
COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREESWITH ELEMENTARY TRANSCENDENTAL FUNCTION GATESD. Grigoriev and N. VorobjovDepartments of Computer Science and MathematicsPenn State University, University Park, PA 16802, USAdima@cse.psu.eduvorobjov@cse.psu.eduAbstract. We consider computation trees which admit as gate functions along withthe usual arithmetic operations also algebraic or transcendental functions like exp,log, sin, square root (de�ned in the relevant domains) or much more general, Pfa�anfunctions. A new method for proving lower bounds on the depth of these trees isdeveloped which allows to prove a lower bound 
(plogN) for testing membershipto a convex polyhedron with N facets of all dimensions, provided that N is largeenough.I. Pfa�an Computation Trees.De�nition 1. By a Pfa�an computation tree T we mean a generalization of analgebraic decision tree (see e.g. [1, 4, 12, 28, 29, 30]) in which at any node v of T aPfa�an function fv in the variablesX1; : : : ;Xn (see the de�nition A2 in the Appen-dix) is attached, which satis�es the following properties. Let fv0 ; : : : ; fv` ; fv`+1 = fvbe the functions attached to all the nodes along the branch Tv of T leading from theroot v0 to v. We assume that Pfa�an function fv satis�es the following di�erentialequation dfv = X1�j�ngv;j(X1; : : : ;Xn; fv0 ; : : : ; fv` ; fv)dXjwith gv;j 2 R[X1; : : : ;Xn; U0; : : : ; U`+1]. The tree T branches at v to its three sonsaccording to the sign of fv (cf. [1]). Thereby, to each node v one can naturally assigna semi-Pfa�an set Uv � Rn (see the de�nition A3 in the Appendix) consisting ofall the points for which the sign conditions for functions along the branch Tv arevalid. Thus, to three sons of v one assigns the semi-Pfa�an sets Uv \ ffv > 0g,Typeset by AMS-TEX1



2 D. GRIGORIEV AND N. VOROBJOVUv \ ffv = 0g, Uv \ ffv < 0g, respectively. We assume that fv is de�ned on acertain domain (see the de�nition A2) containing Uv. To any leaf of T an outputeither \yes" or \no" is assigned and we say that T tests the membership problemto the set of all points (x1; : : : ; xn) 2 Rn for which the outputs of the correspondingleaves of T are \yes" (see [1]).Note that a more general notion of a Pfa�an sigmoid was introduced in [10] anda method for obtaining lower bound on the (parallel) complexity was developed.If we take only arithmetic operations as the gate Pfa�an functions fv in T thenwe come to the algebraic computation trees (see e.g. [1]). As examples of gatePfa�an functions fv one could take exp (fvq ), log(fvq ), where log is de�ned onthe positive half-line, pfvq , where square root is de�ned on the positive half-line,sin(fvq ), where sin is de�ned on the interval (��; �), tan(fvq ), where tan is de�nedon the interval (��=2; �=2), 0 � q � `. Other examples one can �nd in section A1of the Appendix. Trees T restricted to some special classes of Pfa�an functions(for instance, the mentioned above) can be of a particular interest, but since weare interested in the complexity lower bounds we shall consider arbitrary Pfa�anfunctions.Suppose that the degrees deg gv;j of the polynomials occurring in the de�nitionof the gate functions fv in T , are less than d.Now we are able to formulate the main result of the paper. This result wasannownced in [15].Theorem. Let a Pfa�an computation tree T test a membership problem to aclosed convex polyhedron P � Rn, having N facets of all the dimensions. Then thedepth K of T is greater than 
(plogN), provided that N � (dn)
(n4 log d).In [11] a particular case of the theorem for n = 2, so when P is a polygon, wasproved.Several methods based on topological characteristics are known for obtainingcomplexity lower bounds for algebraic computation trees testing membership to



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 3a semialgebraic set S � Rn. In [1], the bound 
(logC) was proved, where Cis the number of connected components of S or its complement, in [3,4,28] thebound 
(log�) was proved, where � is the Euler characteristics. The most general(among the listed) bound 
(logB) was proved in [3,29], where B is the sum ofBetti numbers of S.Actually one could directly extend these results to Pfa�an computation trees,replacing in the proofs the references to Milnor's bound [23] on the sum of Bettinumbers of a semialgebraic set by the references to Khovanskii's bound [20] for thesum of Betti numbers of a semi-Pfa�an set. This leads to the following proposition[11]. If a Pfa�an computation tree tests the membership problem to a semi-Pfa�anset W with the sum of Betti numbers B, then the depth of the tree is greater than
(plogB) [11].There is a conjecture that the bound in [20] could be improved (see the sectionA1 in the Appendix). This conjecture implies the lower bounds 
(logN) in thetheorem and 
(logB) in the proposition from [11] respectively.Observe that as the sum of Betti numbers of a convex polyhedron equals to1, the theorem does not follow, apparently, from the proposition. Note that in[12] the complexity lower bound 
(logN) was proved for testing membership toa polyhedron with N facets by an algebraic decision tree (for large enough N , cf.the theorem). In [30] a similar bound was shown for a weaker model of lineardecision trees. The method from [12] cannot be directly generalized to Pfa�ancomputation trees, since in [12] the e�cient quanti�er elimination procedure forthe �rst-order theory of reals (see [9, 14, 17, 24]), was essentially used whereas forthe theories involving Pfa�an functions (in particular, elementary transcendental),the quanti�er elimination does not exist.We remark that the computations involving other functions, rather than arith-metic, were considered in several papers: in [18] for the computations involvingroot extractions a lower bound for computing an algebraic function was obtained,



4 D. GRIGORIEV AND N. VOROBJOVin [13] this result was extended for the computations involving exp and log.We mention that for testing membership to a polyhedron an upper boundO(logN)nO(1)was shown in [22] even for linear decision trees.Now we proceed to the proof of the theorem which will continue up to the endof section III.We start with introducing some necessary concepts and notations. In section IIwe introduce the notion of i-angle points and prove that the set of i-angle pointshas the dimension at most i. This notion di�ers from the concept of sharp pointsintroduced and used in [12], the latter does not work for Pfa�an computationtrees. In section III we introduce and study another important technical concept,at points. All necessary information about Pfa�an functions and sub-Pfa�ansets we included in the Appendix (in which the numbering of all the statements,de�nitions and sections begins with A).For an m-plane Q � Rn and a point x 2 Rn denote by Q(x) the m-plane,collinear to Q and containing x. For a facet � of the polyhedron P denote by �the dim(�)-plane, containing � (we assume a facet to be open, i.e. without itsboundary).Two planes Q1, Q2 or arbitrary dimensions are called transversal ifdim(Q1(0) \Q2(0)) = maxf0;dim(Q1(0)) + dim(Q2(0)) � ngThe proofs of the following two easy lemmas one can �nd in [12] (lemma 1 isalso proved in [5]).Lemma 1. For each j with 1 � j � n there exists a family Aj consisting ofj(n � j) + 1 j-subspaces in Rn such that for any i-subspace Q � Rn, 1 � i � nthere is a j-subspace R 2 Aj which is transversal to Q.Lemma 2. There exists a rotation of coordinates X1; : : : ;Xn such that after thisrotation for every j, every Q 2 Aj and for every facet � of P , the subspace Q andthe plane � become transversal.



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 5In what follows we suppose that the coordinate system meets the requirementsof lemma 2. Now we reduce consideration to the case when the polyhedron P isbounded. The next construction follows the beginning of the proof of lemma 5 [12].Let t be the minimal dimension of facets of P . Fix a certain t-facet Pt of P , thent-plane P t is contained in P . On each facet � of P choose a point x� 2 �. Take anarbitrary hyperplane � transversal to P t and such that the points x� for all facets� of P lie in the same of two open half-spaces of Rnr � (denote this half-space by�). Consider the polyhedron P \ (� [ �), it contains a facet of a dimension lessthan t. Continuing this process while t � 1, we come eventually to the case t = 0,i.e., polyhedron P 0 obtained as a result of this process has a vertex.There exists a linear form L = �1X1 + � � � + �nXn with �i 2 R, 1 � i � n suchthat for every  2 R an intersection P 00 = fL +  � 0g \ P 0 is compact. Take such that x� 2 fL+  � 0g \ P 0 for all �.In order to reduce consideration to the compact polyhedron P 00, observe thatfrom a Pfa�an computation tree of depth K for the membership problem to P ,one can easily produce a Pfa�an computation tree of a depth at most K+n for themembership problem to P 00. Assuming that the theorem is valid for the compactP 00, and thus K + n � 
(plogN), we get a similar bound K � 
(plogN) underthe supposed in the hypothesis of the theorem inequality for N . Therefore, in whatfollows we assume that P is bounded.In section A2 a sequence R= R0 � R1 � R2 � � � �of nonstandard extensions of �elds is introduced. One can choose in each Ri+1 anelement in�nitesimal relative to Ri. We denote these elements, respectively, by�1 2 R1; f�(j)` 2 R(`�1)(n2+1)+j+1 : 1 � ` � n� 1; 1 � j � n2 + 1g;�2 2 Rn3�n2+n+1, �3 2 Rn3�n2+n+2 (the reason for these notations would becomeclear later on). Tomatch the notations denote the �eldsR1 = R�1, R(`�1)(n2+1)+j+1 =



6 D. GRIGORIEV AND N. VOROBJOVR�(j)` , 1 � ` � n � 1, 1 � j � n2 + 1, Rn3�n2+n+1 = R�2, Rn3�n2+n+2 = R�3,respectively. For brevity set also R� = Rn3�n2+n = R�(n2+1)n�1 . The completion(see section A2) for any sub-Pfa�an set U (see the de�nition A4) we denote byU (�) = U (n3�n2+n), U (�3) = U (n3�n2+n+2). Analogously we denote the languages(see the section A2) L� = Ln3�n2+n, L�2 = Ln3�n2+n+1; L�3 = Ln3�n2+n+2. Inthe section A2 for each i the standard part sti is described. Actually, throughoutthe paper we'll use almost in all the cases stn3�n2+n which we'll for brevity denoteby st (on occasions we'll use also stn3�n2+n+1 which we denote by st�2).Consider a Pfa�an computation tree T testing the membership to P with depthK. Fix any its branch with the output \yes", and let fv0 ; : : : ; fvK be the Pfaf-�an functions attached to the nodes along this branch. We rename the functions�fv0 ; : : : ;�fvK by u0; : : : ; uK in such a way that u0; : : : ; uK1 for a certain K1 5 K,correspond to the sign zero, and uK1+1 > 0; : : : ; uK > 0 correspond to nonzero signsalong the branch. More precisely, consider a semi-Pfa�an set (see the de�nitionA3)W = fx 2 Rn�3 : u0(x) = � � � = uK1(x) = 0; uK1+1(x) > 0; : : : ; uK(x) > 0g:which is the accepting set corresponding to the branch. Then the set W \Rn is theset of points on which T along the �xed branch outputs \yes", hence W \Rn � P .Since the functions u0; : : : ; uK are de�ned over R, the completion (see the sectionA2) (W \Rn)(�3) =W . In the sequel we'll estimate the number of i-facets � of Psuch that dim(W \� \ Rn) = i.When K1 < 0 the set (W \Rn) lies in the interior of P , so this estimate is trivial.Therefore, we assume that K1 � 0 and denote f = u20 + � � �+ u2K1 .II. Angle Points.De�nition 2. A point x 2W is called a 0-quasiangle if uK1+1(x) � �1; : : : ; uK (x) ��1, and there exist points y1; : : : ; yn 2 ff��3 = 0g such that the Euclidean distances



