 4+ n > Q(y/log N), we get a similar bound K > Q(y/log N) under
the supposed in the hypothesis of the theorem inequality for N. Therefore, in what
follows we assume that P is bounded.

In section A2 a sequence
R=RoCRiCRyC---

of nonstandard extensions of fields is introduced. One can choose in each R;;; an

element infinitesimal relative to R;. We denote these elements, respectively, by
€1 € Ry, {5E]) € Ru—iymegiy4j41: 1<l <n—-1,1<; < n? + 1},

€2 ERs_ 2111, €3 € Rya_p2 1,00 (the reason for these notations would become

clear later on). To match the notations denote the fields R; = R, Re—1)(n241)4j4+1 =
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€25 RnB—n2+n+2 = REg?

Ry 1S0Sn—1,1<j<n?+1 Ry pipnps = R
respectively. For brevity set also Rs = Rs_j,24, = Ré;nj;rl). The completion
(see section A2) for any sub-Pfaffian set U (see the definition A4) we denote by
U = U("S_"2+"), Ules) = gn’—n’+nt2), Analogously we denote the languages
(see the section A2) L5 = L2 _p2an, Loy = Lps_p2anit, Leg = Loz _p2ipao. In
the section A2 for each ¢ the standard part st; is described. Actually, throughout
the paper we’ll use almost in all the cases st,;5_ 24, which we’ll for brevity denote
by st (on occasions we’ll use also st,s_ 21,11 which we denote by st., ).

Consider a Pfaffian computation tree 7 testing the membership to P with depth
K. Fix any its branch with the output “yes”, and let f,,,..., fu, be the Pfaf-
fian functions attached to the nodes along this branch. We rename the functions
+fugs .- Efox DY U, ..., u in such a way that ug,...,ur, for a certain K1 < K,
correspond to the sign zero, and ug, 41 > 0,...,ux > 0 correspond to nonzero signs

along the branch. More precisely, consider a semi-Pfaffian set (see the definition

A3)
W={zxeR], tup(z) = =ug, () =0, ug, y1(x) >0,...,ux(x) > 0}

which is the accepting set corresponding to the branch. Then the set W NR" is the
set of points on which 7 along the fixed branch outputs “yes”, hence WNR"™ C P.
Since the functions wug,...,ux are defined over R, the completion (see the section
A2) (W NR™)) = W, In the sequel we'll estimate the number of i-facets I of P
such that dim(W NIINR"™) = .

When K3 < 0 the set (WNR") lies in the interior of P, so this estimate is trivial.

Therefore, we assume that K7 > 0 and denote f = u3 +--- + u%&'&‘
I1. Angle Points.

Definition 2. A point € W is called a 0-quasiangleif up, +1(2) > €1,...,ur(x) >

€1, and there exist points yy,...,y, € {f—e3 = 0} such that the Euclidean distances
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lyi — z|| < €2, 1 < <nand

e} ) 2
%(yl) %(yl)
det| : > et Ay1) - Alyn) (0)
e} e}
2
where A = ) <aa)?> )
1<i<n '
Observe that corollary A5 states that for any point y € {f = e3} C R7, the gra-
dient grad,(f) = <%, e %) (y) does not vanish. Notice that the inequality

(0) in the definition means that the absolute value of the determinant of the matrix
formed by the normalized gradient vectors of f at the points y,...,y, is greater

than €.

Definition 3. A point @ € W is called i-quasiangle (0 < ¢ < n) if for each
(n — ¢)-subspace Il € A, _; (see lemma 1) the point = is a 0-quasiangle point in
the semi-Pfaffian set W N II(x) (here we understand 0-quasiangle with respect to
a basis in II whose elements are from R”, in other words have coordinates from R,

the role of f plays the restriction of f on II(x)).

The set of i-quasiangle points of W we denote by A;. Observe that A; can be
determined by a Pfaffian formula and thus is a sub-Pfaffian set (see the definition
A4).

Definition 4. The points of the set A; = st(A4;) C R} are called i-angles.

Lemma A7 implies that A; is sub-Pfaffian and definable over Ry. Due to lemma
Ad A, CW.

Lemma 3. Let P; be an i-facet of P with dimension (see definition A5) dim(W N
P;) =i. If for two points ¥ € WNR"N P;, and = € Pi(é) the distance ||x — Z|| is

infinitesimal relative to R, then x € A;.

Remark. Actually, the lemma states that @ € A; since x = st(x) € st(A;) = A;.
Proof of the lemma. Since dim(W N P;) = ¢, the lemma A1 implies that f vanishes

on P;. Throughout this paper B.(s) C R? denotes the open ball centered at » with
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radius s. There exists 0 < ¢ € R such that u;(z) > ¢, K1 +1 < j < K, therefore
there exists 0 < r € R such that u;(y) > ¢, K1+1 <j < K for any y € Bz(2r)NR",
taking into account that the Pfaffian functions u; are defined over R. According
to the transfer principle (see the section A2) u;(y) > ¢, K1 +1 < j < K for any
y € Bz(2r) "R, In particular, u;(z) > § > e, K1 +1 <j < K.

Fix an arbitrary subspace II € A,_;. Our purpose is to show that = is 0-
quasiangle in the set WNII(x), which will imply the lemma (see definition 3). Since
IT is transversal to P;, the point z is a vertex of the polyhedron P = (P NII(x))(%s)
(see lemma 2 and the supposition just after it). The vertex = belongs to at least
n —1 of (n —¢ — 1)-facets (of the maximal dimension) of P. Observe that for each
of these facets the normalized orthogonal (in II(x)) vector has the coordinates in

R. Choose any T, ...,T,—; among them.

Notice that for any point y € cl(B.(r)) N RY, (where ¢l denotes the closure in
the topology with a base of all open balls) the inequalities u;(y) > e, K1 +1 <
J < K hold since ¢l(B,(r)) C Bz(2r). Hence, N {f=0, &u; = €1 H(ea)

K1+1555K
Nel(B,(r)) = {f = 0} N cl(B,(r)).

Denote by D C II(x) the intersection of the unique closed cone K with the vertex
at @ formed in II(x) by (n —7 — 1)-planes T, ..., T,_; containing P, with the ball
cl(B,(r)). For any point z € {f = e3} N II(x) N el(B,(r)) we have st.,(z) € {f =
0}NIL(x)Nel(By(r)), due to lemma A4. Therefore, st,(z) € WNel(B,(r))NI(x) C
PNel(By(r)) C D, in particular the distance p(z, D) from the point z to the set D
is infinitesimal relative to R.,. Since the set {f = es} NII(x) N cl(By(r)) is closed
in the topology with a base of all open balls, and bounded, the maximum value py

of p(z,D) over all the points z € {f = es} N II(x) N ¢l(B,(r)) exists (here we use

the transfer principle), and is infinitesimal relative to R.,.

Shift (in II(x)) each of (n — i — 1)-planes Ty,...,T,_; parallel to itself out-

ward from D to the distance pg. Denote the resulting shifted (n — ¢ — 1)-planes by

! =

T,,....T respectively. Denote by z' the (unique) common point of Tll N---N

yt n—p
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—1
9 Tn—i7

T _;- Denote by D' the intersection of the closed cone K' formed by Tll, e

7

with  the  vertex in 2’ with the ball cl(B,(r)). Then
{f = e} nIl(z)Nel(B,(r)) C D'. Observe that the distance ||z — «'|| is infin-

itesimal relative to R.,.

We replace (n—i—1)-planes T;, 1<j<n—i(inll(z)) by some (n—¢—1)-planes
T;l, 1 < j < n —1, respectively, in the following way. Take any hyperplane © (in
II(x)), defined over R, such that the intersection C; = QN K C D. Then C; is a
(n —¢— 1)-dimensional simplex, let its (n — ¢ — 2)-facets which are the intersections
of Q with 17, ..., T,—_;, respectively, be determined in Q by the equations {L; = 0},
1 <j < n —1 for some linear polynomials L; defined over Rs. Thus Cy = {L; >
0,...,L,—i > 0}NQ. Consider now (n—i¢—1)-dimensional simplex Cy = {L; 4¢3 >
0,...,Lp—i+e >0}NQ D Cy. The facets of Cy are {L; = —e2}NQ, 1 <5 <n—uq,

and therefore, they are parallel to the corresponding facets of C;. Denote by 723),

1 <j < n —t the hyperplane (in II(2)) containing  and {L; = —ez} N . Denote

by K©) C II(x) the cone formed by 7

; » 1 <5 <n—1icontaining Cy; observe that

K® oK.

We claim that the sine of the angle @ between the hyperplanes T'; and 723), (ie.,

between vectors, orthogonal to T'; and T;S) respectively) is infinitesimal relative to
Rs. Indeed, consider the unique 2-plane wj;, 1 < 5 < n — ¢ passing through =
and orthogonal to {L; = 0} N Q. It intersects (n — ¢ — 2)-plane {L; = 0} N Q
(respectively, (n —¢—2)-plane {L; = —e;} N2) at the unique point y; (respectively

y;?))). Observe that the vector in w; orthogonal to the line (; passing through z
(3)

and y; (respectively, the line 653) passing through v and y; ) is orthogonal to T';

respectively, T(?) . The segment y‘,y@)

) lies on the line w; N and is orthogonal
to {L; =0} N Q. Hence the distance between (n — ¢ — 2)-planes {L; = 0} N 2 and

{L; = —e2} N, which is equal to the length of the segment [y;, y;3)], is infinitesimal
relative to Rs. Since the angle o equals to the angle between the lines £; and 653),

we conclude that sin « is infinitesimal relative to R taking into account that in the
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(3)

triangle (:z:,yj,yj ) the vertices x and y; are defined over Ry, therefore the sides

(z,y;) and (=, y;3)) are not infinitesimal relative to R and (y;, y<3)

; ) is infinitesimal

relative to Rs. This proves the claim.

