Introduction

A problem of testing membership to a semialgebraic set ¥ was considered by many
authors (see, e.g., [B 83], [B 92], [BKL 92], [BL 92], [BLY 92], [MH 85], [GKYV 94], [Y 92],
[Y 93], [YR 80] and the references there). We consider a problem of testing membership
to a convex polyhedron P in n-dimensional space R™. Let P have N facets of all the
dimensions. In [MH 83] it was shown, in particular, that for this problem O(log N )n?)
upper bound is valid for the depth of linear decision trees, in [YR 80] a lower bound
Q(log N) was obtained. A similar question was open for algebraic decision trees. In [GKV
94] we proved a lower bound Q(log N) for the depth of algebraic decision trees testing
membership to P, provided that N > (dn)Q("2). In the present paper we weaken the
latter assumption to N > (dn)Q("). In this new form the bound looks plausible to be
applicable to polyhedra given by 2°(") linear constraints (like in “knapsack” problem).

In [GV 94] the lower bound (y/log N) was proved for the Pfaffian computation tree
model. This model uses at gates Pfaffian functions, the latter include all major elementary
transcendental and algebraic functions.

Several topological methods were introduced for obtaining lower bounds for the com-
plexity of testing membership to ¥ by linear decision trees, algebraic decision trees, alge-
braic computation trees (the definitions one can find in, e.g., [B 83]).

In [B 83] a lower bound $(log C') was proved for the most powerful among the con-
sidered in this area computational models, namely algebraic computation trees, where C'
is the number of connected components of ¥ or of the complement of ¥. After that, in
[BLY 92], a lower bound (log x) for linear decision trees was proved, where y is Euler
characteristic of ¥, in [Y 92] this lower bound was extended to algebraic computation trees.
A stronger lower bound (log B) was proved later in [BL 92], [B 92] for linear decision
trees, where B is the sum of Betti numbers of ¥ (obviously, C, y < B). In the recent paper
[Y 94] the latter lower bound was extended to the algebraic decision trees.

Unfortunately, all the mentioned topological tools fail when ¥ is a convex polyhedron,
because B = 1 in this situation. The same is true for the method developed in [BLY 92]
for linear decision trees, based on the minimal number of convex polyhedra onto which ¥
can be partitioned.

To handle the case of a convex polyhedron, we introduce in Sections 1, 3 another ap-
proach which differs drastically from [GKV 94]. Let W be a semialgebraic set accepted by a
branch of an algebraic decision tree. In Section 3 we make an “infinitesimal perturbation”
of W which transforms this set into a smooth hypersurface. Then we describe the semial-
gebraic subset of all the points of the hypersurface in which all its principal curvatures are
“infinitely large” (the set K¢ in Section 3). We also construct a more general set K; (for
each 0 < ¢ < n — 1) of the points with infinitely large curvatures in the shifts of a fixed
(n—1)-dimensional plane. Section 1 provides a short system of inequalities for determining
K;. It 1s done by developing an explicit symbolic calculis for principal curvatures.

In Section 2 we introduce some necessary notions concerning infinitesimals and apply
them to define the “standard part” K; = st(K;) C R™. We show (Corollary to Lemma 3
in Section 3) that to obtain the required bound for the number of i-facets P; of P such
that dim(P; N W) = ¢ it is sufficient to estimate the number of facets P; with dim(P; N
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K;) = i. In Section 4 we reduce the latter bound to an estimate of the number of local
maxima of a generic linear function L on K; with the help of a Whitney stratification
of K;. To estimate these local maxima we introduce in Section 5 another infinitesimal
perturbation of K; and obtain a new smooth hypersurface. At this point a difficulty arises
due to the fact that K; (and therefore, the related smooth hypersurface) are defined by
systems of inequalities involving algebraic functions, rather than polynomials, because in
the expressions for curvatures (in Section 1) square roots of polynomials appear. We
represent the set of local maxima of L on the smooth hypersurface by a formula of the
first-order theory of real closed fields with merely existential quantifiers and quantifier-free
part ®. We estimate in Section 5 (invoking [Mi 64] in a usual way) the number of the
connected components of the semialgebraic set defined by ®.

In Section 6 we describe a particular class of polyhedra (dual to cyclic polyhedra
[MS 71]) having large numbers of facets, for which Theorem 1 provides a nontrivial lower

bound.

Now let us formulate precisely the main result. We consider algebraic decision trees
of a fixed degree d (see, e.g., [B 83], [Y 93]). Suppose that such a tree T, of the depth £,
tests a membership to a convex polyhedron P C R". Denote by N the number of facets
of P of all dimensions from zero to n — 1. In this paper we agree that a facet is “open”,
i.e., does not contain facets of smaller dimensions.