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 7kyi � xk � �2, 1 � i � n and0B@det ������� @f@X1 (y1) : : : @f@Xn (y1)... ...@f@X1 (yn) : : : @f@Xn (yn) ������� 1CA2 > �21�(y1) � � ��(yn) (0)where � = P1�i�n� @f@Xi �2.Observe that corollary A5 states that for any point y 2 ff = �3g � Rn�3 the gra-dient grady(f) = � @f@X1 ; � � � ; @f@Xn� (y) does not vanish. Notice that the inequality(0) in the de�nition means that the absolute value of the determinant of the matrixformed by the normalized gradient vectors of f at the points y1; : : : ; yn is greaterthan �1.De�nition 3. A point x 2 W is called i-quasiangle (0 � i < n) if for each(n � i)-subspace � 2 An�i (see lemma 1) the point x is a 0-quasiangle point inthe semi-Pfa�an set W \ �(x) (here we understand 0-quasiangle with respect toa basis in � whose elements are from Rn, in other words have coordinates from R,the role of f plays the restriction of f on �(x)).The set of i-quasiangle points of W we denote by eAi. Observe that eAi can bedetermined by a Pfa�an formula and thus is a sub-Pfa�an set (see the de�nitionA4).De�nition 4. The points of the set Ai = st( eAi) � Rn� are called i-angles.Lemma A7 implies that Ai is sub-Pfa�an and de�nable over R1. Due to lemmaA4, Ai �W .Lemma 3. Let Pi be an i-facet of P with dimension (see de�nition A5) dim(W \Pi) = i. If for two points ex 2 W \ Rn \ Pi, and x 2 P (�)i the distance kx � exk isin�nitesimal relative to R, then x 2 eAi.Remark. Actually, the lemma states that x 2 Ai since x = st(x) 2 st( eAi) = Ai.Proof of the lemma. Since dim(W \ Pi) = i, the lemma A1 implies that f vanisheson P i. Throughout this paper Bz(s) � Rn�3 denotes the open ball centered at z with



8 D. GRIGORIEV AND N. VOROBJOVradius s. There exists 0 < c 2 R such that uj(ex) > c, K1 + 1 � j � K, thereforethere exists 0 < r 2 R such that uj(y) > c2 , K1+1 � j � K for any y 2 Bex(2r)\Rn,taking into account that the Pfa�an functions uj are de�ned over R. Accordingto the transfer principle (see the section A2) uj(y) > c2 , K1 + 1 � j � K for anyy 2 Bex(2r) \Rn�3. In particular, uj(x) > c2 > �1, K1 + 1 � j � K.Fix an arbitrary subspace � 2 An�i. Our purpose is to show that x is 0-quasiangle in the setW \�(x), which will imply the lemma (see de�nition 3). Since� is transversal to Pi, the point x is a vertex of the polyhedron P = (P \�(x))(�3)(see lemma 2 and the supposition just after it). The vertex x belongs to at leastn� i of (n � i � 1)-facets (of the maximal dimension) of P. Observe that for eachof these facets the normalized orthogonal (in �(x)) vector has the coordinates inR. Choose any T1; : : : ; Tn�i among them.Notice that for any point y 2 cl(Bx(r)) \ Rn�3 (where cl denotes the closure inthe topology with a base of all open balls) the inequalities uj(y) > �1, K1 + 1 �j � K hold since cl(Bx(r)) � Bex(2r). Hence, \K1+15j5Kff = 0; & uj = �1g(�3)\cl(Bx(r)) = ff = 0g(�3) \ cl(Bx(r)).Denote by D � �(x) the intersection of the unique closed cone K with the vertexat x formed in �(x) by (n� i� 1)-planes T 1; : : : ; Tn�i containing P, with the ballcl(Bx(r)). For any point z 2 ff = �3g \ �(x) \ cl(Bx(r)) we have st�2(z) 2 ff =0g\�(x)\cl(Bx(r)), due to lemma A4. Therefore, st�2(z) 2 W\cl(Bx(r))\�(x) �P \ cl(Bx(r)) � D, in particular the distance �(z;D) from the point z to the set Dis in�nitesimal relative to R�2. Since the set ff = �3g \ �(x) \ cl(Bx(r)) is closedin the topology with a base of all open balls, and bounded, the maximum value �0of �(z;D) over all the points z 2 ff = �3g \ �(x) \ cl(Bx(r)) exists (here we usethe transfer principle), and is in�nitesimal relative to R�2.Shift (in �(x)) each of (n � i � 1)-planes T 1; : : : ; Tn�i parallel to itself out-ward from D to the distance �0. Denote the resulting shifted (n� i� 1)-planes byT 01; : : : ; T 0n�i, respectively. Denote by x0 the (unique) common point of T 01 \ � � � \



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 9T 0n�i. Denote by D0 the intersection of the closed cone K0 formed by T 01; : : : ; T 0n�i,with the vertex in x0 with the ball cl(Bx(r)). Thenff = �3g \ �(x) \ cl(Bx(r)) � D0. Observe that the distance kx � x0k is in�n-itesimal relative to R�2.We replace (n�i�1)-planes T 0j , 1 � j � n�i (in �(x)) by some (n�i�1)-planesT 00j , 1 � j � n � i, respectively, in the following way. Take any hyperplane 
 (in�(x)), de�ned over R�, such that the intersection C1 = 
 \K � D. Then C1 is a(n� i� 1)-dimensional simplex, let its (n� i� 2)-facets which are the intersectionsof 
 with T1; : : : ; Tn�i, respectively, be determined in 
 by the equations fLj = 0g,1 � j � n � i for some linear polynomials Lj de�ned over R�. Thus C1 = fL1 �0; : : : ; Ln�i � 0g\
. Consider now (n�i�1)-dimensional simplex C2 = fL1+�2 �0; : : : ; Ln�i+�2 � 0g\
 � C1. The facets of C2 are fLj = ��2g\
, 1 � j � n� i,and therefore, they are parallel to the corresponding facets of C1. Denote by T (3)j ,1 � j � n� i the hyperplane (in �(x)) containing x and fLj = ��2g \ 
. Denoteby K(3) � �(x) the cone formed by T (3)j , 1 � j � n� i containing C2; observe thatK(3) � K.We claim that the sine of the angle � between the hyperplanes T j and T (3)j , (i.e.,between vectors, orthogonal to T j and T (3)j respectively) is in�nitesimal relative toR�. Indeed, consider the unique 2-plane !j , 1 � j � n � i passing through xand orthogonal to fLj = 0g \ 
. It intersects (n � i � 2)-plane fLj = 0g \ 
(respectively, (n� i�2)-plane fLj = ��2g\
) at the unique point yj (respectivelyy(3)j ). Observe that the vector in !j orthogonal to the line `j passing through xand yj (respectively, the line `(3)j passing through x and y(3)j ) is orthogonal to T j(respectively, T (3)j ). The segment (yj ; y(3)j ) lies on the line !j \
 and is orthogonalto fLj = 0g \ 
. Hence the distance between (n � i� 2)-planes fLj = 0g \ 
 andfLj = ��2g\
, which is equal to the length of the segment [yj ; y(3)j ], is in�nitesimalrelative to R�. Since the angle � equals to the angle between the lines `j and `(3)j ,we conclude that sin� is in�nitesimal relative to R� taking into account that in the



10 D. GRIGORIEV AND N. VOROBJOVtriangle (x; yj ; y(3)j ) the vertices x and yj are de�ned over R�, therefore the sides(x; yj ) and (x; y(3)j ) are not in�nitesimal relative to R� and (yj ; y(3)j ) is in�nitesimalrelative to R�. This proves the claim.Let us show that there exists an element 0 < � 2 R�2 such that for any twopoints z1 2 @C1, z2 2 @ C2 from the boundaries, (see de�nition A8 (here we meanthe boundary in the hyperplane 
)), the sine of the angle between the lines (x; z1)and (x; z2) is greater or equal to �. Since both points z1; z2 range over boundedclosed sets, there exists (due to the transfer principle) the minimum � of thesesines. Observe that � > 0 since @C1 \ @C2 = ;. One could de�ne the element � bya formula of the language L�2 . Therefore, � 2 R�2 by the transfer principle, as wasto be shown.Note that the cones K and K0 are isometric. We de�ne the desired (n � i � 1)-planes T 00j , 1 � j � n�i as the images of T (3)j , respectively, under the shift mappingthe cone K onto K0, then the cone K00 formed by T 00j , 1 � j � n� i, is the image ofthe cone K(3).For every 1 � j � n � i, pick a point xj 2 ff = �3g \ �(x) \ cl Bx(r) withthe property that xj is the nearest to T 00j on the (bounded and closed) set ff =�3g \ �(x) \ cl Bx(r). Lemma A4 entails that there exists a point y 2 ff =�3g \ �(x) \ Bx(r) such that kx � yk is in�nitesimal relative to R�2, thereforekx0 � yk is in�nitesimal relative to R�2 as well, hence the distance from xj to T 00jis also in�nitesimal relative to R�2. Denote by x00j 2 T 00j the orthogonal projectionof xj on T 00j . Let us prove that kxj � x0k is in�nitesimal relative to R�2. Sincexj 2 (ff = �3g \�(x) \ cl(Bx(r))) � D0, the segment (xj ; x00j ) intersects @K0 (herewe mean the boundary in �(x)) at the unique point x0j . Since the sine of the angle between the lines (x0; xj) and (x0; x00j ) is greater than or equal to the sine of theangle between the lines (x0; x00j ) and (x0; x0j) which, in its turn, is greater or equal to� (see above), we conclude that sin � � 2 R�2. Therefore, kx0 � xjk = kxj�x00j ksin  isin�nitesimal relative to R�2, 1 � j � n�i, which was to be proved. Hence, kx�xjk



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 11is in�nitesimal relative to R�2 as well, in particular xj 2 Bx(r).Observe that the gradient gradxj (f̂ ) (where f̂ denotes the restriction of f on�(x), cf. De�nition 3) does not vanish because xj 2 ff = �3g \�(x) (see corollaryA5) and it is orthogonal to the hyperplane T 00j (in �(x)), as x is the nearest to T 00jon the set ff = �3g \ �(x) \ cl Bx(r). Since the sines of the angles between anypair of hyperplanes T j1 ; T j2 (in �(x)) is greater than a certain c, 0 < c 2 R, weconclude that the sines of the angles between any pair of hyperplanes T 00j1 , T 00j2 isgreater than c=2 according to the claim proved above (stating that the sine of theangle between T j1 and T 00j1 is in�nitesimal relative to R�). Thereforedet gradx1(f̂ )kgradx1(f̂ )k ; : : : ; gradxn�i (f̂ )kgradxn�i (f̂ )k! > c1 > 0for a suitable c1 2 R.Taking the points x1; : : : ; xn�i as the points y1; : : : ; yn�i in the de�nition 2 weget that x is 0-quasiangle in the semi-Pfa�an setW\�(x), whence x is i-quasianglebecause (n � i)-plane � 2 An�i was chosen arbitrarily. �Corollary. Let a point ex 2W\Pi\Rn and the dimension in the point ex dimex(W\Pi) = i, then(a) dimex(Ai \ P (�)i ) = i;(b) dim(Ai \ P (�3)i ) = i.Proof. Lemma 3 and the remark following this lemma imply that for any 0 < � 2 R�which is in�nitesimal relative to R, we have the inclusion (Bex(�) \P (�)i ) � Ai, thisprovides a).Moreover, lemma 3 and the remark imply that (Bex(�) \ P (�)i ) � st( eAi \ P (�3)i ).Thus, b) follows from lemma A8. �Lemma 4. dim(Ai) � iProof. First let us reduce the proof to the case i = 0, in which ~A0; A0 are de�nedfor a set W given by Pfa�an functions u1; : : : ; uK de�ned over R� (rather than R),see section A2.