Let us show that there exists an element 0 < 8 € R, such that for any two
points z; € 9Cy, z2 € J Cy from the boundaries, (see definition A8 (here we mean
the boundary in the hyperplane )), the sine of the angle between the lines (x, z1)
and (x,zy) is greater or equal to 3. Since both points z1, z2 range over bounded
closed sets, there exists (due to the transfer principle) the minimum 3 of these
sines. Observe that 5 > 0 since 9C1 N dCy = . One could define the element 3 by
a formula of the language £.,. Therefore, 8 € R, by the transfer principle, as was

to be shown.

Note that the cones K and K' are isometric. We define the desired (n —¢ — 1)-
planes T;l, 1 <7 < n—1 asthe images of 723), respectively, under the shift mapping
the cone K onto K', then the cone K" formed by T;I, 1 <j <n-—1,is the image of

the cone K3,

For every 1 < j < n — 1, pick a point z; € {f = e3} NI(x) N el B,(r) with
the property that z; is the nearest to T;l on the (bounded and closed) set {f =
es} N II(x) N el By(r). Lemma A4 entails that there exists a point y € {f =

es} N II(z) N B,(r) such that ||z — y|| is infinitesimal relative to R.,, therefore

€29

|#" — y|| is infinitesimal relative to R

e, as well, hence the distance from z; to T;l

is also infinitesimal relative to R.,. Denote by :L’"j' € T;l the orthogonal projection

of z; on T;l. Let us prove that ||z; — «'|| is infinitesimal relative to R.,. Since
z; € ({f = e} NIl(z) Nel(By(r))) C D', the segment (x;,z]) intersects IK' (here

we mean the boundary in II(x)) at the unique point 2. Since the sine of the angle

%

/) is greater than or equal to the sine of the

v between the lines (2, ;) and (2', «

angle between the lines (2', 2) and (2', 2';) which, in its turn, is greater or equal to

see above), we conclude that siny > 3 € R... Therefore, ||z’ — z;|| = N =71 1s
9 ~ 2 ? J

sin ~y

infinitesimal relative to R.,, 1 < j < n—1, which was to be proved. Hence, ||z — ;]|

€29
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is infinitesimal relative to R, as well, in particular x; € B,(r).

Observe that the gradient gradfj(f) (where f denotes the restriction of f on
II(x), cf. Definition 3) does not vanish because x; € {f = ez} NII(z) (see corollary
A5) and it is orthogonal to the hyperplane T;l (in II(x)), as x is the nearest to T;l
on the set {f = es} NII(x) N el By(r). Since the sines of the angles between any
pair of hyperplanes T;,,T;, (in II(z)) is greater than a certain ¢, 0 < ¢ € R, we
conclude that the sines of the angles between any pair of hyperplanes T;ll, T;; is

greater than ¢/2 according to the claim proved above (stating that the sine of the

angle between T;, and T;ll is infinitesimal relative to Rs). Therefore

det(gmdxxj;) | gradxn_i(f)”)>cl>0

lgrada, ()] lgrade, . (f)
for a suitable ¢; € R.

Taking the points z1,...,x,—; as the points y1,...,y,—; in the definition 2 we
get that x is 0-quasiangle in the semi-Pfaffian set WNII(x), whence x is i-quasiangle

because (n —i)-plane II € A,,_; was chosen arbitrarily. O

Corollary. Let a point ¥ € WNP,NR™ and the dimension in the point ¥ dimz(TW/'N
P;) =1, then

(a)  dimz(4; 0 P7) = i;

(b)  dim(A; N Py = 1.

Proof. Lemma 3 and the remark following this lemma imply that for any 0 < p € R
which is infinitesimal relative to R, we have the inclusion (Bz(p) N Pi(é)) C A;, this
provides a).

Moreover, lemma 3 and the remark imply that (Bz(p) N Pi(é)) C St(Avi N Pi(EB)).

Thus, b) follows from lemma A8. O
Lemma 4. dim(4;) <1

Proof. First let us reduce the proof to the case ¢ = 0, in which Ay, Ay are defined
for a set W given by Pfaffian functions uq,...,ux defined over Rs (rather than R),

see section A2.
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Thus, let ¢ > 1 and suppose that e = dim(A;) > 7 + 1. Due to corollary Al,
there exists a nonsingular point y € A; such that dim,(A4;) = e. Denote by T,
the tangent plane to A; at the point y. Since dim(T,) = e one can find (n — ¢)-
subspace II € A, _; such that dim(T, NII(y)) = e —¢. Take any (n — e)-subspace
R C II defined over R for which (T, N R(y)) = {y}. Consider the linear orthogonal
projection 7 : R, — R¢, onto e-subspace along R. Then dim 7(T},) = e. Therefore,
m(A;) C R§ contains e-dimensional ball B (,)(r) for a certain 0 < r € Rs (by the
implicit function theorem and the transfer principle).

For any point * € A; there is a point 2’ € A; such that st(x') = x, hence
st(m(Ai)) D By (r)-

By assumption that the lemma is valid for the case ¢ = 0.

Then for any point z € R¥ applying this assumption to the set of 0-angle points
of the intersection II(z) N W we conclude that the sub-Pfaffian set st(II(z) N AVZ)
has the dimension at most 0 (taking into account the definition 3 of i-quasiangle
points and that II(z) is defined over Rs).

Let us show that F(Avl) does not contain a ball B,(r1) for any 0 < r; € Rs and
w € Rf,. Assume the contrary, then there exists a point w; € By (r1) N R§. Let
z1 € R} be a point such that 7(z;) = wy. Denote II; = #(Il), then dimIl; = e —¢,

II = 7~ (111 ). Then the following inequalities hold:

dim st(I1y (wy1) N 7(A;)) > dim st(Il; (w1) N By(r)) = e —¢ > 1.
On the other hand, IT; (wy) N F(Avl) = F(Avl NII(z1)), and, therefore,
dim st(ITy (wy) N 7(A;)) < dimst(A; NTI(z1)) < 0,

(the latter inequality was proved above). The obtained contradiction shows that

7(A;) does not contain a ball By (r1) for any 0 < r; € Rs.

We claim that for any ball B.,(r2) C By (r) defined over R, such that 0 <

ry € R, the intersection B.,(r3) N On(A;) # 0. Assume the contrary. Then
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either B,,(ry) C w(A;) or B.,(r2) N w(A;) = 0. The inclusion B.,(r2) C 7(A4;) is
impossible as was shown above. If B,,(r2) N F(AVZ) = 0, then st(z2) ¢ St(ﬂ'(gi)),

the latter contradicts to the inclusions st(7(A;)) D Bry)(r) D Bgy(z,)(r2/2) of the

sets in the space R§. This proves the claim.

Because of lemma A3, dim(@(ﬁ(gi))) < e — 1. Applying lemma A8, we get
dim(st(d(x(A;)))) < e — 1.

On the other hand we shall now prove that st(ﬁ(ﬁ(gi))) D Br(y(r). This
contradiction completes the proof of the reduction of the lemma to the case ¢+ = 0.
Indeed, let z3 € By, (r). Observe that the set D = {||z — z3]|* : z € A(w(Ai))} is
sub-Pfaffian. Due to Corollary A4, D is a finite union of points and intervals. Let

w be the minimal among these points and the endpoints of these intervals. Suppose
that z3 & st(ﬁ(ﬂ(zzlvi))), i.e. there does not exist z € 3(7r(gl)) such that st(z) = z;.
Thus, w > r2 for an element 0 < r3 € Rs. It follows that B, (r3) N 3(7r(zzlvl)) = ().
This contradicts the claim just proved.

Now let ¢ = 0. Suppose the statement of the lemma is wrong and dim(A4y) = s >
1. There is a linear projection 7w : RY — R{ onto a certain coordinate s-subspace,
such that 7(Ag) D B.(r) for some z € Ri, 0 < r € Rs. Choose an open interval
L C B.(r) of the length 2r passing through z.

Our nearest purpose is to prove the existence of a sub-Pfaffian curve (i.e. one-
dimensional sub-Pfaffian set) Cy C A such that 7(Cy) = L and the mapping
7w : Cy — L is bijective. This follows from the next, a more general construction.

Let V. C F, U C F™ be sub-Pfaffian sets where F'is one of the fields R; defined
in the section A2 and ¢ : V' — U be a sub-Pfaffian mapping (i.e. a mapping with
a sub-Pfaffian graph). Let us describe one of the possible ways to construct a
sub-Pfaffian set V5 C V' such that the restriction ¢ : Vy — (V') of ¢ is bijective.

For every point u € ¢(V') take the (unique) point v, € V such that ¢(v,) = u

according to the following rule (actually, this rule is quite flexible).

A projection 71 (" (u)) of ¢ 71 (u) onto the axis X is a union of a finite number
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of intervals (with or without endpoints) since 71(¢ ! (u)) is sub-Pfaffian (see Corol-
lary A4). Let a1, az be the endpoints of the leftmost among these intervals (note that
a sub-Pfaffian set is always bounded, see Definition A4). Then al;—” € (e Hu)).
Consider the projection ma(o ™ (u) N {X; = al;—a?}) onto the axis X,. Continuing
in the similar way, after n steps we obtain a point v, = (“1;—“2, )€ Hu). We
define Vj as a set of all the obtained points v, for all u € (V). One can easily
prove that Vj is sub-Pfaffian and the mapping ¢ : Vo — ¢(V) is bijective.

Applying this construction to the mapping 7r‘7r Y L)Nn Ay — L we

“H(L)NAg
get a required sub-Pfaffian curve Cy C Ay. Since there is only a finite number of
connected components of C (see Corollary A3), there exists a connected component
C such that 7(C') is an interval of a length ro > 0 for a certain rp € Rs. Then the
completion C'(¢3) C RY, is a connected component of the curve Céeg) C RY, (see the
section A3).

Fix a nonsingular point # € C (due to corollaries A1, A4 C has only a finite
number of singular points). Denote by 7 C R} the tangent line to C' at x, then
its completion 7(¢8) C R{ is tangent to (). After a suitable linear coordinate

transformation (defined over Rs) one can assume that @+ = 0 and 7 coincides with

the axis X,,. Denote by ~ the projection mapping on the axis X,,.
There exists 0 < p € R satisfying the following properties:

(i)  the unique connected component ¢ of the intersection CN{—p < X,, < p} C

Li(—pop) — ¢

R, containing 0, is a nonsingular curve and the mapping v~
is definable and doubly differentiable;
(ii) there exists 0 < A € Rjs such that for any y € (—p,u) the inequality

7710, 0,5) = (0,...,0,)|| < Aly|* holds.
One can prove the existence of p for the curves in R™ using Taylor formula, and
then for C' applying the transfer principle.

The transfer principle also implies that (i), (ii) hold for the completions ¢(*3) C

Cls) and any y € (—pu, 1)),
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The angle between a line ¢ and a hyperplane P in RY, is defined as a difference
between 7/2 and the angle between ¢ and the vector orthogonal to P. Observe that
there exists 0 < v € R, such that if n normalized vectors vy,...v, € R, satisfy
the inequality |det(vy,...v,)| > €, then for any hyperplane P thereis¢, 1 <i <n
for which the sine of the angle between v; and P is greater than v (actually, one

could take v = € /2 but we will not use this particular value).

Introduce the sub-Pfaffian set V' C R, consisting of all the points z = (21,...,2,)
R” such that

€s
(1) ze{f=-e}, [l <5
(2) sine of the angle between grad.(f — €3) and the hyperplane {X, = 0} is
greater than v;
(3) for a given z, the minimum of the distance to the axis X, (i.e., of the

Y

function (X7 4 --- 4+ X2_)'/?) on the set of all the points satisfying 1), 2)

n—1
is attained at z.

Let us apply the above construction to the projection v : V- — (—p, ). The
construction supplies us with a sub-Pfaffian subset Vy C V such that each nonempty
preimage v~ !(y) contains exactly one point from Vj. Therefore dim(V,) < 1.

We claim that, actually, dim(Vy) = 1. Suppose the contrary, then Vj would
consist of a finite number of points (see corollary A4). We show, however, that V;
contains infinitely many points.

Indeed, take an arbitrary point y € Rs N (—pu, ) and the (unique) point w € ¢
such that y(w) = (0,...,0,y). Since ¢ C Ag there exists (see the definition 4 of
0-angle points) a point w;y € Ay such that st(wq) = w, therefore (see definition 2 of
0-quasiangle points) there exists a point we € {f = €3} for which [|w; —w2|| < €2 and
the sine of the angle between the vector grad,, (f—es) and the hyperplane {X,, = 0}
is greater than v (see (0)). Because st|[ws—w|| = 0 and for the orthogonal projection
|v(w2) — y(w)]| < [Jwz — w||, we deduce that st(vy(ws)) = st(y(w)) = y(w). Since

the point wy satisfies the conditions 1), 2) in the definition of V, there exists a
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point w3 € {f = e} such that y(w3) = y(w3), the sine of the angle between
grady,(f — €3) and the hyperplane {X,, = 0} is greater than v, and w; has the
minimal distance to the axis X,, among the points with these properties. Then

w3€V.

Thus, we have shown that for each point y € Rs N (—p, 1) there exists a point
w3 € V such that st(y(wsz)) = (0,...,0,y). Because of the above construction,
there exists the unique point wy € V for which v(wy) = v(ws). Hence Vj contains

an infinite number of points, i.e. dim(Vp) = 1.

Let V) = LZJVi be the decomposition of Vj into the connected components. Since
Vb 1s sub-Pfaffian, it has only a finite number of singular points and a finite number
of points at which the tangent to the curve V; is orthogonal to the axis X, (i.e.
of the critical points of the mapping ~), here we invoke corollaries Al, A4. It
follows that each V; admits a finite partition V; = L]JVij U ]Uvijm where every V;; is

1
a nonsingular connected sub-Pfaffian curve (without the endpoints) not containing

the critical points of v, and every v;;, is a set consisting of a single point.

We have shown above that st(v(Vp)) = [—p, p]. Since y(Vij) C (—p, 1)) is
connected (as an image of a connected curve), it is an interval, hence st(v(V;;)) C
[, 1] is a closed interval. Therefore, there are ¢, jo for which an interval I =
st(7(Viyjo)) has a positive length |I| € Ry, besides I contains 0 and does not lie

entirely to the left of 0.

Due to the implicit function theorem, one may represent the curve V; ;, in a
parametrical form: (X1(X,),..., Xn-1(Xy), X,) where Xq,..., X,,_; are smooth
functions. Observe that for any point z = (Xi(zp),..., Xn—1(2n), 2n) € Viyj, the
tangent vector (Xl(zn), . ,Xn_l(zn), 1) at this point to the curve V; ;, has a sine
of the angle with the axis X,, greater than v, since this tangent vector is orthogonal

to grad.(f —es), taking into account inclusions Vo C V C {f = e3}. In other words
> (Xi(za))? > /(1 =),
1<i<n—1

For each pair of indices 1 < ¢ < j < n—1 either there are at most a finite number
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of the tangent vectors (Xl(zn), . ,Xn_l(zn), 1) at the points of the curve V; ;,
such that Xl(zn) = :l:Xj(Zn) or all these vectors satisfy one of the two conditions:
Xl(zn) = X](Zn) or Xl(zn) = —Xj(zn), because V;;, is sub-Pfaffian. Therefore,
there exists a connected sub-Pfaffian curve V C V; ;, for which the length of the
interval st(y(V)) € Ry is positive, besides st(y(V)) contains 0 and does not lie
entirely to the left of 0. Apart from that, either |XZ(Zn)| + |X](Zn)|, for any pair
1 <1< j<n—1andanypoint (Xi(z,),..., Xn—1(2n),2zn) € V, or for a certain pair
1 <i<j<n-—1,oneof the two conditions Xl(zn) = X](Zn) or Xl(zn) = —Xj(zn)
holds for any point from V. Let us assume that |X;(z,)| # |X;(zn)| for any pair
1 <1< j<n—1 (the case |XZ(Zn)| = |X](Zn)| can be treated in a similar way).
There exists s, 1 < s < n — 1 such that |X3(Zn)| > |X](Zn)|, 1 <5< n-—1,
s # j for all the points for V. Moreover, XS(Zn) has a constant nonnegative sign
for all the points from V. For definiteness suppose that XS(Zn) > 0 for all the
points from V (the case XS(Zn) < 0 can be considered in a similar manner). Then
Xo(zn) > v/((n—1)(1 —12)/2 = 1y € R,, and 1 > 0.

Let an interval [0, 2] C st(y(V)) C [—p, ] where 0 < pz € Rs. Then for
any p3, pa € Ry, such that 0 < p3 < pg < po, the completion of the interval
(3, 114]) C 4(V). Since XS(Zn) > v for any z, € [us, 4], for any point

n € (3, 114](® the inequality

Xs(n) — Xs(ps) > vo(n — p3)

holds. Indeed, the latter statement could be written as a formula of the first-order

theory of real closed fields, in the case of the field R it is true because

XS(V) - XS(MS) = /V Xs > VO(V - /~L3)7

then use the transfer principle.
Let y € (—p, 1) NRs. We have proved above that for the unique point w =
v~ 10,...,0,y) € ¢ C Ap there exists a point w; € Ay such that st(wy) = w,

besides there exists a point w2 € {f = e3} such that ||w; — wz|| < € and the
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sine of the angle between the vector grady,(f — €3) and the hyperplane {X,, = 0}
is greater than v. Then the distance from wy; to the axis X,, does not exceed
s — s+ on — ]+ o — (0,0 < e + o — ] + Ay? < Aoy? for
A € Ry, introduced in (ii) above, and any A < Ay € Rs. So the distance to the axis
X, from the unique point wy € Vp, for which vy(w4) = y(w3), also does not exceed
Moy?. Note that st(y(wy)) = (0,...,0,y).

On the other hand if y € [us, na] N R, then applying the above arguing to the
point (y + p3)/2 instead of y we prove the existence of a point ws € V; such that
st(v(ws)) = (0,...,0,(y 4+ ps3)/2) and the distance to the axis X,, from the point

ws does not exceed A\o((y + 13)/2)*. Arguing as above, we get

Xs(wy) = Xs(ws) = vol|y(wa) — v(ws)|| > vi(y — ps)/2

for arbitrary v1 € R¢,, 0 < 11 < vy. Then either the distance from the point wy to
the axis X, or the distance from the point ws to X, is greater than v (y—pus)/4, on
the other hand both distances do not exceed \gy?. Taking any y, 0 < y € Rs, such
that y < v1/(v1 +4X\o) and p3 = y*, we get a contradiction because v1(y —y?)/4 >
Aoy?. O

IT11. Flat Points.

Definition 4. Let 0 <7 <n—1. A point x € A; is :-flat if there exists an ¢-plane

II, passing through @ such that dim(II N A;) = .