12 D. GRIGORIEV AND N. VOROBJOVThus, let i � 1 and suppose that e = dim(Ai) � i + 1. Due to corollary A1,there exists a nonsingular point y 2 Ai such that dimy(Ai) = e. Denote by Tythe tangent plane to Ai at the point y. Since dim(Ty) = e one can �nd (n � i)-subspace � 2 An�i such that dim(Ty \ �(y)) = e � i. Take any (n � e)-subspaceR � � de�ned over R� for which (Ty \R(y)) = fyg. Consider the linear orthogonalprojection � : Rn�3 ! Re�3 onto e-subspace along R. Then dim �(Ty) = e. Therefore,�(Ai) � Re� contains e-dimensional ball B�(y)(r) for a certain 0 < r 2 R� (by theimplicit function theorem and the transfer principle).For any point x 2 Ai there is a point x0 2 eAi such that st(x0) = x, hencest(�( eAi)) � B�(y)(r).By assumption that the lemma is valid for the case i = 0.Then for any point z 2 Rn� applying this assumption to the set of 0-angle pointsof the intersection �(z) \W we conclude that the sub-Pfa�an set st(�(z) \ eAi)has the dimension at most 0 (taking into account the de�nition 3 of i-quasianglepoints and that �(z) is de�ned over R�).Let us show that �( eAi) does not contain a ball Bw(r1) for any 0 < r1 2 R� andw 2 Re�3. Assume the contrary, then there exists a point w1 2 Bw(r1) \ Re�. Letz1 2 Rn� be a point such that �(z1) = w1. Denote �1 = �(�), then dim�1 = e� i,� = ��1(�1). Then the following inequalities hold:dim st(�1(w1) \ �( eAi)) � dim st(�1(w1) \Bw(r1)) = e � i � 1:On the other hand, �1(w1) \ �( eAi) = �( eAi \�(z1)), and, therefore,dim st(�1(w1) \ �( eAi)) � dim st( eAi \�(z1)) � 0;(the latter inequality was proved above). The obtained contradiction shows that�( eAi) does not contain a ball Bw(r1) for any 0 < r1 2 R�.We claim that for any ball Bz2(r2) � B�(y)(r) de�ned over R�3 such that 0 <r2 2 R�, the intersection Bz2(r2) \ @�( eAi) 6= ;. Assume the contrary. Then



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 13either Bz2(r2) � �( eAi) or Bz2(r2) \ �( eAi) = ;. The inclusion Bz2(r2) � �( eAi) isimpossible as was shown above. If Bz2(r2) \ �( eAi) = ;, then st(z2) =2 st(�( eAi)),the latter contradicts to the inclusions st(�( eAi)) � B�(y)(r) � Bst(z2)(r2=2) of thesets in the space Re�. This proves the claim.Because of lemma A3, dim(@(�( eAi))) � e � 1. Applying lemma A8, we getdim(st(@(�( eAi)))) � e� 1.On the other hand we shall now prove that st(@(�( eAi))) � B�(y)(r). Thiscontradiction completes the proof of the reduction of the lemma to the case i = 0.Indeed, let z3 2 B�(y)(r). Observe that the set D = fkz � z3k2 : z 2 @(�( eAi))g issub-Pfa�an. Due to Corollary A4, D is a �nite union of points and intervals. Let! be the minimal among these points and the endpoints of these intervals. Supposethat z3 62 st(@(�( eAi))), i.e. there does not exist z 2 @(�( eAi)) such that st(z) = z3.Thus, ! > r23 for an element 0 < r3 2 R�. It follows that Bz3(r3) \ @(�( eAi)) = ;.This contradicts the claim just proved.Now let i = 0. Suppose the statement of the lemma is wrong and dim(A0) = s �1. There is a linear projection � : Rn� ! Rs� onto a certain coordinate s-subspace,such that �(A0) � Bz(r) for some z 2 Rs�, 0 < r 2 R�. Choose an open intervalL � Bz(r) of the length 2r passing through z.Our nearest purpose is to prove the existence of a sub-Pfa�an curve (i.e. one-dimensional sub-Pfa�an set) C0 � A0 such that �(C0) = L and the mapping� : C0 ! L is bijective. This follows from the next, a more general construction.Let V � Fn, U � Fm be sub-Pfa�an sets where F is one of the �elds Rj de�nedin the section A2 and ' : V ! U be a sub-Pfa�an mapping (i.e. a mapping witha sub-Pfa�an graph). Let us describe one of the possible ways to construct asub-Pfa�an set V0 � V such that the restriction ' : V0 ! '(V ) of ' is bijective.For every point u 2 '(V ) take the (unique) point vu 2 V such that '(vu) = uaccording to the following rule (actually, this rule is quite exible).A projection �1('�1(u)) of '�1(u) onto the axis X1 is a union of a �nite number



14 D. GRIGORIEV AND N. VOROBJOVof intervals (with or without endpoints) since �1('�1(u)) is sub-Pfa�an (see Corol-lary A4). Let a1; a2 be the endpoints of the leftmost among these intervals (note thata sub-Pfa�an set is always bounded, see De�nition A4). Then a1+a22 2 �1('�1(u)).Consider the projection �2('�1(u) \ fX1 = a1+a22 g) onto the axis X2. Continuingin the similar way, after n steps we obtain a point vu = ( a1+a22 ; : : : ) 2 '�1(u). Wede�ne V0 as a set of all the obtained points vu for all u 2 '(V ). One can easilyprove that V0 is sub-Pfa�an and the mapping ' : V0 ! '(V ) is bijective.Applying this construction to the mapping �����1(L)\A0 : ��1(L) \ A0 ! L weget a required sub-Pfa�an curve C0 � A0. Since there is only a �nite number ofconnected components of C0 (see Corollary A3), there exists a connected componentC such that �(C) is an interval of a length r0 > 0 for a certain r0 2 R�. Then thecompletion C(�3) � Rn�3 is a connected component of the curve C(�3)0 � Rn�3 (see thesection A3).Fix a nonsingular point x 2 C (due to corollaries A1, A4 C has only a �nitenumber of singular points). Denote by � � Rn� the tangent line to C at x, thenits completion � (�3) � Rn�3 is tangent to C(�3). After a suitable linear coordinatetransformation (de�ned over R�) one can assume that x = 0 and � coincides withthe axis Xn. Denote by  the projection mapping on the axis Xn.There exists 0 < � 2 R� satisfying the following properties:(i) the unique connected component c of the intersectionC\f�� < Xn < �g �Rn� , containing 0, is a nonsingular curve and the mapping �1 : (��; �)! cis de�nable and doubly di�erentiable;(ii) there exists 0 < � 2 R� such that for any y 2 (��; �) the inequalityk�1(0; : : : ; 0; y) � (0; : : : ; 0; y)k � �jyj2 holds.One can prove the existence of � for the curves in Rn using Taylor formula, andthen for C applying the transfer principle.The transfer principle also implies that (i), (ii) hold for the completions c(�3) �C(�3) and any y 2 (��; �)(�3).



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 15The angle between a line ` and a hyperplane P in Rn�3 is de�ned as a di�erencebetween �=2 and the angle between ` and the vector orthogonal to P. Observe thatthere exists 0 < � 2 R�1 such that if n normalized vectors v1; : : : vn 2 Rn�3 satisfythe inequality jdet(v1; : : : vn)j > �1, then for any hyperplane P there is i, 1 � i � nfor which the sine of the angle between vi and P is greater than � (actually, onecould take � = �1=2 but we will not use this particular value).Introduce the sub-Pfa�an set V � Rn�3 consisting of all the points z = (z1; : : : ; zn) 2Rn�3 such that(1) z 2 ff = �3g, jznj < �;(2) sine of the angle between gradz(f � �3) and the hyperplane fXn = 0g isgreater than �;(3) for a given zn the minimum of the distance to the axis Xn (i.e., of thefunction (X21 + � � �+X2n�1)1=2) on the set of all the points satisfying 1), 2)is attained at z.Let us apply the above construction to the projection  : V ! (��; �). Theconstruction supplies us with a sub-Pfa�an subset V0 � V such that each nonemptypreimage �1(y) contains exactly one point from V0. Therefore dim(V0) � 1.We claim that, actually, dim(V0) = 1. Suppose the contrary, then V0 wouldconsist of a �nite number of points (see corollary A4). We show, however, that V0contains in�nitely many points.Indeed, take an arbitrary point y 2 R� \ (��; �) and the (unique) point w 2 csuch that (w) = (0; : : : ; 0; y). Since c � A0 there exists (see the de�nition 4 of0-angle points) a point w1 2 eA0 such that st(w1) = w, therefore (see de�nition 2 of0-quasiangle points) there exists a point w2 2 ff = �3g for which kw1�w2k � �2 andthe sine of the angle between the vector gradw2(f��3) and the hyperplane fXn = 0gis greater than � (see (0)). Because stkw2�wk = 0 and for the orthogonal projectionk(w2) � (w)k � kw2 � wk, we deduce that st((w2)) = st((w)) = (w). Sincethe point w2 satis�es the conditions 1), 2) in the de�nition of V , there exists a



16 D. GRIGORIEV AND N. VOROBJOVpoint w3 2 ff = �3g such that (w3) = (w2), the sine of the angle betweengradw3(f � �3) and the hyperplane fXn = 0g is greater than �, and w3 has theminimal distance to the axis Xn among the points with these properties. Thenw3 2 V .Thus, we have shown that for each point y 2 R� \ (��; �) there exists a pointw3 2 V such that st((w3)) = (0; : : : ; 0; y). Because of the above construction,there exists the unique point w4 2 V0 for which (w4) = (w3). Hence V0 containsan in�nite number of points, i.e. dim(V0) = 1.Let V0 = [i Vi be the decomposition of V0 into the connected components. SinceV0 is sub-Pfa�an, it has only a �nite number of singular points and a �nite numberof points at which the tangent to the curve V0 is orthogonal to the axis Xn (i.e.of the critical points of the mapping ), here we invoke corollaries A1, A4. Itfollows that each Vi admits a �nite partition Vi = [j Vij [ [j1vij1 , where every Vij isa nonsingular connected sub-Pfa�an curve (without the endpoints) not containingthe critical points of , and every vij1 is a set consisting of a single point.We have shown above that st((V0)) = [��; �]. Since (Vij) � (��; �)(�3) isconnected (as an image of a connected curve), it is an interval, hence st((Vij )) �[��; �] is a closed interval. Therefore, there are i0; j0 for which an interval I =st((Vi0j0)) has a positive length jIj 2 R�, besides I contains 0 and does not lieentirely to the left of 0.Due to the implicit function theorem, one may represent the curve Vi0j0 in aparametrical form: (X1(Xn); : : : ;Xn�1(Xn);Xn) where X1; : : : ;Xn�1 are smoothfunctions. Observe that for any point z = (X1(zn); : : : ;Xn�1(zn); zn) 2 Vi0j0 thetangent vector ( _X1(zn); : : : ; _Xn�1(zn); 1) at this point to the curve Vi0j0 has a sineof the angle with the axis Xn greater than �, since this tangent vector is orthogonalto gradz(f ��3), taking into account inclusions V0 � V � ff = �3g. In other wordsP1�i�n�1( _Xi(zn))2 > �2=(1 � �2).For each pair of indices 1 � i < j � n�1 either there are at most a �nite number