Denote by ¢; C A; the set of :-flat points. Note that for ¢+ = 0 lemma 4 implies

that dim Ag < 0, i.e. Ag consists of at most finite set of points (see corollary A4),

therefore ¢y = Ay.

Lemma 5. a) There is at most a finite number of i-planes II such that dim(II N
¢i) = i

b) ¢; is contained in the union of all i-planes described in a).

Proof. If ¢; = (), the lemma is trivial, so suppose that ¢; # (. Since ¢o = Ay
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consists of a finite number of points, the lemma for the case : = 0 is obvious. So,
in what follows we assume that > 1.

b) is evident. Note that if II satisfies a) then dim(II N A;) = ¢ since ¢; C A,.

Introduce a set &5\1 C ¢; consisting of all the points y € ¢; for which there
exists an ¢-plane II passing through y, such that for suitable 0 < r € Rs we have
By(r)NII C ¢;. The set &5\1 is obviously sub-Pfaffian.

Besides, dim &5\1 = ¢. Indeed, lemma 4 implies that dim &5\1 < ¢. On the other
hand as ¢; # 0, there exists ¢-plane II such that dim(II N A;) = ¢, hence IIN A4; D

IIN By, (r1) for some y; € I, 0 < r; € Rs. Then IT N By, (r1) C gﬁ\i, ie. dim &5\1 > q.

If suffices to prove that there exists only a finite number of ¢-planes II for which
dim(II' N &5\1) = ¢. This would imply the item a) of the lemma since for any i-plane
IT such that dim(II N ¢;) = ¢ we have dim(II N q;ﬁ\l) =1.

Denote by 4251 C &5\1 the set of all nonsingular points of &5\1 The set &5\1 N q@l
of all singular points is sub-Pfaffian and dim(;/ﬁ\i ~ q@l) < ¢ —1 (see corollary Al
and lemma A2). For any point y, € q@l there is the unique ¢-plane II' such that
for an appropriate 0 < ry € Ry we have By, (r) N1II' C &5\1 Then for a suitable
0 < r3 € Ry, a certain neighbourhood of y, in &5\1 coincides with B,,(r3) N II',
moreover By, (r3) N II' is a neighbourhood of y, in q@l

If dim(IIN &5\1) =1 for ¢-plane II then IIN q?l contains a nonsingular point y3 € q@l
(since dim(;/ﬁ\i ~ qil) < ¢ — 1); moreover a neighbourhood of y3 in q@ coincides with
By, (ry) N1II for a suitable 0 < ry € Ry. Thus, it is sufficient to show that there is
only a finite number of ¢-planes II such that dim(II N q@l) =1.

Each connected component of q@l is contained in an :-plane II, since for any
point y4 € qgl its certain neighbourhood in q@l coincides with By, (r5)NII" for some
0 < r5 € Rs and ¢-plane II". Because the number of connected components of q@l
is finite (see corollary A3), the number of ¢-planes II such that dim(II N qil) =11is

also finite. O

Lemma 6. Ifa connected component ¢ of ¢; has a nonempty intersection pNP; # ()
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with a i-facet P; of P, then ¢ C P;.

Proof. First we prove for a connected component g of ¢; the following statement:
if ooNel(P;) # 0 then o C cl(P;). Assume the contrary. Then there exists a point
y € po N P; such that y € cl(po ~ P;) C cl(®; ~ P;). Due to lemma 5, there is a
finite family P of ¢-planes IT such that dim(II N ¢;) = ¢ and ¢; lies in the union of
all these i-planes. Let us show that there exists II' € P, I' # P; such that y € II'.
Indeed, let y; jjo; y, where y; € ¢o ~ P;. For each j there is II" € P such that
y; € II" (obviously I # P;). Since P is finite there exists an infinite subsequence
Y., 1 << ooand I" € P for which y;, € 1", 1 < ¢ < co. Thusy € "' # P;.
Since ¢; C A; C WNRY (see the remark following the definition 4) the function
f vanishes on the intersection of II' with the domain of f (see the lemma A1),
taking into account that dim(II'" N ¢;) = ¢. Besides ug,+1(y) > 0,...,ur(y) > 0,
therefore wp, 41,...,ux are positive also in By(p) for an appropriate 0 < p € Rs.
Hence 1" N B,(p) C W NRZ. This contradicts to the inclusion W N RY ¢ P(®)

because y belongs to the closure ¢l(P;) of i-facet of the convex polyhedron P,

Thus ¢¢ C cl(P;), and the statement is proved.

To complete the proof of the lemma it suffices to show that ¢ N (cl(P;)~ FP;) = 0.
If z € oN(cl(P;)~ P;) then there is another i-facet P! of P such that z € ¢l(P/).

2 2

Then, by the proved above, ¢ C ¢l(P/), this contradicts to ¢ N P; #0. O

Our next purpose is to explicitly describe (see lemma 7 below) the sufficient
condition for :-flatness of a point © € A; by means of Pfaffian formula with purely

existential quantifier prefix.

Let II be an :-plane containing = and for some points vy,...,v; € II N A;, the
vectors vy — x,...,v; — x be linearly independent. Denote by ~v1,...,7%(i+1)n the
coordinates of the vectors x,v1,...,v;. Due to lemma A9, 1) the degree of sub-
Pfaffian transcendency [y1,...,Y+1)n)r, < (¢ + 1)n < n?. Introduce the points

w? =24+ S V(o —2)eM 1<) <n?+1.
1<e<i
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Lemma 7. Let the points @, v1,...,v; € A; NIL. If w® ... ,w("2+1) e A, NIl

then x is i-flat and moreover dim(A4; NII) = 1.

Proof. Suppose that on the contrary, dim(A4;NII) <:—1. Consider the sub-Pfaffian

set A C Rgi—i_l)n—i_i consisting of all the points

(ylv"'vynvyl,lv"'7y1,n7y2,17'"7y2,n7"'7yi,17"'7yi,n7217"'7Zi)

for which (y1,...,yn) + 1§<‘2g((yg,1, cesYen) — (Y1, yn)) € A; (cf. expressions
for w(j)). Then A is deﬁn_ab_I; over Ry since A; is definable over R (see the remark
following the definition 4). Besides dim(AN{(y1,- - Y, Y1,15 -+ Ylns -5 Yily -5 Yin) =
(Y153 YG41)n)}) = dim(A; N II) < ¢ — 1 by the supposition. According to
the definition A10, this means that [((55‘”, . ,(55j)) (YY) <1 — 1
for each 1 < j < n? +1 since w9 € 4; NII. Applying several times lemma
A10 proceeding by induction on j, and taking into account that [((55‘”, . ,(55j)) :
(Y1 -+ s Vigyms 000, 880 897D s < (69089 s (s
Y(i+1)n )R, We obtain the inequality [y1,...,Y(i+1)n (551), . ,551), . ,(55‘”, . ,(55j)]ﬂg1
<n?+j(i —1) for each 0 < j < n?+1.

Putting j = n?+1 leads to a contradiction since [y, . .. s Y(i41)ns (551), e ,551), ey
D s

> 61,6 W s s =i 1 1) be

1

cause of lemma A9, 2). O

Definition 6. A point y € A; is called t-pseudoflat if there exist the points
v1,...,0; € A; such that |det(vy —y,...,vi —y) (v —y,...,v; —y)| > e (where
(v1 — y1,...,v; —y)T denotes the transposition of n x 7 matrix with the columns

v1 —Y,...,v; —y) and the points y + > 5Ej)(vg—y)egi,1§j§n2—l—1.
1<0<i

The sub-Pfaffian set of all i-pseudoflat points denote by 51

Lemma 8. If dim(W N P;) =i then W N P, N R" C 4.

Proof. Let © € W N P, NR"™. Take arbitrary points vq,...,v; € W N P, NR™ such

that the vectors vy — @,...,v; — x are linearly independent, then

R3S |det(vy —Z,...,0, — ) (v1 — T,...,0; —T)| > 0,
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obviously

|det(vy —Z, ..., 0 — %) (vy —Z,..., 0 — )| > €.

The distance from a point o) =7+ > (5Ej)(vg — ) € R} to 7 is infinitesimal
1<0<i

relative to R for each 1 < 7 < n? + 1. Lemma 3 implies that o) e A, 1< <

n? + 1, hence T € 51 by definition 6. [

Lemma 9. st(¢;) C &;

Proof. Lety € 51 andvy,...,v; € A, satisfy definition 6. Observe that | det(st(vy)—
sHY), ..., st(v;) — st(y) T (st(vy) — st(y),...,st(v;) — st(y))| > e /2, taking into
account lemma A4 and that the points y,vq,...,v; € A; C W C P are R-finite
(see section A2). Furthermore, st(y) + > ‘5Ej)(3t(vg) — st(y)) € st(gi) = A,
1 < j < n?+4+1. Denote by II the un;(;iili—plane passing through the points

st(y), st(v1),...,st(v;). Lemma 7 entails that st(y) € ¢; and dim(IINA4;) =4 O

Let ;gl = ch,Ao/j, O; = LJJc,og be the representations of 51 and ¢;, respectively, as
the unions of (necessarily sub-Pfaffian, see the section A3) connected components.
Lemmas A6, AT imply that st(¢;) is a sub-Pfafian connected set. Hence due to
lemma 9, for each j there is ¢ such that st(¢;) C ¢¢. For any ¢-facet P; of P such
that dim(W N P, NR™) = ¢, lemma 8 entails that W N P NR"™ C El Take a point
r € WnNP,NR" then € ¢; for a certain j. It follows that st(¢;) C ¢, for a
suitable ¢, thus © = st(x) € st(p;) C w¢. Due to lemma 6, ¢ C P;. So, to any facet
P; such that dim(W N P, NR"™) = i, corresponds (not necessary unique) connected
component ¢;, and to different such i-facets P;, P/ correspond different connected

components, respectively. Thus, we obtain the following lemma.