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 17of the tangent vectors ( _X1(zn); : : : ; _Xn�1(zn); 1) at the points of the curve Vi0j0such that _Xi(zn) = � _Xj(zn) or all these vectors satisfy one of the two conditions:_Xi(zn) = _Xj(zn) or _Xi(zn) = � _Xj(zn), because Vi0j0 is sub-Pfa�an. Therefore,there exists a connected sub-Pfa�an curve V � Vi0j0 for which the length of theinterval st((V)) 2 R� is positive, besides st((V)) contains 0 and does not lieentirely to the left of 0. Apart from that, either j _Xi(zn)j 6= j _Xj(zn)j, for any pair1 � i < j � n�1 and any point (X1(zn); : : : ;Xn�1(zn); zn) 2 V, or for a certain pair1 � i < j � n�1, one of the two conditions _Xi(zn) = _Xj(zn) or _Xi(zn) = � _Xj(zn)holds for any point from V. Let us assume that j _Xi(zn)j 6= j _Xj(zn)j for any pair1 � i < j � n � 1 (the case j _Xi(zn)j = j _Xj(zn)j can be treated in a similar way).There exists s, 1 � s � n � 1 such that j _Xs(zn)j > j _Xj(zn)j, 1 � j � n � 1,s 6= j for all the points for V. Moreover, _Xs(zn) has a constant nonnegative signfor all the points from V. For de�niteness suppose that _Xs(zn) > 0 for all thepoints from V (the case _Xs(zn) < 0 can be considered in a similar manner). Then_Xs(zn) > �=((n� 1)(1 � �2))1=2 = �0 2 R�1 and �0 > 0.Let an interval [0; �2] � st((V)) � [��; �] where 0 < �2 2 R�. Then forany �3, �4 2 R�, such that 0 < �3 < �4 < �2, the completion of the interval[�3; �4](�3) � (V). Since _Xs(zn) > �0 for any zn 2 [�3; �4](�3), for any point� 2 [�3; �4](�3) the inequalityXs(�)�Xs(�3) � �0(� � �3)holds. Indeed, the latter statement could be written as a formula of the �rst-ordertheory of real closed �elds, in the case of the �eld R it is true becauseXs(�) �Xs(�3) = Z ��3 _Xs � �0(� � �3);then use the transfer principle.Let y 2 (��; �) \ R�. We have proved above that for the unique point w =�1(0; : : : ; 0; y) 2 c � A0 there exists a point w1 2 eA0 such that st(w1) = w,besides there exists a point w2 2 ff = �3g such that kw1 � w2k � �2 and the



18 D. GRIGORIEV AND N. VOROBJOVsine of the angle between the vector gradw2(f � �3) and the hyperplane fXn = 0gis greater than �. Then the distance from w2 to the axis Xn does not exceedkw2 � w1k + kw1 � wk + kw � (0; : : : ; 0; y)k � �2 + kw1 � wk + �y2 � �0y2 for� 2 R�, introduced in (ii) above, and any � < �0 2 R�. So the distance to the axisXn from the unique point w4 2 V0, for which (w4) = (w2), also does not exceed�0y2. Note that st((w4)) = (0; : : : ; 0; y).On the other hand if y 2 [�3; �4] \ R�, then applying the above arguing to thepoint (y + �3)=2 instead of y we prove the existence of a point w5 2 V0 such thatst((w5)) = (0; : : : ; 0; (y + �3)=2) and the distance to the axis Xn from the pointw5 does not exceed �0((y + �3)=2)2. Arguing as above, we getXs(w4)�Xs(w5) � �0k(w4)� (w5)k > �1(y � �3)=2for arbitrary �1 2 R�1, 0 < �1 < �0. Then either the distance from the point w4 tothe axis Xn or the distance from the point w5 to Xn is greater than �1(y��3)=4, onthe other hand both distances do not exceed �0y2. Taking any y, 0 < y 2 R�, suchthat y < �1=(�1+4�0) and �3 = y2, we get a contradiction because �1(y� y2)=4 >�0y2. �III. Flat Points.De�nition 4. Let 0 � i � n� 1. A point x 2 Ai is i-at if there exists an i-plane�, passing through x such that dim(� \Ai) = i.Denote by �i � Ai the set of i-at points. Note that for i = 0 lemma 4 impliesthat dimA0 � 0, i.e. A0 consists of at most �nite set of points (see corollary A4),therefore �0 = A0.Lemma 5. a) There is at most a �nite number of i-planes � such that dim(� \�i) = i;b) �i is contained in the union of all i-planes described in a).Proof. If �i = ;, the lemma is trivial, so suppose that �i 6= ;. Since �0 = A0



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 19consists of a �nite number of points, the lemma for the case i = 0 is obvious. So,in what follows we assume that i � 1.b) is evident. Note that if � satis�es a) then dim(� \Ai) = i since �i � Ai.Introduce a set b�i � �i consisting of all the points y 2 �i for which thereexists an i-plane � passing through y, such that for suitable 0 < r 2 R� we haveBy(r) \ � � �i. The set b�i is obviously sub-Pfa�an.Besides, dim b�i = i. Indeed, lemma 4 implies that dim b�i � i. On the otherhand as �i 6= ;, there exists i-plane � such that dim(� \ Ai) = i, hence � \ Ai �� \ By1(r1) for some y1 2 �, 0 < r1 2 R�. Then � \By1(r1) � b�i, i.e. dim b�i � i.If su�ces to prove that there exists only a �nite number of i-planes � for whichdim(� \ b�i) = i. This would imply the item a) of the lemma since for any i-plane� such that dim(� \ �i) = i we have dim(� \ b�i) = i.Denote by ^̂�i � b�i the set of all nonsingular points of b�i. The set b�i r ^̂�iof all singular points is sub-Pfa�an and dim(b�i r ^̂�i) � i � 1 (see corollary A1and lemma A2). For any point y2 2 ^̂�i there is the unique i-plane �0 such thatfor an appropriate 0 < r2 2 R� we have By2(r2) \ �0 � b�i. Then for a suitable0 < r3 2 R�, a certain neighbourhood of y2 in b�i coincides with By2(r3) \ �0,moreover By2(r3) \ �0 is a neighbourhood of y2 in ^̂�i.If dim(�\ b�i) = i for i-plane � then �\ b�i contains a nonsingular point y3 2 ^̂�i(since dim(b�i r ^̂�i) � i � 1); moreover a neighbourhood of y3 in ^̂� coincides withBy3(r4) \ � for a suitable 0 < r4 2 R�. Thus, it is su�cient to show that there isonly a �nite number of i-planes � such that dim(� \ ^̂�i) = i.Each connected component of ^̂�i is contained in an i-plane �, since for anypoint y4 2 ^̂�i its certain neighbourhood in ^̂�i coincides with By4(r5) \�00 for some0 < r5 2 R� and i-plane �00. Because the number of connected components of ^̂�iis �nite (see corollary A3), the number of i-planes � such that dim(� \ ^̂�i) = i isalso �nite. �Lemma 6. If a connected component ' of �i has a nonempty intersection '\Pi 6= ;



20 D. GRIGORIEV AND N. VOROBJOVwith a i-facet Pi of P , then ' � Pi.Proof. First we prove for a connected component '0 of �i the following statement:if '0\ cl(Pi) 6= ; then '0 � cl(Pi). Assume the contrary. Then there exists a pointy 2 '0 \ P i such that y 2 cl('0 r P i) � cl(�i r P i). Due to lemma 5, there is a�nite family P of i-planes � such that dim(� \ �i) = i and �i lies in the union ofall these i-planes. Let us show that there exists �0 2 P, �0 6= P i such that y 2 �0.Indeed, let yj �!j!1 y, where yj 2 '0 r P i. For each j there is �00 2 P such thatyj 2 �00 (obviously �00 6= P i). Since P is �nite there exists an in�nite subsequenceyj` , 1 � ` <1 and �000 2 P for which yj` 2 �000, 1 � ` <1. Thus y 2 �000 6= P i.Since �i � Ai �W \Rn� (see the remark following the de�nition 4) the functionf vanishes on the intersection of �000 with the domain of f (see the lemma A1),taking into account that dim(�000 \ �i) = i. Besides uK1+1(y) > 0; : : : ; uK(y) > 0,therefore uK1+1; : : : ; uK are positive also in By(�) for an appropriate 0 < � 2 R�.Hence �000 \ By(�) � W \ Rn� . This contradicts to the inclusion W \ Rn� � P (�)because y belongs to the closure cl(Pi) of i-facet of the convex polyhedron P (�).Thus '0 � cl(Pi), and the statement is proved.To complete the proof of the lemma it su�ces to show that '\ (cl(Pi)rPi) = ;.If z 2 ' \ (cl(Pi) r Pi) then there is another i-facet P 0i of P such that z 2 cl(P 0i ).Then, by the proved above, ' � cl(P 0i ), this contradicts to ' \ Pi 6= ;. �Our next purpose is to explicitly describe (see lemma 7 below) the su�cientcondition for i-atness of a point x 2 Ai by means of Pfa�an formula with purelyexistential quanti�er pre�x.Let � be an i-plane containing x and for some points v1; : : : ; vi 2 � \ Ai, thevectors v1 � x; : : : ; vi � x be linearly independent. Denote by 1; : : : ; (i+1)n thecoordinates of the vectors x; v1; : : : ; vi. Due to lemma A9, 1) the degree of sub-Pfa�an transcendency [1; : : : ; (i+1)n]R1 � (i + 1)n � n2. Introduce the pointsw(j) = x+ P1�`�i�(j)` (v` � x) 2 �, 1 � j � n2 + 1.



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 21Lemma 7. Let the points x; v1; : : : ; vi 2 Ai \ �. If w(1); : : : ; w(n2+1) 2 Ai \ �,then x is i-at and moreover dim(Ai \�) = i.Proof. Suppose that on the contrary, dim(Ai\�) � i�1. Consider the sub-Pfa�anset A � R(i+1)n+i� consisting of all the points(y1; : : : ; yn; y1;1; : : : ; y1;n; y2;1; : : : ; y2;n; : : : ; yi;1; : : : ; yi;n; z1; : : : ; zi)for which (y1; : : : ; yn) + P1�`�iz`((y`;1; : : : ; y`;n)� (y1; : : : ; yn)) 2 Ai (cf. expressionsfor w(j)). Then A is de�nable over R1 since Ai is de�nable over R1 (see the remarkfollowing the de�nition 4). Besides dim(A\f(y1; : : : ; yn; y1;1; : : : ; y1;n; : : : ; yi;1; : : : ; yi;n) =(1; : : : ; (i+1)n)g) = dim(Ai \ �) � i � 1 by the supposition. According tothe de�nition A10, this means that [(�(j)1 ; : : : ; �(j)i ) : (1; : : : ; (i+1)n)]R1 � i � 1,for each 1 � j � n2 + 1 since w(j) 2 Ai \ �. Applying several times lemmaA10 proceeding by induction on j, and taking into account that [(�(j)1 ; : : : ; �(j)i ) :(1; : : : ; (i+1)n; �(1)1 ; : : : ; �(1)i ; : : : ; �(j�1)1 ; : : : ; �(j�1)i )]R1 � [(�(j)1 ; : : : ; �(j)i ) : (1; : : : ;(i+1)n)]R1 we obtain the inequality [1; : : : ; (i+1)n; �(1)1 ; : : : ; �(1)i ; : : : ; �(j)1 ; : : : ; �(j)i ]R1� n2 + j(i� 1) for each 0 � j � n2 + 1.Putting j = n2+1 leads to a contradiction since [1; : : : ; (i+1)n; �(1)1 ; : : : ; �(1)i ; : : : ;�(n2+1)1 ; : : : ; �(n2+1)i ]R1 � [�(1)1 ; : : : ; �(1)i ; : : : ; �(n2+1)1 ; : : : ; �(n2+1)i ]R1 = i(n2 + 1) be-cause of lemma A9, 2). �De�nition 6. A point y 2 eAi is called i-pseudoat if there exist the pointsv1; : : : ; vi 2 eAi such that jdet(v1 � y; : : : ; vi � y)T (v1 � y; : : : ; vi � y)j > �1 (where(v1 � y1; : : : ; vi � y)T denotes the transposition of n � i matrix with the columnsv1 � y; : : : ; vi � y) and the points y + P1�`�i�(j)` (v` � y) 2 eAi, 1 � j � n2 + 1.The sub-Pfa�an set of all i-pseudoat points denote by e�i.Lemma 8. If dim(W \ Pi) = i then W \ Pi \ Rn � e�i.Proof. Let ex 2 W \ Pi \ Rn. Take arbitrary points v1; : : : ; vi 2 W \ Pi \ Rn suchthat the vectors v1 � ex; : : : ; vi � ex are linearly independent, thenR 3 jdet(v1 � ex; : : : ; vi � ex)T (v1 � ex; : : : ; vi � ex)j > 0;