Lemma 10. The number of i-facets P; such that dim(W N P, NR™) =4, does not

exceed the number of connected components of ;gl

Observe that 51 can be defined by a Pfaffian formula v having a prefix with only

existential quantifiers. Moreover, the prefix contains O(n*) quantifiers, since for
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each of O(n?) points vy,..., v, y+ > (5Ej)(vg —y), 1 <j <n?+1, the formula
1<6<s
Y expresses the condition of member_sh_ip to the set A; (see definition 6), which,
in its turn, requires O(n?) existential quantifiers (see definitions 2, 3), namely for
the coordinates of the points yi,...,y,. The polynomials, occurring in ¢, and
the polynomials of the type g, j, occurring in the definition of Pfaffian functions
Ug, ..., ux (see the beginning of the section 1), have the degrees less than O(dn) (cf.
(0)). The number of all these polynomials (i.e., the number of atomic subformulas
of ¥) can be bounded by n®M K (see lemma 1 and definitions 2, 3). Therefore,
the number of all connected components of the sub-Pfaffian set 51 does not exceed

o K? (dn K)O(K‘i'"ﬂ, due to corollary A2. Together with lemma 10 this implies the

following lemma.

Lemma 11. The number of i-facets P; such that dim(W N P, NR™) = ¢, does not

exceed 2K (dn K)O(K'F"Al).

In order to complete the proof of the theorem one observes that the Pfaffian
computation tree 7 contains at most 3% branches and for each 0 <7 < n — 1 for
each i-facet P; there is a branch of 7 such that dim(W' N P;NR™) = ¢ where W' is
the accepting set corresponding to this branch. Hence N < 3o K” (dn K)O(K'F"Al).
Together with the assumption N > (dn)Q("41°g 4 this entails the inequality K >

Q(VIogN). O
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APPENDIX. SUB-PFAFFIAN SETS

Al. Gabrielov’s theorem and Khovanskii’s bound.

In this section we give definitions and describe some properties of concepts re-
lated to Pfaffian functions and to the subsets of R™ defined by these functions. We
skip all the proofs which could be found elsewhere.

The concept of Pfaffian function was introduced by Khovanskii [19, 20], who had

established their fundamental properties.

Definition A1l. A subset A C C" is called complex analytic variety if any point
of C" has a neighbourhood U such that the intersection AN U coincides with the
set {g; = -+ = gr = 0} NU where g,,...,gr are complex analytic (holomorphic)

functions on U (see e.g. [21]).

We say that a real analytic function f has a domain G C R™, if there is an open

subset ¢ C R™ such that f is defined on G and G C G.

Definition A2. (a) A Pfaffian chain of the length r and degree dy 2 1 is a

sequence of real analytic functions fi,..., f, with the following properties.

1. For each 1 £ j < r there exists a complex analytic function fj defined in a
subset CN;j C C", such that C* ~ CN;j is a complex analytic variety , and f;
is the restriction of f] on R™.

Observe that as real analytic function f; has a domain G; C CN;j NR"

Let G= N GjandG= N Gy
<r 1555

<
; j < r satisfies a Pfaffian equation
dfi(X)= > gi( X, f1(X),..., f(X)dX,
1<i<n

for1=j=r. Here X = (X1,...,Xn), 055 € R[X\ YA, Y] degx v, oy, (945)

< d.
(b) A function f(X) = P(X, fi(X),..., fr(X)), where P € R[X,Y1,...,Y,], degx v, . v.(P)
< dj is called a Pfaffian function (with a Pfaffian chain fi,... , f.) of length r and
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degree d = dy + d.
Note that our definition of a Pfaffian function is more restrictive than a usual

one (see [19, 20]) due to the requirement of existence of f;.

Examples. (the exposition follows [8])

(1) Pfaffian function of the length 0 and degree d + 1 are polynomials of degree
not exceeding d.

(2) The exponential function f(X) = %X is Pfaffian of the length 1 and degree

2, with G = C, G =R, due to the equation

(3) The function f(X) = 1/X is Pfaffian of the length 1 and degree 3 with
G={X#0} CC, G={X #0} CR, due to the equation df(X) = — f2(X)dX.

(4) Logarithm f(X) = In(X) is Pfaffian of length 2 and degree 3 with G =
{X#0}CcC G={X >0} CR,

df(X) = g(X)dX, dg(X)=—¢*(X)dX

where ¢(X)=1/X.
(5) Tangent f(X) = tan (X)) is Pfaffian of the length 1 and degree 3 with
G=(){X#2+kr}CC G=GnR,
kEZ 2
due to the equation df(X) = (1 + f*(X))dX.
(6) Cosine cos(X) is Pfaffian of the length 2 and degree 3 with
G=(){X#r+2kr}CC, G=GNR,
kEZ

due to the equations
cos(X) = 2(X) — 1, df(X) = — F(X)g(X)AX, dg(X) = 1/2(1 + ¢*(X))dX,

where f(X) = cos?(X/2) and ¢(X) = tan (X/2).
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(7) Sine f(X) =sin(X) is Pfaffian of the length 3 and degree 3 in

G=(){X#7+2kr}CC, G=GnR,
kEZ

due to the equations df = ¢(X )dx where g(X) = cos(X).

Let us now list some elementary properties of Pfaffian functions, describing the
behaviour of their parameters under the basic operations (proofs are simple, see
e.g. [8]).

(1) The sum and the product of two Pfaffian functions f; and f2 of length r1 and
ry, degrees dy and dy, with G = ﬁl, and G = ﬁg, G = H,,G = H, respectively,
are Pfaffian functions of the lengths ry + 79, degree dy + d; and with G = ﬁl N ﬁg,
G = H, N Hsy for both the sum and the product. If two Pfaffian functions are
defined by the same Pfaffian chain of the length r, the length of the sum and the
product is also r.

(2) A partial derivative of a Pfaffian function of the length r and the degree d
is a Pfaffian function of the length r and degree 2d.

(3) Let X = (X4,....Xn), Z =(Z1,...,Z¢) be tuples of variables and f be a
Pfaffian function in X, Z of the length ry, degree d; and with G=H C Crte,
G = H, Cc R*t¢.

Let h = (h1,...,h¢) be an (-tuple of Pfaffian functions in X of length r2, degree
ds, with a common Pfaffian chain, with G=H,C C", G = Hy C R", such that
(x,h(x)) € Hy for all © € Hy. Then the complex analytic function § = f(X, ;L(X))
(see (a), 1 of the Definition A2) is defined in a subset ﬁ;; C C™ such that C" - ﬁg
is a complex analytic variety of a dimension smaller than n. Indeed, the preimage
of the complex analytic variety C*T¢ < H; in C" ~ ﬁg, under the map , is also
a complex analytic variety different from C" since ¢ is a composition of analytic
functions. Therefore, the dimension of this preimage is less than n (see [21]). An
easy computation (see [8]) shows that ¢ = f(X,h(X)) is a Pfaffian function in G5

of the length r; + ro and degree d;d,.
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Lemma Al. Let f be a Pfafian function with G C R™ and L C R" be a p-plane.
If there exist t € GN L and r, 0 < r € R such that f vanishes in the intersection
LN B,(r) then f vanishes in GN L (here B,(r) denotes an open n-dimensional ball

centered at ¥ with radius r).

Proof. Consider complex analytic function f corresponding to f as in the Definition
A2, and the complex p-plane L, defined in C" by the same system of linear equations
as L. Since L is an irreducible complex analytic variety, either it is contained in
the variety C* . G or the complex dimension dime(L N (C™ ~ CN;)) < dim¢(L) (by
the dimension of intersection theorem, see [21]). The first alternative is impossible
because x € L C L. Since dim(L N B,(r)) = p, the second alternative implies that
the complex analytic function f is defined on p-plane L everywhere except a subset
L . G of a dimension less than p, and vanishes on a subset of complex dimension
p. Since G N L is connected in the topology with the base of all open balls of
L, treated as 2p-dimensional real space, we conclude that f vanishes on L N G.

Hence f is identically zero on L. It follows that the restriction f of f vanishes on

GNLCR" 0O

Next we define by induction two closely linked notions: quantifier-free Pfaffian
formula, semi-Pfaffian set. Again our definitions will be more restrictive than the

original ones (see [19, 20, 7]).

Definition A3. Let hy be a Pfaffian chain of length 1, with ko defined in R™. A

quantifier-free formula of rank 0 is an expression of the form

3= \/ (f = _f<0> =0 & g >0 & - & gl >0), (1)
1SiSs0 o
where f” ,gl(]) are Pfaffian functions (called atomic functions), with hg as a com-

mon Pfaffian chain (see Definition A2(b)), thus, in particular, f” ,gl(]) are defined

in R™. Suppose that we had already defined a concept of a quantifier-free Pfaffian

formula Y9 of rank ¢, 0 £ ¢ € Z. A semi-Pfaffian set W C R”, determined by
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YO is the set of all points z € R™, satisfying y(©. We write W = {y(©}. A

quantifier-free Pfaffian formula of the rank ¢ + 1 is of the form

J4 J4 J4 J4

B\ A e 0 s 0k e k) 50
1§i§8(+1 ' '

where fl(f+1), ggf—i_l) are Pfaffian functions with the common Pfaffian chain hg, ... , hetq.

Here the function hgyq 1s defined in a domain G which is a closure of a semi-Pfaffian

set of the kind {y(©}, where (¥ is a quantifier-free Pfaffian formula of the rank .