22 D. GRIGORIEV AND N. VOROBJOVobviously jdet(v1 � ex; : : : ; vi � ex)T (v1 � ex; : : : ; vi � ex)j > �1:The distance from a point ew(j) = ex + P1�`�i�(j)` (v` � ex) 2 Rn� to ex is in�nitesimalrelative to R1 for each 1 � j � n2 + 1. Lemma 3 implies that ew(j) 2 eAi, 1 � j �n2 + 1, hence ex 2 e�i by de�nition 6. �Lemma 9. st(e�i) � �iProof. Let ey 2 e�i and v1; : : : ; vi 2 eAi satisfy de�nition 6. Observe that jdet(st(v1)�st(ey); : : : ; st(vi) � st(ey))T (st(v1) � st(ey); : : : ; st(vi) � st(ey))j > �1=2, taking intoaccount lemma A4 and that the points ey; v1; : : : ; vi 2 eAi � W � P are R-�nite(see section A2). Furthermore, st(ey) + P1�`�i�(j)` (st(v`) � st(ey)) 2 st( eAi) = Ai,1 � j � n2 + 1. Denote by � the unique i-plane passing through the pointsst(ey); st(v1); : : : ; st(vi). Lemma 7 entails that st(ey) 2 �i and dim(�\Ai) = i. �Let e�i = [j e'j , �i = [j '` be the representations of e�i and �i, respectively, asthe unions of (necessarily sub-Pfa�an, see the section A3) connected components.Lemmas A6, A7 imply that st(e'j ) is a sub-Pfa�an connected set. Hence due tolemma 9, for each j there is ` such that st(e'j ) � '`. For any i-facet Pi of P suchthat dim(W \ Pi \ Rn) = i, lemma 8 entails that W \ Pi \ Rn � e�i. Take a pointx 2 W \ Pi \ Rn, then x 2 e'j for a certain j. It follows that st(e'j) � '` for asuitable `, thus x = st(x) 2 st(e'j) � '`. Due to lemma 6, '` � Pi. So, to any facetPi such that dim(W \ Pi \Rn) = i, corresponds (not necessary unique) connectedcomponent e'j, and to di�erent such i-facets Pi, P 0i correspond di�erent connectedcomponents, respectively. Thus, we obtain the following lemma.Lemma 10. The number of i-facets Pi such that dim(W \ Pi \Rn) = i, does notexceed the number of connected components of e�i.Observe that e�i can be de�ned by a Pfa�an formula  having a pre�x with onlyexistential quanti�ers. Moreover, the pre�x contains O(n4) quanti�ers, since for



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 23each of O(n2) points v1; : : : ; vi, y + P1�`�i�(j)` (v` � y), 1 � j � n2 + 1, the formula expresses the condition of membership to the set eAi (see de�nition 6), which,in its turn, requires O(n2) existential quanti�ers (see de�nitions 2, 3), namely forthe coordinates of the points y1; : : : ; yn. The polynomials, occurring in  , andthe polynomials of the type gv;j , occurring in the de�nition of Pfa�an functionsu0; : : : ; uK (see the beginning of the section 1), have the degrees less than O(dn) (cf.(0)). The number of all these polynomials (i.e., the number of atomic subformulasof  ) can be bounded by nO(1)K (see lemma 1 and de�nitions 2, 3). Therefore,the number of all connected components of the sub-Pfa�an set e�i does not exceed2K2 (dnK)O(K+n4), due to corollary A2. Together with lemma 10 this implies thefollowing lemma.Lemma 11. The number of i-facets Pi such that dim(W \ Pi \Rn) = i, does notexceed 2K2 (dnK)O(K+n4).In order to complete the proof of the theorem one observes that the Pfa�ancomputation tree T contains at most 3K branches and for each 0 � i � n � 1 foreach i-facet Pi there is a branch of T such that dim(W 0 \Pi \Rn) = i where W 0 isthe accepting set corresponding to this branch. Hence N � 3K2K2 (dnK)O(K+n4).Together with the assumption N � (dn)
(n4 log d), this entails the inequality K �
(plogN). �



24 D. GRIGORIEV AND N. VOROBJOVAPPENDIX. Sub-Pfaffian setsA1. Gabrielov's theorem and Khovanskii's bound.In this section we give de�nitions and describe some properties of concepts re-lated to Pfa�an functions and to the subsets of Rn de�ned by these functions. Weskip all the proofs which could be found elsewhere.The concept of Pfa�an function was introduced by Khovanskii [19, 20], who hadestablished their fundamental properties.De�nition A1. A subset A � C n is called complex analytic variety if any pointof C n has a neighbourhood U such that the intersection A \ U coincides with theset fgi = � � � = gk = 0g \ U where gi; : : : ; gk are complex analytic (holomorphic)functions on U (see e.g. [21]).We say that a real analytic function f has a domain G � Rn, if there is an opensubset G � Rn such that f is de�ned on G and G � G.De�nition A2. (a) A Pfa�an chain of the length r and degree d1 = 1 is asequence of real analytic functions f1; : : : ; fr with the following properties.1. For each 1 5 j 5 r there exists a complex analytic function ~fj de�ned in asubset eGj � C n , such that C n r eGj is a complex analytic variety , and fjis the restriction of ~fj on Rn.Observe that as real analytic function fj has a domain Gj � eGj \ Rn.Let eG = \15j5r eGj and G = \15j5rGj .2. Every fj , 1 5 j 5 r satis�es a Pfa�an equationdfj(X) = X15i5n gij(X; f1(X); : : : ; fj (X))dXifor 1 5 j 5 r. HereX = (X1; : : : ;Xn), gij 2 R[X;Y1; : : : ; Yj ], degX;Y1;:::;Yj (gij)5 d1.(b) A function f(X) = P (X; f1(X); : : : ; fr(X)), where P 2 R[X;Y1; : : : ; Yr], degX;Y1;:::;Yr (P )5 d2 is called a Pfa�an function (with a Pfa�an chain f1; : : : ; fr) of length r and



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 25degree d = d1 + d2.Note that our de�nition of a Pfa�an function is more restrictive than a usualone (see [19, 20]) due to the requirement of existence of ~fj .Examples. (the exposition follows [8])(1) Pfa�an function of the length 0 and degree d+ 1 are polynomials of degreenot exceeding d.(2) The exponential function f(X) = eaX is Pfa�an of the length 1 and degree2, with eG = C , G = R, due to the equationdf(X) = af(X)dX:(3) The function f(X) = 1=X is Pfa�an of the length 1 and degree 3 witheG = fX 6= 0g � C , G = fX 6= 0g � R, due to the equation df(X) = �f2(X)dX.(4) Logarithm f(X) = ln(X) is Pfa�an of length 2 and degree 3 with eG =fX 6= 0g � C , G = fX > 0g � R,df(X) = g(X)dX; dg(X) = �g2(X)dXwhere g(X) = 1=X.(5) Tangent f(X) = tan (X) is Pfa�an of the length 1 and degree 3 witheG = \k2Z fX 6= �2 + k�g � C ; G = eG \ R;due to the equation df(X) = (1 + f2(X))dX.(6) Cosine cos(X) is Pfa�an of the length 2 and degree 3 witheG = \k2Z fX 6= � + 2k�g � C ; G = eG \R;due to the equationscos(X) = 2f(X) � 1; df(X) = �f(X)g(X)dX; dg(X) = 1=2(1 + g2(X))dX;where f(X) = cos2(X=2) and g(X) = tan (X=2).



26 D. GRIGORIEV AND N. VOROBJOV(7) Sine f(X) = sin(X) is Pfa�an of the length 3 and degree 3 ineG = \k2Z fX 6= � + 2k�g � C ; G = eG \R;due to the equations df = g(X)dx where g(X) = cos(X).Let us now list some elementary properties of Pfa�an functions, describing thebehaviour of their parameters under the basic operations (proofs are simple, seee.g. [8]).(1) The sum and the product of two Pfa�an functions f1 and f2 of length r1 andr2, degrees d1 and d2, with eG = eH1, and eG = eH2, G = H1; G = H2 respectively,are Pfa�an functions of the lengths r1 + r2, degree d1+ d1 and with eG = eH1 \ eH2,G = H1 \ H2 for both the sum and the product. If two Pfa�an functions arede�ned by the same Pfa�an chain of the length r, the length of the sum and theproduct is also r.(2) A partial derivative of a Pfa�an function of the length r and the degree dis a Pfa�an function of the length r and degree 2d.(3) Let X = (X1; : : : ;Xn), Z = (Z1; : : : ; Z`) be tuples of variables and f be aPfa�an function in X;Z of the length r1, degree d1 and with eG = eH1 � C n+`,G = H1 � Rn+`.Let h = (h1; : : : ; h`) be an `-tuple of Pfa�an functions in X of length r2, degreed2, with a common Pfa�an chain, with eG = eH2 � C n , G = H2 � Rn, such that(x; h(x)) 2 H1 for all x 2 H2. Then the complex analytic function ~g � ~f(X; ~h(X))(see (a), 1 of the De�nition A2) is de�ned in a subset eH3 � C n such that C n r eH3is a complex analytic variety of a dimension smaller than n. Indeed, the preimageof the complex analytic variety C n+` r eH1 in C n r eH2, under the map ~h, is alsoa complex analytic variety di�erent from C n since ~g is a composition of analyticfunctions. Therefore, the dimension of this preimage is less than n (see [21]). Aneasy computation (see [8]) shows that g � f(X;h(X)) is a Pfa�an function in G2of the length r1 + r2 and degree d1d2.



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 27Lemma A1. Let f be a Pfa�an function with G � Rn and L � Rn be a p-plane.If there exist x 2 G \ L and r, 0 < r 2 R such that f vanishes in the intersectionL\Bx(r) then f vanishes in G\L (here Bx(r) denotes an open n-dimensional ballcentered at x with radius r).Proof. Consider complex analytic function ~f corresponding to f as in the De�nitionA2, and the complex p-plane ~L, de�ned in C n by the same system of linear equationsas L. Since ~L is an irreducible complex analytic variety, either it is contained inthe variety C n r eG or the complex dimension dimC (~L \ (C n r eG)) < dimC (~L) (bythe dimension of intersection theorem, see [21]). The �rst alternative is impossiblebecause x 2 L � ~L. Since dim(L \Bx(r)) = p, the second alternative implies thatthe complex analytic function ~f is de�ned on p-plane ~L everywhere except a subset~L r eG of a dimension less than p, and vanishes on a subset of complex dimensionp. Since eG \ ~L is connected in the topology with the base of all open balls of~L, treated as 2p-dimensional real space, we conclude that ~f vanishes on ~L \ eG.Hence ~f is identically zero on ~L. It follows that the restriction f of ~f vanishes onG \ L � Rn. �Next we de�ne by induction two closely linked notions: quanti�er-free Pfa�anformula, semi-Pfa�an set. Again our de�nitions will be more restrictive than theoriginal ones (see [19, 20, 7]).De�nition A3. Let h0 be a Pfa�an chain of length 1, with h0 de�ned in Rn. Aquanti�er-free formula of rank 0 is an expression of the form�(0) = _15i5s0(f (0)i1 = � � � = f (0)ik(0)i = 0 & g(0)i1 > 0 & � � � & g(0)i`(0)i > 0); (1)where f (0)ij ; g(0)ij are Pfa�an functions (called atomic functions), with h0 as a com-mon Pfa�an chain (see De�nition A2(b)), thus, in particular, f (0)ij ; g(0)ij are de�nedin Rn. Suppose that we had already de�ned a concept of a quanti�er-free Pfa�anformula �(`) of rank `, 0 5 ` 2 Z. A semi-Pfa�an set W � Rn, determined by