()

Functions f;, ", ¢;;" ', together with all atomic functions occuring in the descrip-

tion of y© are called atomic functions of ®(+1),

Example.

The set {tan(X) = 0 & a < X < b} C R, where —7/2 < a < b < 7/2, is
semi-Pfaffian, defined by a quantifier-free Pfaffian formula. On the other hand, the
set {tan(X) =0} NU,cpla +hkr < X <b+kr} CRfor —7/2 <a <b<7w/2(cf

Example (5) above) is not semi-Pfaffian.

Definition A4. Fixacertain R, 0 < R € Rand let X" C R" be the n-dimensional
cube centered at the origin and having an edge with length 2R. A Pfaffian formula
is an expression of the form ¢» = Q1Y1Q2Y5 ... QY (®) where ® is a quantifier-free
Pfaffian formula of arbitrary rank (called quantifier-free part of ¢) with atomic
functions in n +t variables Y7,....Y;, Xq,..., X, and Q;, 1 £ j < t are quantifiers
J or V¥, each restricted on the interval (=R, R) C R. A sub-Pfaffian set V' C R",

determined by v, is the set of all points @ € K", satisfying 1». We write V = {1 }.
We say that two Pfaffian formulas 1, ¢' are equivalent if {¢b} = {4},

Definition A5. The local dimension dim,(V') of a set V at a point = € V is
the maximal p, 0 < p € Z such that the linear projection of a neighbourhood of
z in V onto a coordinate p-subspace (along all the rest of coordinates) contains a

p-dimensional ball. The dimension dim(V') of V' is the maximal value dim, (V') for

all z € V.
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Definition A6. A point x of aset V C R”, with dim(V") = p, is called analytically
nonsingular (or nonsingular) if a neighbourhood of x in V' is analytically diffeomor-
phic (respectively, C''-diffeomorphic) to an open p-dimensional ball. Denote by V?
(or, by V) the set of all analytically nonsingular (respectively, nonsingular) points
of V. The points of the set V. = V \ V? (respectively V* = V . V?) are called

analytically singular (respectively, singular).

For a set V' C R™ denote by ¢l(V) its closure in the topology with a base of all

open balls in R™.

Definition A7. For a set V C R” the disjoint family {V;} of subsets V; C V is

called a smooth stratification of V if

1. V=UV;
2. each Vj, called a stratum, is an analytic manifold in R™

3. f Vinel(V;) #0, then V; C ¢l(V;) and dim(V;) < dim V.
Proposition Al. ([16, 26]) For any sub-Pfaffian set V' C R" there exists a finite
smooth stratification.

Corollary Al. dim(V*) < dim(V).

Proof. The inequality dim(V,*) < dim(V) directly follows from Proposition A1, the

inequality dim(V*) < dim(V,*) follows from the obvious inclusion V* C V*. O

Lemma A2. For a sub-Pfaffian set V. C R" the subsets V° and V* are sub-

Pfaffian.

Proof. The sets V? and V* can be described by appropriate Pfaffian formulas

involving a Pfaffian formula defining V. O

Definition A8. For a set V' C R™ the boundary 9V is a subset of all points
x € R™ such that for every r, 0 < r € R, the intersections B,(r) NV # 0,

By(r)n(R* V) # 0.
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Lemma A3. For a sub-Pfaffian set V C R" the dimension dim(9V) < n — 1.

Proof. Let {V;} be a finite smooth stratification of V', see Proposition Al. Suppose
first that dim(V) < n. Then, the closure ¢l/(V) = LiJcZ(Vi) = LiJ@Vi = 9V. On the
other hand, dim(el(V')) = dim(V') [7], hence the lemma is valid in this case.

Now let dim(V') = n. The set V is representable as V = Vipax U Vinin, where

Vinax 18 the union of all n-dimensional strata of V', and Vi, is the union of the

remaining strata (of smaller dimensions). Then

dim(9V) £ dim(Vimax U OViin ) = dim((cl(Vinax) ~ Vinax) U OVinin)

= max{dim(c/(Vinax) ~ Vinax), dim(9Vmin)}.

According to [7], dim(cl(Vinax) ™ Vinax) < dim(Vipax). The inequality dim(0Viin ) <

n — 1 was proved before. [

Definition A9. Let 1 be a Pfaffian formula having N atomic Pfaffian functions
in n variables with the same Pfaffian chain of length r and degrees less than d. The

4-tuple (N, n,r,d) is called the format of .

Proposition A2. ([7], theorem 2) For a Pfaffian formula) of a format (N,n,r,d)
there exists an equivalent formula ¢)' having only existential quantifiers, and of the
format (N',n',r',d"), where the values N',n',r',d" are bounded from above by the

value of a suitable function in N,n,r,d.

Proposition A3. ([7], theorem 1) For a sub-Pfaffian set {1/} C R" with a Pfaffian
formula v of a format (N,n,r,d), any of its connected components can be defined
by a Pfaffian formula of a format (N',n',r' d"), where the values N',n' v, d" are

bounded from above by the value of an appropriate function in N,n,r,d.

Proposition A4. ([19, 20]) The number of the connected components of a semi-
Pfaffian set {®} defined by a quantifier-free formula ® of the format (N,n,r,d)

does not exceed 2r2no(r)(Nd)O(r+").
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There is a generally adopted conjecture that under the hypothesis of the Propo-

sition A4 the bound n®" (Nd)%r+™) is actually true.

Corollary A2. The number of the connected components of a sub-Pfaffian set
{1}, defined by a formula 1 of the format (N,n,r,d) in which only existential

quantifiers can occur, does not exceed 2r2no(r)(Nd)O(r+").

Proof. Tt is sufficient to note that the number of the connected components of a
projection of a set does not exceed the number of the connected components of the

set itself. O

Corollary A3. The number of the connected components of an arbitrary sub-
Pfaffian set {1}, defined by a formula 1) of a format (N,n,r,d) is finite, moreover,

is bounded from above by the value of a certain function in N,n,r,d.
Proof. Apply to ¢ successively the Proposition A3 and the Corollary A2. [

Corollary A4. Zero-dimensional sub-Pfaffian set in R™ is finite. A sub-Pfaffian
set in R! is a finite union of points and (open, closed or semi-closed) intervals. In
each case the number of the points or the intervals is bounded from above by the
value of a certain function in the format of a formula representing the sub-Pfaffian

set.
Proof. Directly follows from Lemma A2 and Corollary A3. O

A2. Sub-Pfaffian sets over nonstandard extensions of reals.

In the main text of the paper we consider the extensions of the field R with
“nonstandard” (in particular infinitesimal) elements. The following digest from
nonstandard analysis is taken from [27] , for a detailed exposition see [6].

There exists a sequence of ordered fields
Ry=RCR,CRyC--CRsC...

in which the field Ry, & = 1 contains an element 5, > 0 infinitesimal relative to the

elements of Ry_; (i.e., for every positive element a € Ri_; the inequaltiy ¢ < a
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is true). In addition, for every function ¢ : R}_; — Ry_q there exists a natural
extension, being a function ¢ from R} to Ry. It follows, invoking characteristic
functions, that each subset S C R}_; has a natural extension to R}. We say that

R; is a nonstandard extension of R; for 0 <7 < j.

Consider the language L, k¥ = 0 of the first order predicate calculus, in which
the set of all function symbols is in a bijective correspondence with the set of all
functions of several arguments from Ry, taking values in Ry and the only predicate is
the equality relation. We shall say that the closed (i.e., containing no free variables)
formula ® of the language Ly is true in Ry, & = 0, if and only if the statement
expressed by this formula with respect to Ry is true. The following “transfer prin-
ciple” is valid: for all integers 0 < ¢ < j the closed formula ® of £; is true in R; if

and only if it is true in R;.

An element z € Ry, k 2 1 is called infinitesimal relative to R, j < k, if for every
0 < w € R the inequality |z| < w is valid. An element z € Ry is called infinitely
large, if z = 1/2', where z' is infinitesimal. If z € Ry is not infinitely large relative

to Rj, z is called R ;-finite.

One can prove [6] that if an element z € Ry, is R j-finite then there exist unique
elements z; € R; and 22 € Ry, where 2z is infinitesimal relative to R, such that
z = z1 + z2. In this case z; is called the standard part of z (relative to R;) and
is denoted by z; = stj(z). One can extend the operation st; (componentwise) to

vectors from R} and (elementwise) to subsets of Ry.

In what follows, all the functions ¢ we shall consider in R}, k 2 0, will be Pfaffian.
By this we mean that for each ¢ there exists a Pfaffian function ¢’ definable over
R (i.e., in the sense of the Definition A2) such that ¢ is the result of a replacement
of some variables in ¢’ by some elements of Rj.

Moreover, we assume that the domain G C R} of ¢ is a sub-Pfaffian set, defined

by a Pfaffian formula II with atomic functions definable over R and some variables

replaced by elements from Rj;. We say that ¢ is definable over Ry.
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For any ¢ > k, the same function ¢', formula IT and the replacements determine
the function o : G — R, which coincides with ¢ in R} and is called the
completion of ¢ over Ry, similarly GO ¢ R} (determined by II) is called the
completion of G over Ry,.

Basic notions, introduced in section A1l can be naturally extended to a nonstan-
dard field Ry for & > 0. Thus, we shall consider semi-Pfaffian sets, sub-Pfaffian
sets, Pfaffian formulas, determined in R} by Pfaffian functions definable over Ry.
In this case we say that the sets and formulas are definable over Ry.