28 D. GRIGORIEV AND N. VOROBJOV�(`) is the set of all points x 2 Rn, satisfying �(`). We write W = f�(`)g. Aquanti�er-free Pfa�an formula of the rank `+ 1 is of the form�(`+1) = _15i5s`+1(f (`+1)i1 = � � � = f (`+1)ik(`+1)i = 0 & g(`+1)i1 > 0 & � � � & g(`+1)i`(`+1)i > 0);where f (`+1)ij ; g(`+1)ij are Pfa�an functions with the commonPfa�an chain h0; : : : ; h`+1.Here the function h`+1 is de�ned in a domain G which is a closure of a semi-Pfa�anset of the kind f�(`)g, where �(`) is a quanti�er-free Pfa�an formula of the rank `.Functions f (`+1)ij ; g(`+1)ij , together with all atomic functions occuring in the descrip-tion of �(`) are called atomic functions of �(`+1).Example.The set ftan(X) = 0 & a < X < bg � R, where ��=2 < a < b < �=2, issemi-Pfa�an, de�ned by a quanti�er-free Pfa�an formula. On the other hand, theset ftan(X) = 0g \Sk2Zfa + k� < X < b+ k�g � R for ��=2 < a < b < �=2 (cf.Example (5) above) is not semi-Pfa�an.De�nition A4. Fix a certainR, 0 < R 2 R and let Kn � Rn be the n-dimensionalcube centered at the origin and having an edge with length 2R. A Pfa�an formulais an expression of the form  = Q1Y1Q2Y2 : : : QtYt(�) where � is a quanti�er-freePfa�an formula of arbitrary rank (called quanti�er-free part of  ) with atomicfunctions in n+ t variables Y1; : : : ; Yt;X1; : : : ;Xn and Qj , 1 5 j 5 t are quanti�ers9 or 8, each restricted on the interval (�R;R) � R. A sub-Pfa�an set V � Rn,determined by  , is the set of all points x 2 Kn, satisfying  . We write V = f g.We say that two Pfa�an formulas  ,  0 are equivalent if f g = f 0g.De�nition A5. The local dimension dimx(V ) of a set V at a point x 2 V isthe maximal p, 0 5 p 2 Zsuch that the linear projection of a neighbourhood ofx in V onto a coordinate p-subspace (along all the rest of coordinates) contains ap-dimensional ball. The dimension dim(V ) of V is the maximal value dimx(V ) forall x 2 V .



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 29De�nition A6. A point x of a set V � Rn, with dim(V ) = p, is called analyticallynonsingular (or nonsingular) if a neighbourhood of x in V is analytically di�eomor-phic (respectively, C1-di�eomorphic) to an open p-dimensional ball. Denote by V 0a(or, by V 0) the set of all analytically nonsingular (respectively, nonsingular) pointsof V . The points of the set V �a = V r V 0a (respectively V � = V r V 0) are calledanalytically singular (respectively, singular).For a set V � Rn denote by cl(V ) its closure in the topology with a base of allopen balls in Rn.De�nition A7. For a set V � Rn the disjoint family fVig of subsets Vi � V iscalled a smooth strati�cation of V if1. V = [i Vi2. each Vi, called a stratum, is an analytic manifold in Rn3. if Vi \ cl(Vj) 6= ;, then Vi � cl(Vj) and dim(Vi) < dimVj .Proposition A1. ([16, 26]) For any sub-Pfa�an set V � Rn there exists a �nitesmooth strati�cation.Corollary A1. dim(V �) < dim(V ).Proof. The inequality dim(V �a ) < dim(V ) directly follows from Proposition A1, theinequality dim(V �) 5 dim(V �a ) follows from the obvious inclusion V � � V �a . �Lemma A2. For a sub-Pfa�an set V � Rn the subsets V 0 and V � are sub-Pfa�an.Proof. The sets V 0 and V � can be described by appropriate Pfa�an formulasinvolving a Pfa�an formula de�ning V . �De�nition A8. For a set V � Rn the boundary @V is a subset of all pointsx 2 Rn such that for every r, 0 < r 2 R, the intersections Bx(r) \ V 6= ;,Bx(r) \ (Rnr V ) 6= ;.



30 D. GRIGORIEV AND N. VOROBJOVLemma A3. For a sub-Pfa�an set V � Rn the dimension dim(@V ) 5 n� 1.Proof. Let fVig be a �nite smooth strati�cation of V , see Proposition A1. Suppose�rst that dim(V ) < n. Then, the closure cl(V ) = [i cl(Vi) = [i @Vi = @V . On theother hand, dim(cl(V )) = dim(V ) [7], hence the lemma is valid in this case.Now let dim(V ) = n. The set V is representable as V = Vmax [ Vmin, whereVmax is the union of all n-dimensional strata of V , and Vmin is the union of theremaining strata (of smaller dimensions). Thendim(@V ) 5 dim(@Vmax [ @Vmin) = dim((cl(Vmax) r Vmax) [ @Vmin)= maxfdim(cl(Vmax)r Vmax); dim(@Vmin)g:According to [7], dim(cl(Vmax)rVmax) < dim(Vmax). The inequality dim(@Vmin) 5n� 1 was proved before. �De�nition A9. Let  be a Pfa�an formula having N atomic Pfa�an functionsin n variables with the same Pfa�an chain of length r and degrees less than d. The4-tuple (N;n; r; d) is called the format of  .Proposition A2. ([7], theorem 2) For a Pfa�an formula  of a format (N;n; r; d)there exists an equivalent formula  0 having only existential quanti�ers, and of theformat (N 0; n0; r0; d0), where the values N 0; n0; r0; d0 are bounded from above by thevalue of a suitable function in N;n; r; d.Proposition A3. ([7], theorem 1) For a sub-Pfa�an set f g � Rn with a Pfa�anformula  of a format (N;n; r; d), any of its connected components can be de�nedby a Pfa�an formula of a format (N 0; n0; r0; d0), where the values N 0; n0; r0; d0 arebounded from above by the value of an appropriate function in N;n; r; d.Proposition A4. ([19, 20]) The number of the connected components of a semi-Pfa�an set f�g de�ned by a quanti�er-free formula � of the format (N;n; r; d)does not exceed 2r2nO(r)(Nd)O(r+n).



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 31There is a generally adopted conjecture that under the hypothesis of the Propo-sition A4 the bound nO(r)(Nd)O(r+n) is actually true.Corollary A2. The number of the connected components of a sub-Pfa�an setf g, de�ned by a formula  of the format (N;n; r; d) in which only existentialquanti�ers can occur, does not exceed 2r2nO(r)(Nd)O(r+n).Proof. It is su�cient to note that the number of the connected components of aprojection of a set does not exceed the number of the connected components of theset itself. �Corollary A3. The number of the connected components of an arbitrary sub-Pfa�an set f g, de�ned by a formula  of a format (N;n; r; d) is �nite, moreover,is bounded from above by the value of a certain function in N;n; r; d.Proof. Apply to  successively the Proposition A3 and the Corollary A2. �Corollary A4. Zero-dimensional sub-Pfa�an set in Rn is �nite. A sub-Pfa�anset in R1 is a �nite union of points and (open, closed or semi-closed) intervals. Ineach case the number of the points or the intervals is bounded from above by thevalue of a certain function in the format of a formula representing the sub-Pfa�anset.Proof. Directly follows from Lemma A2 and Corollary A3. �A2. Sub-Pfa�an sets over nonstandard extensions of reals.In the main text of the paper we consider the extensions of the �eld R with\nonstandard" (in particular in�nitesimal) elements. The following digest fromnonstandard analysis is taken from [27] , for a detailed exposition see [6].There exists a sequence of ordered �eldsR0 = R� R1 � R2 � � � � � Rk � : : :in which the �eld Rk, k = 1 contains an element "k > 0 in�nitesimal relative to theelements of Rk�1 (i.e., for every positive element a 2 Rk�1 the inequaltiy "k < a



32 D. GRIGORIEV AND N. VOROBJOVis true). In addition, for every function ' : Rnk�1 �! Rk�1 there exists a naturalextension, being a function ' from Rnk to Rk. It follows, invoking characteristicfunctions, that each subset S � Rnk�1 has a natural extension to Rnk. We say thatRj is a nonstandard extension of Ri for 0 5 i < j.Consider the language Lk, k = 0 of the �rst order predicate calculus, in whichthe set of all function symbols is in a bijective correspondence with the set of allfunctions of several arguments from Rk taking values in Rk and the only predicate isthe equality relation. We shall say that the closed (i.e., containing no free variables)formula � of the language Lk is true in Rk, k = 0, if and only if the statementexpressed by this formula with respect to Rk is true. The following \transfer prin-ciple" is valid: for all integers 0 5 i < j the closed formula � of Li is true in Ri ifand only if it is true in Rj.An element z 2 Rk, k = 1 is called in�nitesimal relative to Rj, j < k, if for every0 < w 2 Rj the inequality jzj < w is valid. An element z 2 Rk is called in�nitelylarge, if z = 1=z0, where z0 is in�nitesimal. If z 2 Rk is not in�nitely large relativeto Rj, z is called Rj-�nite.One can prove [6] that if an element z 2 Rk is Rj-�nite then there exist uniqueelements z1 2 Rj and z2 2 Rk, where z2 is in�nitesimal relative to Rj, such thatz = z1 + z2. In this case z1 is called the standard part of z (relative to Rj) andis denoted by z1 = stj(z). One can extend the operation stj (componentwise) tovectors from Rnk and (elementwise) to subsets of Rnk.In what follows, all the functions ' we shall consider inRnk, k = 0, will be Pfa�an.By this we mean that for each ' there exists a Pfa�an function '0 de�nable overR (i.e., in the sense of the De�nition A2) such that ' is the result of a replacementof some variables in '0 by some elements of Rk.Moreover, we assume that the domain G � Rnk of ' is a sub-Pfa�an set, de�nedby a Pfa�an formula � with atomic functions de�nable over R and some variablesreplaced by elements from Rk. We say that ' is de�nable over Rk.



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 33For any ` > k, the same function '0, formula � and the replacements determinethe function '(`) : G(`) �! R` which coincides with ' in Rnk and is called thecompletion of ' over R`, similarly G(`) � Rǹ (determined by �) is called thecompletion of G over R`.Basic notions, introduced in section A1 can be naturally extended to a nonstan-dard �eld Rk for k > 0. Thus, we shall consider semi-Pfa�an sets, sub-Pfa�ansets, Pfa�an formulas, determined in Rnk by Pfa�an functions de�nable over Rk.In this case we say that the sets and formulas are de�nable over Rk.If a sub-Pfa�an set W � Rnk is determined in Rnk by a Pfa�an formula �with atomic subformulas de�nable over Rk then the sub-Pfa�an set in Rǹ, ` > kdetermined by the same formula in which the atomic functions are replaced by theircompletions is called the completion of W and is denoted by W (`).Some of the basic statements proved earlier in this Appendix can be extended(using the transfer principle) to the �elds Rk for k > 0. This obviously concernsthe statements: lemma A1, corollary A1, lemma A2, lemma A3, proposition A2,corollary A4. Propositions A3, A4, Corollaries A2, A3, about the estimates of theconnected components are also extendable (see below).The following lemma illustrates a use of the transfer principle and the notion ofthe standard part.Lemma A4. Let f : S ! Rk be a Pfa�an function de�ned in a sub-Pfa�anbounded set S � Rnk. Denote by S(k+1) the completion of S overRk+1 and by f (k+1)the completion of f . Then for any point x 2 S(k+1) such that Bx(r) � S(k+1) forsome r; 0 < r 2 Rk, the standard part stk(f (k+1)(x)) = f(stk(x)). If in addition,there do not exist y 2 S and R; 0 < R 2 Rk such that f(z) = 0 for all z 2 By(R),and besides f(w) � 0 for all w 2 S, thenstk(ff (k+1) = "k+1g) = ff = 0g:Proof. First, observe that any Pfa�an function is continuous. This is true for aPfa�an function ' de�nable over R (since ' is analytic, see de�nition A2), then the



34 D. GRIGORIEV AND N. VOROBJOVPfa�an formula of the language L0 expressing continuity, is valid for the completion'(`); ` � 0, due to the transfer principle, and hence, it is valid as well for Pfa�anfunctions de�nable over arbitrary R`. The equality stk(f (k+1)(x) = f(stk(x)) andthereby the inclusion stk(ff (k+1) = "k+1g) � ff = 0g follows from continuity of fand f (k+1).Now let x 2 ff = 0g. Take r; 0 < r 2 Rk such that Bx(r) � S (cf. de�nitionA2). Consider a sub-Pfa�an set D = fkx� zk2 : z 2 S(k+1); f (k+1)(z) = "k+1g �Rk+1. If it is empty, then f (k+1) is less than "k+1 everywhere on the ball Bx(r), byvirtue of the theorem on intermediate values of continuous functions which holdsfor Pfa�an functions by the transfer principle, hence f vanishes everywhere on theball Bx(r) \ Rnk and we get a contradiction. Due to the Corollary A4 the set Dconsists of a �nite union of points and intervals. Denote by u the minimum of thesepoints and endpoints of these intervals. If stk(u) > 0 then the function f (k+1) onthe ball Bx(pu) \ Bx(r) takes the values less than "k+1 because of continuity off (k+1). Therefore, f vanishes everywhere on the ballBx(pu) \Bx(r) \Rnk � Bx(stk(pu)=2) \Bx(r) \Rnkwith a positive radius from Rk (sf. above). The obtained contradiction shows thatstk(u) = 0. Take any point w such that f (k+1)(w) = "k+1 and kw�xk2 � u+"k+1,then stk(w) = x. �Lemma A5. Let a sub-Pfa�an set W � Rnk, de�ned by a Pfa�an formula �, be�nite. Then the completion W (`) � Rǹ, ` > k of W coincides with W .Proof. Let W = fx(1); : : : ; x(t)g. Then the following formula of the language Lk istrue over Rk:&15i5t �(x(i)) & 8X1 � � � 8Xn� &15i5t ((X1; : : : ;Xn) 6= x(i))) k�(X1; : : : ;Xn)� :By the transfer principle, this formula is also true over R`. �



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 35For a Pfa�an function f : G �! Rk, G � Rnk a point x 2 G is called the criticalpoint of f if the gradient vector � @f@X1 ; : : : ; @f@Xn� (x) = 0. The value f(x) is called,in this case, the critical value of f . The value which is not critical is called regular.Corollary A5. For a Pfa�an function f de�nable over Rk, any element � 2R`rRk for ` > k cannot be a critical value of f .Proof. Observe that the set �k � Rk of all critical values of f is sub-Pfa�an andde�nable over Rk.Suppose �rst that k = 0. Then Corollary A4 implies that �0 consists of a �nitenumber of points and segments. Moreover, by Sard's theorem, �0 actually consistsof a �nite number of points. For all sub-Pfa�an sets of the form �0 and havinga �xed format the latter statement can be expressed by a formula of the languageL0 (taking into the account that the number of points is bounded via the format).Hence, by the transfer principle the statement is true for any k = 0, i.e., �k is �nite.According to lemma A5, the completion �(`)k = �k � Rk, and, therefore � 62�(`)k . �Corollary A6. Let a Pfa�an functionf : G �! Rk; G � Rkbe de�nable over Rk and f 6� 0 on G. If � 2 R`rRk for ` > k then f(�) 6= 0.Proof. According to lemma A1 and corollary A4, the set W of roots of f is �nite.Apply lemma A5 to W . �A3. Connected components of sub-Pfa�an sets over non-standard �elds.Now we are going to extend the notion of the connected component to the sub-Pfa�an sets de�nable over Rnk, k = 1. Observe that a direct way to do this,starting with the topology on Rnk with the base of all open balls, would lead tounnatural objects, e.g., the segment [0; 1] � Rk is not connected in this topology.The analogous construction of connected components for semialgebraic sets overnon-standard �elds was described in [14].



36 D. GRIGORIEV AND N. VOROBJOVLet V = f�g be a sub-Pfa�an set inRn determined by a Pfa�an formula �. TheProposition A3 and the Corollary A3 imply the existence of a function ! : N �! Nsuch that if the elements of the 4-tuple format of � are bounded from above bysome N 2 N, then:1. The number of the connected components does not exceed !(N );2. For each connected component Vi of V there exists a Pfa�an formula �iof a format with components not exceeding !(N ), such that Vi = f�ig.It follows that for a given positive integer N , there exists a Pfa�an formula 
Nof the language L0, expressing the existence of a decomposition of any sub-Pfa�anset V = f�g of the format of � less than N into its connected componentsV =[i f�igsuch that the format of every �i, and the number of �i, are less than !(N ).Moreover, the formula 
N states that for each pair of indices i1 6= i2 the componentsf�i1g and f�i2g are \separated", i.e. the following Pfa�an formula of the languageL0 is valid: 8 (x 2 f�i1g)9z > 08 (y 2 f�i2g)(kx � yk = z):Besides, the formula 
N claims the connectedness of every component f�ig, thismeans that there do not exist two \separated" sub-Pfa�an subsets of f�ig, eachdetermined by a Pfa�an formula with format less than !(!(N )).Apart from that, for given positive integers N , M one can verify a formula
N ;M of language L0 expressing the following statement. If a sub-Pfa�an set f�g(where the format of � is less than N ) can be represented as a union of more thanone and less thanM pairwise \separated" sub-Pfa�an sets, each being determinedby a Pfa�an formula of L0 of a format less than M, then f�g can be representedas a union of more than one and less than !(N ) pairwise \separated" connectedsub-Pfa�an sets, each being determined by a Pfa�an formula of L0 of a formatless than !(N ).



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 37Applying the transfer principle to the formulas 
N , 
N ;M for all positive in-tegers N ;M, we conclude that any sub-Pfa�an set, de�ned over Rk, k = 0, canbe uniquely represented as a union of its pairwise \separated" connected compo-nents, moreover, each component is sub-Pfa�an and is connected, i.e. cannot berepresented as a union of more than one pairwise \separated" sub-Pfa�an sets.Having de�ned the connected components of a sub-Pfa�an set de�nable overRk, k = 0, one can use the transfer principle to extend to this set Propositions A3,A4 and Corollaries A2 and A3.Lemma A6. Let V � Rnk, W � Rnk+t be two sub-Pfa�an sets and V = stk(W ).Let V =[m Vm; W = [̀W`be the decompositions of the sets V;W into their connected components. Then,for every index m there exist such indices `1; : : : ; `s that st(W`1 [ � � � [W`s) = Vm:Moreover, for each ` there exists the unique index m such that st(W`) � Vm.Proof. Is almost verbatim repetition of the proof of the lemma 1 in [14]. �For a sub-Pfa�an set W � Rnk, k = 0, we denote by cl(W ) its closure in thetopology in Rnk with the base of all open balls.Lemma A7. (cf. [25]) Let WY = f Y g � Rn+tk be a sub-Pfa�an set determinedby a Pfa�an formula  Y in which the atomic Pfa�an functions are in variablesX1; : : : ;Xn, Y1; : : : ; Yt, Z1; : : : ; Zs, where �rst n + t variables occur free. Let, forthe sequence of �elds Rk � Rk+1 � � � � � Rt, the element "k+i+1 be in�nitesimalrelative to Rk+i for 0 5 i 5 t� 1. Denote by  " the Pfa�an formula which is theresult of the replacement of Y` by "k+` for every 1 5 ` 5 t; let W" = f "g � Rnk+t.Then the set V = stk(W") � Rnk is sub-Pfa�an.Proof. It is su�cient, due to Proposition A2, to prove the lemma for the case Y = 9Z1; : : : 9Zs(�Y ) with quanti�er-free �Y . Observe that W" = �f�"g where�" is quanti�er-free formula, being the result of the replacement of Y` by "k+`,



38 D. GRIGORIEV AND N. VOROBJOV1 5 ` 5 t in �Y , and � is the linear projection map on the subspace of coordinatesX1; : : : ;Xn along the coordinates Z1; : : : ; Zs.The proof can be conducted by induction on t, in which an ith induction stepproves that the set stk+t�i(W") is sub-Pfa�an. It will be obvious from the formula(4) below that the output of the inductive step, namely, the set stk+t�i(W"), sat-is�es the requirements for the set W" of the lemma, i.e., there exists a sub-Pfa�anset W 0Y , determined by a Pfa�an formula  0Y in variables X1; : : : ;Xn, Y1; : : : ; Yt�i,Z 01; : : : ; Z 0s0 , where �rst n+ t� i variables occur free, such that stk+t�i(W") = f 0"g,where  0" is the result of the replacement of Y` by "k+` for every 1 5 ` 5 t� i.Thus, we assume that t = 1.We can identify the sets f�"g and f�Y & (Y1 = "k+1)g.Let us prove thatstk(f�Y & (Y1 = "k+1)g) = cl(f�Y & (Y1 > 0)g) \ fY1 = 0g: (2)Observe that the right side of the equality (2) is a sub-Pfa�an set.Let x 2 stk(f�Y & (Y1 = "k+1)g), then there exists z 2 f�Y & (Y1 = "k+1)gsuch that x = stk(z). Hence, x 2 fY1 = 0g. Suppose that x 62 cl(f�Y & (Y1 >0)g). Then there exists an element r, 0 < r 2 Rk such that Bx(r) \ f�Y & (Y1 >0)g = ;. This contradicts to the inclusion z 2 f�Y & (Y1 = "k+1)g � f�Y &(Y1 > 0)g.Suppose now that x 2 cl(f�Y & (Y1 > 0)g) \ fY1 = 0g;i.e. x belongs to the right side of (2).Let us prove the following claim: for any element R, 0 < R 2 Rk, there exists anelement �, 0 < � 2 Rk, such that for every �, 0 < � 2 Rk, � < � the intersectionBx(R) \ f�y & (Y1 = �)g



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 39is nonempty. Indeed, since the set Bx(R) \ f�Y & (Y1 > 0)g is sub-Pfa�an,and, thus has a �nite number of the connected components (see the considerationspreceding the lemma), there exists a connected component U of this set such thatx 2 cl(U). One can take as � the Y1-coordinate of any point from U and the claimis proved.It follows (with a help of the transfer principle) that for every �xedR, 0 < R 2 Rkthe intersection Bx(R) \ f�Y & (Y1 = "k+1)g 6= ;: (3)Observe that the set A = fkz � xk2 : z 2 f�Y & (Y1 = "k+1)gg � Rk+1 issub-Pfa�an. Due to Corollary A4, A is a �nite union of points and intervals. Letw 2 Rk+1 be the minimal among these points and the endpoints of these intervals.Suppose that x 62 stk(f�Y & (Y1 = "k+1)g), i.e. there does not exist z 2f�Y & (Y1 = "k+1)g such that stk(z) = x. Thus, w > r21 for an element0 < r1 2 Rk. It follows that Bx(r1) \ f�Y & (Y1 = "k+1)g = ;. This contradicts(3) for R = r1, and the equality (2) is proved.We have: stk(W") = stk(�(f�Y & (Y1 = "k+1)g)) =�(stk(f�Y & (Y1 = "k+1)g)) = �(cl(f�Y & (Y1 > 0)g) \ fY1 = 0g): (4)The latter set is obviously sub-Pfa�an, this proves the lemma. �Lemma A8. Let W � Rnk+t be a sub-Pfa�an set, V = stk(W ) � Rnk. Thendim(V ) � dim(W ).Proof. Suppose the contrary, let dimW = ` � 1, dim(V ) � `. There exists alinear projection � : Rnk+t ! Rk̀+t de�nable over R such that dim(�(W )) =dim(W );dim(�(V )) = `, here �(V ) � Rk̀ (actually \almost any" linear projec-tion satis�es these properties). Using the obvious identity stk(�(W )) = �(stk(W ))one can assume without loss of generality that dim(W ) = n�1, dim(V ) = n. HenceV contains a ball of a certain radius 0 < r 2 Rk.