If a sub-Pfaffian set W C R7 is determined in R} by a Pfaffian formula &
with atomic subformulas definable over Ry then the sub-Pfaffian set in R}, £ > k
determined by the same formula in which the atomic functions are replaced by their
completions is called the completion of W and is denoted by W0,

Some of the basic statements proved earlier in this Appendix can be extended
(using the transfer principle) to the fields Ry for & > 0. This obviously concerns
the statements: lemma Al, corollary Al, lemma A2, lemma A3, proposition A2,
corollary A4. Propositions A3, A4, Corollaries A2, A3, about the estimates of the
connected components are also extendable (see below).

The following lemma illustrates a use of the transfer principle and the notion of

the standard part.

Lemma A4. Let f : S — Ry be a Pfaffian function defined in a sub-Pfaffian
bounded set S C R}. Denote by S(k+1) the completion of S over Rjq and by f(*+1)
the completion of f. Then for any point © € S* Y such that B,(r) C S+ for
some r, 0 < r € Ry, the standard part stp(f*TV(2)) = f(str(x)). If in addition,
there do not exist y € S and R, 0 < R € Ry, such that f(z) =0 for all z € By(R),

and besides f(w) > 0 for all w € S, then
ste({fPH) = epqa}) = {f = 0}.

Proof. First, observe that any Pfaffian function is continuous. This is true for a

Pfaffian function ¢ definable over R (since ¢ is analytic, see definition A2), then the
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Pfaffian formula of the language £y expressing continuity, is valid for the completion
0O ¢ >0, due to the transfer principle, and hence, it is valid as well for Pfaffian
functions definable over arbitrary Ry. The equality st (f*+t)(z) = f(str(z)) and
thereby the inclusion st ({f*T1 = ¢;111) C {f = 0} follows from continuity of f
and f+1)

Now let v € {f = 0}. Take r, 0 < r € Ry such that B,(r) C S (cf. definition
A2). Consider a sub-Pfaffian set D = {||lz — 2[|? : 2 € S*+D f+D () =111} C
Rjiq. If it is empty, then f*F1 is less than ey everywhere on the ball B,(r), by
virtue of the theorem on intermediate values of continuous functions which holds
for Pfaffian functions by the transfer principle, hence f vanishes everywhere on the
ball B,(r) N R} and we get a contradiction. Due to the Corollary A4 the set D
consists of a finite union of points and intervals. Denote by u the minimum of these
points and endpoints of these intervals. If sti(u) > 0 then the function FU+D on
the ball B,(y/u) N By(r) takes the values less than e;41 because of continuity of

fU+D | Therefore, f vanishes everywhere on the ball
B,(\/u) N By(r) NR} D By(stp(v/u)/2) N By(r) NR}

with a positive radius from Ry, (sf. above). The obtained contradiction shows that
stip(u) = 0. Take any point w such that f(k'H)(w) = ep41 and [Jw —z|]* < u+epta,

then sty(w)=2. O

Lemma A5. Let a sub-Pfaffian set W C R}, defined by a Pfaffian formula II, be

finite. Then the completion W ¢ R}, 0 > k of W coincides with W.

Proof. Let W = {2, ... 2} Then the following formula of the language Ly is

true over Ry:

NG & v (| (R K #00) = T X))

155t 155t

By the transfer principle, this formula is also true over R,. 0O
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For a Pfaffian function f : G — Ry, G C R} a point « € G is called the critical
point of f if the gradient vector <%, - %) () = 0. The value f(x) is called,
in this case, the critical value of f. The value which is not critical is called regular.

Corollary A5. For a Pfaffian function f definable over Ry, any element o €

Ry~ Ry for { > k cannot be a critical value of f.

Proof. Observe that the set I'y C Ry of all critical values of f is sub-Pfaffian and
definable over Ry,.

Suppose first that & = 0. Then Corollary A4 implies that I'y consists of a finite
number of points and segments. Moreover, by Sard’s theorem, I'y actually consists
of a finite number of points. For all sub-Pfaffian sets of the form I'y and having
a fixed format the latter statement can be expressed by a formula of the language
Ly (taking into the account that the number of points is bounded via the format).
Hence, by the transfer principle the statement is true for any k& = 0. i.e., I'y, is finite.

According to lemma A5, the completion I’Ef) = I'y C Ry, and, therefore a ¢
N
Corollary A6. Let a Pfaffian function

f:G— Ry, GCRy

be definable over Ry and f 20 on G. If « € Ry~ Ry for { > k then f(«) # 0.

Proof. According to lemma A1l and corollary A4, the set W of roots of f is finite.

Apply lemma A5 to W. O

A3. Connected components of sub-Pfaffian sets over non-standard fields.

Now we are going to extend the notion of the connected component to the sub-
Pfaffian sets definable over R}, & = 1. Observe that a direct way to do this,
starting with the topology on R} with the base of all open balls, would lead to
unnatural objects, e.g., the segment [0,1] C Ry is not connected in this topology.
The analogous construction of connected components for semialgebraic sets over

non-standard fields was described in [14].
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Let V = {II} be a sub-Pfaffian set in R" determined by a Pfaffian formula II. The
Proposition A3 and the Corollary A3 imply the existence of a function w : N — N
such that if the elements of the 4-tuple format of II are bounded from above by

some N € N, then:

1. The number of the connected components does not exceed w(N);
2. For each connected component V; of V' there exists a Pfaffian formula II,

of a format with components not exceeding w(N'), such that V; = {II,}.

It follows that for a given positive integer A, there exists a Pfaffian formula 5
of the language Ly, expressing the existence of a decomposition of any sub-Pfaffian

set V = {II} of the format of II less than A into its connected components
v = J{m)

such that the format of every II;, and the number of II;, are less than w(N).
Moreover, the formula € s states that for each pair of indices i1 # 23 the components
{II;, } and {I1;, } are “separated”, i.e. the following Pfaffian formula of the language
Lo 1s valid:

Vi€ ()3 > 0% (y € (M }(llr — ol 2 =)

Besides, the formula Qxr claims the connectedness of every component {II;}, this
means that there do not exist two “separated” sub-Pfaffian subsets of {II;}, each
determined by a Pfaffian formula with format less than w(w(N)).

Apart from that, for given positive integers A", M one can verify a formula
Qnr,m of language £y expressing the following statement. If a sub-Pfaffian set {II'}
(where the format of II is less than ') can be represented as a union of more than
one and less than M pairwise “separated” sub-Pfaffian sets, each being determined
by a Pfaffian formula of £y of a format less than M, then {II} can be represented
as a union of more than one and less than w(AN') pairwise “separated” connected

sub-Pfaffian sets, each being determined by a Pfaffian formula of £y of a format
less than w(N).
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Applying the transfer principle to the formulas Qar, Qar ¢ for all positive in-
tegers N, M, we conclude that any sub-Pfaffian set, defined over Ry, & = 0, can
be uniquely represented as a union of its pairwise “separated” connected compo-
nents, moreover, each component is sub-Pfaffian and is connected, i.e. cannot be
represented as a union of more than one pairwise “separated” sub-Pfaffian sets.

Having defined the connected components of a sub-Pfaffian set definable over
Ry, & = 0, one can use the transfer principle to extend to this set Propositions A3,

A4 and Corollaries A2 and A3.

Lemma A6. Let V C R}, W C R}, be two sub-Pfaffian sets and V = st(W).
Let

V=JVa, W=,
m 4

be the decompositions of the sets V. W into their connected components. Then,
for every index m there exist such indices (y, ..., (s that st(Wy, U---UW, )= V,,.

Moreover, for each ( there exists the unique index m such that st(Wy) C V,,.
Proof. Is almost verbatim repetition of the proof of the lemma 1 in [14]. O

For a sub-Pfaffian set W C R}, k = 0, we denote by cl(W) its closure in the

topology in R} with the base of all open balls.

Lemma AT7. (cf [25]) Let Wy = {tby } C R}™" be a sub-Pfaffian set determined
by a Pfaffian formula 1y in which the atomic Pfaffian functions are in variables
Xy, ., X, N, Y, 2y, ..., Z,, where first n + t variables occur free. Let, for
the sequence of fields Ry C Ryyq C --- C Ry, the element cy;41 be infinitesimal
relative to Ryy; for 0 £ ¢ <t — 1. Denote by 1. the Pfaffian formula which is the
result of the replacement of Yy by epq for every 1 < 0 < t; let W, = {sp.} C R},

Then the set V = stp(W.) C R} is sub-Pfaffian.

Proof. Tt is sufficient, due to Proposition A2, to prove the lemma for the case
Yy = 37y,...372,(Py) with quantifier-free ®y. Observe that W, = 7{®.} where

®. is quantifier-free formula, being the result of the replacement of Y, by e44¢,
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1 ¢ <tin @y, and 7 is the linear projection map on the subspace of coordinates
Xi,...,X,, along the coordinates Z1,..., Z,.

The proof can be conducted by induction on ¢, in which an :th induction step
proves that the set stgy,—;(W.) is sub-Pfaffian. It will be obvious from the formula
(4) below that the output of the inductive step, namely, the set styi,_;(W.), sat-
isfies the requirements for the set W, of the lemma, i.e., there exists a sub-Pfaffian
set Wy, determined by a Pfaffian formula ¢} in variables Xy,..., X,, Y1,..., Y,
Zi,...,Z.,, where first n +t — ¢ variables occur free, such that sty4,—;(W.) = {¢L},
where ¢! is the result of the replacement of Yy by ej4¢ for every 1 £ ¢ <t — 4.

Thus, we assume that t = 1.

We can identify the sets {®.} and {®y & (Y7 =cpy1)}-

Let us prove that

st({By & (Vi = epp)}) = cl({By & (Vi >0)}) N {17 = 0}. (2)

Observe that the right side of the equality (2) is a sub-Pfaffian set.