40 D. GRIGORIEV AND N. VOROBJOVFix some integer M which we'll specify later. Making a suitable a�ne transfor-mation of the coordinates (de�nable over Rk), we can assume that the followingrequirements are ful�lled (cf. lemma 2). The set V contains n-dimensional cube Kwith a side 0 < r1 2 Rk, contained in the nonnegative ortant and having the originas one of its nodes. Moreover, we require that for each 1 � j � n and a j-plane Pbeing the intersection of any (n� j) hyperplanes of the form P (m)s = �Xs = mM r1	,1 � s � n, 0 � m �M , the dimension dim(W \ P ) � j � 1.Observe that the hyperplanes P (m)s divide K inMn small cubes with sides r1=M .Moreover for each 0 � j � n and each j-plane P the intersection P \ K is dividedby the same way in M j j-facets being j-dimensional cubes with sides r1=M (weassume here that a facet contains its boundary). Note that the boundary of j-facetis the union of (j � 1)-facets. Denote by �j the number of j-facets which havecommon points withW . Denote by Aj , 0 � j � n the intersection of the setW \Kwith the union of all j-planes of the described form. Obviously, Aj is a sub-Pfa�anset. Denote by �j the number of connected components of Aj .We claim that �j � 2(n� j + 1)�j�1 + �j , 1 � j � n. Indeed, �j � �(0)j + �(1)j ,where �(0)j is the number of j-facets Q(0) which have common points with theconnected components C(0) of Aj such that C(0) has no common points with j-facets other than Q(0), and �(1)j is the number of j-facets Q(1) not satisfying thisproperty and Q(1) \ W 6= ;. Obviously, �(0)j � �j . For j-facet Q(1) take anyconnected component C(1) of Aj such that C(1) has common points with some j-facet di�erent from Q(1), then C(1) has a common point with a certain (j�1)-facetR from the boundary of Q(1), attach to Q(1) any such (j � 1)-facet R. Since any(j � 1)-facet R lies in the boundary of at most 2(n � j + 1) j-facets, R can beattached to at most 2(n� j+1) j-facets. Hence �(1)j � 2(n� j+1)�j�1 that provesthe claim.Corollary A3 implies that there exists an integer c which depends only on theformat of a Pfa�an formula de�ning the set W such that the number of connected



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 41components of the intersection ofW \K with any j-plane does not exceed c. There-fore, �j � c(M + 1)n�j .Clearly, �n = Mn since stk(W ) � K (indeed, if some n-facet does not intersectwith W then its center does not belong to stk(W )). Using the bound on �j andthe proved above claim we prove by induction on 0 � j � n � 1 the existence ofintegers cj such that �n�j � 1cjMn for large enough arbitrary M .On the other hand, A1 consists of a �nite number of points (since dim(A1) = 0),hence �0 � �1, then the proved claim (for j = 1) entails �1 � (2n+1)�1 � c0Mn�1for an appropriate integer c0, that leads to a contradiction for large enough M >c0cn�1. �A4. Degree of sub-Pfa�an transcendency.Let 1 � j1 < j2 and the elements 1; : : : ; k, �1; : : : ; �` 2 Rj2. Denote thecoordinates in Rk+`j2 by Y1; : : : ; Yk+`.De�nition A10. The degree of sub-Pfa�an transcendency [(�1; : : : ; �`) : (1; : : : ; k)]= [(�1; : : : ; �`) : (1; : : : ; k)]R j1 is the minimal integer s = 0 such that there existsa sub-Pfa�an set S � Rk+`j2 de�nable over Rj1 such that (1; : : : ; k; �1; : : : ; �`) 2 Sand dim(S \ fY1 = 1; : : : ; Yk = kg) = s.When k = 0 we write simply [�1; : : : ; �`].Observe that the de�nition correlates with the usual notion of degree of tran-scendency of the �elds extension [F (�1; : : : ; �`; 1; : : : ; k) : F (1; : : : ; k)] replacingRj1 by a �eld F and taking as S an algebraic variety.Lemma A9. 1) [�1; : : : ; �`+1] � [�1; : : : ; �`] + 1;2) ["j1+1; : : : ; "j2 ] = j2 � j1 (the in�nitesimals "j were introduced in section A2).Proof. 1) Let S � Rj̀2 be as in the de�nition, then the point (�1; : : : ; �`+1) belongsto the cylinder S �Rj2 � R`+1j2 .2) Conduct the proof by induction on (j2�j1). The base of induction for j2�j1 = 0is trivial. For the inductive step assume the contrary and let S � Rj2�j1j2 be as in



42 D. GRIGORIEV AND N. VOROBJOVthe de�nition A10 such that ("j1+1; : : : ; "j2 ) 2 S and dim(S) = s � j2� j1� 1. LetY1; : : : ; Yj2�j1 be the coordinates in Rj2�j1j2 . Consider the sub-Pfa�an set S0 = fy :dim(fY1 = yg\S) = sg � Rj2. Then dim(S0) = 0, since dim(S) = s. Observe thatS0 is de�ned over Rj1, hence, due to corollary A4, S0 consists of a �nite numberof points all belonging to Rj1. Denote S1 = fY1 = "j1+1g \ S � fY1 = "j1+1g 'Rj2�j1�1j2 . Then dim(S1) � s � 1, and one can apply the inductive hypothesis tothe set S1, taking into account that ("j1+2; : : : ; "j2 ) 2 S1. �The following lemma is an analogy of the additivity of the usual degree of tran-scendency: [F3 : F1] = [F3 : F2] + [F2 : F1] for �elds extensions F1 � F2 � F3.Lemma A10. [1; : : : ; k; �1; : : : ; �`] = [1; : : : ; k] + [(�1; : : : ; �`) : (1; : : : ; k)].Proof. Denote [1; : : : ; k; �1; : : : ; �`] =m; [1; : : : ; k] = p; [(�1; : : : ; �`) : (1; : : : ; k)]= s. First prove1) m � p+ s.Let a sub-Pfa�an set S be as in the de�nition A10. Consider the sub-Pfa�anset U1 � Rkj2 consisting of all the points (y1; : : : ; yk) for which dim(S \ fY1 =y1; : : : ; Yk = ykg) � s. Then U1 is de�nable over Rj1. Due to the de�nition A10there exists a sub-Pfa�an set U � Rkj2 de�nable over Rj1 such that (1; : : : ; k) 2 Uand dimU = p.Denote by � : Rk+`j2 ! Rkj2 the natural projection onto the subspace with thecoordinates Y1; : : : ; Yk. Consider the sub-Pfa�an set U = S \ ((U \ U1) � Rj̀2) �Rk+`j2 . Then U is de�nable over Rj1, besides (1; : : : ; k; �1; : : : ; �`) 2 U . Thedimension dim(U) � p + s, since dim(�(U)) � dim(U) = p and for any pointy 2 �(U) we have dim(U \ ��1(y)) � s.2) m � p+ s.According to the de�nition A10 there exists a sub-Pfa�an set V � Rk+`j2 de�nableover Rj1 such that (1; : : : ; k; �1; : : : ; �`) 2 V and dim(V) = m. Denote dim(V \fY1 = 1; : : : ; Yk = kg) = s1. Obviously s1 � s. Consider the sub-Pfa�anset V1 � Rkj2 consisting of all the points (y1; : : : ; yk) for which dim(V \ fY1 =



COMPLEXITY LOWER BOUNDS FOR COMPUTATION TREES 43y1; : : : ; Yk = ykg) � s1. Then V1 is de�nable over Rj1 and (1; : : : ; k) 2 V1,therefore dimV1 � p. Arguing similarly as in 1), we getm � s1+dimV1 � s+p. �Acknowledgements. We thank A. Gabrielov for helpful discussions on sub-Pfa�an sets. References1. M. Ben-Or, Lower bounds for algebraic computation trees, in: Proc. ACM Symp. on Theoryof Computing (1983), 80{86.2. Bierstone, P. Milman, Semi-analytic and sub-analytic sets, Inst. Hautes Etudes Sci. Publ.Math. 67 (1987), 5{42.3. A. Bj�orner, Subspace arrangements, in: Proc. of 1st European Congres of Mathematicians(Paris, 1992).4. A. Bj�orner, L. Lovasz, A. Yao, Linear decision trees: volume estimates and topological bounds,in: Proc. ACM Symp. on Theory of Computing (1992), 170{177.5. A. Chistov, Fast parallel calculation of the rank of matrices over a �eld of arbitrary charac-teristics, in: Lect. Notes in Computer Science, (Springer, Berlin, 1985) Vol. 199, 63{69.6. M. Davis, Applied nonstandard analysis (John Wiley, 1977).7. A. Gabrielov, Existential formulas for analytic functions, Preprint 93{60, Cornell University,MSI (1993).8. A. Gabrielov, N. Vorobjov, Complexity of strati�cations of semi-Pfa�an sets, Discrete andComputational Geometry 13 (1995).9. D. Grigoriev, Complexity of deciding Tarski algebra, J. Symb. Comput. 5 (1988), 65{108.10. D. Grigoriev, Deviation theorems for Pfa�an sigmoids, St. Petersburg Math. J. (1994),127{131.11. D. Grigoriev, M. Karpinski, Lower bounds on complexity of testing membership to a polygonfor algebraic, randomized and exp-log trees, Technical report TR-93{042, Intern. ComputerScience Institute, Berkeley (1993).12. D. Grigoriev, M. Karpinski, N. Vorobjov, Lower bounds on testing membership to a polyhedronby algebraic decision trees, Proc. ACM Symp. on Theory of Computing (1994).13. D. Grigoriev, M. Singer, A. Yao, On computing algebraic functions using logarithms andexponentials, Technical Report 93-07, DIMACS (1993).14. D. Grigoriev, N. Vorobjov, Solving systems of polynomial inequalitites in subexponential time,J. Symb. Comput. 5 (1988), 37-64.15. D. Grigoriev, N. Vorobjov, Complexity lower bounds for computation trees with elementarytranscendental function gates, Proc. IEEE Symp. on Foundations of Computer Sci. (1994),548{552.16. R. M. Hardt, Topological properties of sub-analytic sets, Trans. Amer. Math. Soc. 211 (1975),57{70.17. J. Heintz, M.-F. Roy, P. Solerno, Sur la complexit�e du principe de Tarski-Seidenberg, Bull.Soc. Math. France 118 (1990), 101{126.18. J. J�a J�a, Computation of algebraic functions with root extractions, in: Proc. IEEE Symp. onFoundations of Computer Science (1981), 95{100.19. A. Khovanskii, Fewnomials and Pfa� manifolds, in: Proc. Intern. Congress of Mathematicians(Warszawa, 1983), 549{564.20. A. Khovanskii, Fewnomials, Translations of Mathematical Monographs, Amer. Math. Soc.Vol. 88 (1991).21. S.  Lojasiewicz, Introduction to complex analytic geometry (Birkh�auser, 1991).22. F. Meyer auf der Heide, Fast algorithms for n-dimensional restrictions of hard problems, J.Assoc. Comput. Mach. 35 (1988), 740{747.23. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275{280.



44 D. GRIGORIEV AND N. VOROBJOV24. J. Renegar, On the computational complexity and the �rst order theory of the reals. PartsI{III, J. Symb. Comput. 13 (1992), 255{352.25. M.-F. Roy, N. Vorobjov, Finding irreducible components of some real transcendental varieties,Computational Complexity 4 (1994), 107-132.26. H. Sussmann, Real-analytic desingularization and sub-analytic sets: an elementary approach,Trans. Amer. Math. Soc. 317 (1990), 417{461.27. N. Vorobjov, The complexity of deciding consistency of systems of polynomials in exponentialinequalities, J. Symb. Comput. 13 (1992), 139{173.28. A. Yao, Algebraic decision trees and Euler characteristics, in: Proc. IEEE Symp. on Founda-tions of Computer Science (1992), 268{277.29. A. Yao, in: Proc. ACM Symp. on Theory of Computing (1994), 615{624, Decision tree com-plexity and Betti numbers, in: Proc. ACM Symp. on Theory of Computing (1994).30. A. Yao, R. Rivest, On the polyhedral decision problem, SIAM J. Comput. 9 (1980), 343{347.