Let @ € stpx({®y & (Y1 = cky41)}), then there exists z € {Py & (Y1 = epy1)}
such that @ = stg(z). Hence, € {Y; = 0}. Suppose that = € cl({®y & (Y7 >
0)}). Then there exists an element r, 0 < r € Ry such that B,(r) N {®y & (Y7 >
0)} = 0. This contradicts to the inclusion z € {®y & (Y] = epyq1)} C {Py &
(Y1 > 0)}.

Suppose now that

v €c({®y & (Y7 >0)})n{¥; =0},

i.e. x belongs to the right side of (2).
Let us prove the following claim: for any element R, 0 < R € Ry, there exists an

element «, 0 < o € Ry, such that for every 3, 0 < 3 € Ry, § < « the intersection

B.(R)N{®y & (Y1 =0)}
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is nonempty. Indeed, since the set B,(R) N {®y & (Y7 > 0)} is sub-Pfaffian,
and, thus has a finite number of the connected components (see the considerations
preceding the lemma), there exists a connected component U of this set such that
x € cl(U). One can take as « the Y;i-coordinate of any point from U and the claim
is proved.

It follows (with a help of the transfer principle) that for every fixed R, 0 < R € Ry,
the intersection

Bo(R)N{®y & (Y1 =cpq1)} # 0. (3)

Observe that the set A = {||z —z|]* : 2 € {Py & (Y7 = ep41)}} C Rpgq is
sub-Pfaffian. Due to Corollary A4, A is a finite union of points and intervals. Let
w € Riyq be the minimal among these points and the endpoints of these intervals.

Suppose that © ¢ stix({®y & (Y1 = €441)}), i.e. there does not exist z €
{®y & (Y7 = ery1)} such that stg(z) = z. Thus, w > r} for an element
0 < ry € Ry It follows that B,(r1) N {®y & (Y1 = e441)} = 0. This contradicts
(3) for R = ry, and the equality (2) is proved.

We have:

stp(W.) = stp(n({®y & (Y1 =¢ep41)})) =

m(sti({®@y & (V1 =ep1)})) = 7(cl({@y & (Y1 >0)})n{Y1 =0}). (4)
The latter set is obviously sub-Pfaffian, this proves the lemma. 0O

Lemma A8. Let W C R}, be a sub-Pfaffian set, V = st; (W) C R}. Then
dim(V) < dim(W).

Proof. Suppose the contrary, let dimW = ¢ — 1, dim(V) > (. There exists a
linear projection 7 : R} , — ]Rf;_i_t definable over R such that dim(x(W)) =
dim(W), dim(7(V)) = ¢, here 7(V) C RY (actually “almost any” linear projec-
tion satisfies these properties). Using the obvious identity sti(7m(W)) = n(stp(W))
one can assume without loss of generality that dim(W) = n—1, dim(V') = n. Hence

V contains a ball of a certain radius 0 < r € R;.
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Fix some integer M which we’ll specify later. Making a suitable affine transfor-
mation of the coordinates (definable over Ry), we can assume that the following
requirements are fulfilled (cf. lemma 2). The set V' contains n-dimensional cube K
with a side 0 < r; € Ry, contained in the nonnegative ortant and having the origin
as one of its nodes. Moreover, we require that for each 1 < j < n and a j-plane P
being the intersection of any (n — j) hyperplanes of the form Ps(m) = {XS = %rl},

1<s<n,0<m< M, the dimension dim(W N P) <j — 1.

Observe that the hyperplanes Ps(m) divide K in M™ small cubes with sides ry /M.
Moreover for each 0 < j < n and each j-plane P the intersection P N K is divided
by the same way in M7 j-facets being j-dimensional cubes with sides /M (we
assume here that a facet contains its boundary). Note that the boundary of j-facet
is the union of (j — 1)-facets. Denote by v; the number of j-facets which have
common points with W. Denote by A;, 0 < j < n the intersection of the set WNK
with the union of all j-planes of the described form. Obviously, A; is a sub-Pfaffian
set. Denote by «; the number of connected components of A;.

We claim that v; < 2(n—j +1)rv;—1 +a;, 1 <j < n. Indeed, v; < 1/;0) + 1/;1),
where 1/;0) is the number of j-facets Q") which have common points with the
connected components C(©) of A; such that C® has no common points with j-
facets other than Q% and 1/;1) is the number of j-facets Q') not satisfying this
property and Q) N W #£ 0. Obviously, 1/;0) < aj. For j-facet QW take any
connected component C'V) of A; such that C' has common points with some j-
facet different from Q), then C'!) has a common point with a certain (j —1)-facet
R from the boundary of QW) attach to Q) any such (j — 1)-facet R. Since any
(j — 1)-facet R lies in the boundary of at most 2(n — j + 1) j-facets, R can be
attached to at most 2(n —j 4 1) j-facets. Hence 1/;1) <2(n—j+1)rj_; that proves

the claim.

Corollary A3 implies that there exists an integer ¢ which depends only on the

format of a Pfaffian formula defining the set W such that the number of connected
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components of the intersection of W NK with any j-plane does not exceed ¢. There-
fore, aj < (M + 1)"_j.

Clearly, v, = M™ since sti(W) D K (indeed, if some n-facet does not intersect
with W then its center does not belong to stx(W)). Using the bound on «; and
the proved above claim we prove by induction on 0 < 57 < n — 1 the existence of
integers ¢; such that v,_; > %M" for large enough arbitrary M.

On the other hand, A, consists of a finite number of points (since dim(A;) = 0),
hence vy < aq, then the proved claim (for j = 1) entails v; < (2n+1)ay < /M™!
for an appropriate integer ¢’, that leads to a contradiction for large enough M >

cen,_q. O

A4. Degree of sub-Pfaffian transcendency.
Let 1 < j; < jp and the elements ~v1,...,7v, 61,...,0¢ € R;,. Denote the

. R
coordinates in Ry ™ by Yi,..., Y4

Definition A10. The degree of sub-Pfaffian transcendency [(61,...,6¢) : (71, -, 7%)]
= [(61,...,00) : (71, ,7k)]m;, is the minimal integer s = 0 such that there exists
a sub-Pfaffian set S C Rfjf definable over R, such that (v1,...,7%,601,...,0¢) € S

and dim(S N{Y1 =7,....Yr =v}) = s.

When k = 0 we write simply [6y,...,6¢].
Observe that the definition correlates with the usual notion of degree of tran-
scendency of the fields extension [F(01,...,600,71,...,7k) : F(71,...,7k)] replacing

R;, by a field F' and taking as S an algebraic variety.

Lemma A9. 1) [01,...,0041] <[61,....00]+1;

2) leji4+1,---+€4,] = j2 — j1 (the infinitesimals ¢; were introduced in section A2).

Proof. 1) Let S C Ré be as in the definition, then the point (6y,...,8¢4+1) belongs
to the cylinder S x R, C Rg;—l.
2) Conduct the proof by induction on (j2 —j1). The base of induction for jo—j; =0

is trivial. For the inductive step assume the contrary and let S C Rﬁ_h be as in
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the definition A10 such that (e, 41,...,¢;5,) € S and dim(S) = s < jo — j; — 1. Let
Yi,...,Yj,—;, bethe coordinates in Rﬁ_h. Consider the sub-Pfaffian set Sy = {y :
dim({Y; = y}nS)=s} CRj,. Then dim(Sy) = 0, since dim(S) = s. Observe that
Sy is defined over R;,, hence, due to corollary A4, Sy consists of a finite number
of points all belonging to R;,. Denote S1 = {Y; = ¢;,41} NS C{Y1 =¢j,41} ~
Rﬁ_‘h_l. Then dim(S1) < s — 1, and one can apply the inductive hypothesis to

the set Sy, taking into account that (¢;, 42,...,¢5,) € S1. O

The following lemma is an analogy of the additivity of the usual degree of tran-

scendency: [F3 : Fy] = [Fs : Fy| + [Fy : Fy] for fields extensions Fy C Fy C F3.
Lemma A10. [v1,...,7k, 01,00 =[v1,- o 7] +[(61,...,00) : (71,0, vk)].

Proof. Denote [y1,..., %k, 01,...,0c) =m, [v1,...,vk] =p, [(01,--..00) : (150, vk)]
= s. First prove

1) m<p+s.

Let a sub-Pfaffian set S be as in the definition A10. Consider the sub-Pfaffian
set Uy C R";; consisting of all the points (y1,...,yx) for which dim(S N {¥; =
Yi,...,Yr = yg}) < s. Then U is definable over R;,. Due to the definition A10
there exists a sub-Pfaffian set U C R";; definable over R, such that (y1,...,9) € U
and dim U = p.

Denote by = : Rfjf — R";; the natural projection onto the subspace with the
coordinates Y7,...,Y,. Consider the sub-Pfaffian set ¢/ = SN (U N Uy) X Ri) C
Rfjf. Then U is definable over R;,, besides (y1,...,7%, 6h,...,8¢) € U. The
dimension dim(U) < p + s, since dim(7(U)) < dim(U) = p and for any point
y € m(U) we have dim(U N7~ (y)) < s.

2) m>p+s.

According to the definition A10 there exists a sub-Pfaffian set V C R";jf definable
over R, such that (v1,...,7k, 61,...,0¢) € V and dim(}V) = m. Denote dim(¥ N
{Y1 = v,...,Ys = 9}) = s1. Obviously s; > s. Consider the sub-Pfaffian

set Vi C R";; consisting of all the points (y1,...,yx) for which dim(V n {Y¥; =
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ooy Yy = yr}) > s1. Then V; is definable over R, and (v1,....,7%) € Vi,

therefore dim V4 > p. Arguing similarly asin 1), we get m > s;+dimVy > s+p. O
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