Theorem 1.
k> Q(log N),
provided that N > (dn)°™ for a suitable ¢ > 0.

Let us fix a branch of T' which returns “yes”. Denote by f; € R[Xy,..., X,], 1 <¢ <k
the polynomials of degrees deg( f;) < d, attached to the vertices of T along the fixed branch.
Without loss of generality, we can assume that the corresponding signs of polynomials along
the branch are

fl:,..:fklzo7 fk1—|—1>07“‘7fk>0‘

Then the (accepted) semialgebraic set

W:{flz"':fk1:07 fk1+1>07-"7fk>0}

lies in P.
Our main technical tool is the following theorem.

Theorem 2. The number of facets P' of P such that dim(P') = dim(P'NW) is bounded
from above by (knd)°™).

Let us deduce Theorem 1 from Theorem 2.
For each facet P’ of P there exists at least one branch of the tree T' with the output
yes” and having an accepted set W; C R" such that

[13

dim(W; N P') = dim(P").
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Since there are at most 3* different branches of T, the inequality
N < 3%(knd)°™

follows from Theorem 2. This inequality and the assumption N > (dn)°™ (for a suitable
¢) imply k > Q(log N), which proves Theorem 1.

Note that in the case k& = 0 for an open set W and each facet P’ of P we have
P'Nn'W = {. Thus in what follows we can suppose that ky > 1.

1. Computer algebra for curvatures

Let a polynomial F' € R[Xy,...,X,] with deg(F) < d. Assume that at a point

r € {F =0} C R" the gradient grad, (F) = <aa§1,...,%>(x) # 0. Then, according

to the implicit function theorem, the real algebraic variety {F = 0} C R" is a smooth
hypersurface in a neighbourhood of .

Fix a point @ € {F = 0}. Consider a linear transformation X — AX + z, where A
is an arbitrary orthogonal matrix such that

grad, (F)
up = Aey v = —————
lgrad, (F)]
is the normalized gradient and ey, ..., e, is the coordinate basis at the origin. Then the

linear hull of vectors u; = Ae; + z, 2 < j < n is the tangent space T, to {F =0} at z.
Denote by Uy, ..., U, the coordinate variables in the basis uy,...,u,. By the implicit
function theorem, there exists a smooth function H(Us, ..., U, ) defined in a neighbourhood
of # on T, such that {F =0} = {U; = H(Us,...,Uy,)} in this neighbourhood.
Let uy = (@1,...,ay) with a;, # 0. Take any permutation m;, of {1,...,n} such
that m;,(1) = t9. Denote (aq,...,ay,) = (&”i0(1)7"'7&”i0(n)) (thus oy # 0) and f; =

\/m7 1 < <n. Obviously #; > 0 and 3, = 1.

As A one can take the following product of (n — 1) orthogonal matrices:

6n—k—1 Qp_k

0 1 ... 0 0 0 --- 0
H 0 0 --- 1 0 0 --- 0

Qnk Bnk=1
o<hin—z | “Faor Y 0 T Y 0
0 0 1 0
0 0 --- 0 0 0 .- 1

(in kth matrix of this product the element 62‘%;1 occurs at the positions (1,1) and (n —

k,n—Fk)).

Denote F(Ul, o Up) = F(AAT(Ul, ..., Uy) + ). Differentiating this function twice
and taking into the account that F(H(Us,...,U,),Us,...,U,) = 0 in a neighbourhood of
xin T, we get

’F OH OF O*H F*F
T T 0 (1)
oU,0U; oU; ~ oU, oU0U; — 0U,0U;
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for 2 <4, 3 <n.
Since

oH
oU;

= llgrad ()] £0,

(U2a"'aUn):0 aUl (Ula"'aUn)

evaluating the equality (1) at = (i.e., substituting (Uy,...,U,) = 0) we obtain (cf. [Mi
64]):

O%H O*F
= d (F)H™ ‘ . 2
<8Ui8Uj> ‘ (Us,...,Up)=0 (llgrad, (F)]) <8UiaU]‘> (Ur,...,Up)=0 (2)

Introduce the symmetric (n — 1) X (n — 1)-matrix

O*H
"= (535, -
anan (Us,..., Uy )=0

Its eigenvalues A;,..., A, belong to R and are called the principal curvatures of the hy-
persurface {F = 0} at « [Th 77].

Now we describe symbolically the set of all points & with all principal curvatures
greater than some parameter x.

Denote by x(Z) the characteristic polynomial of the matrix H. The roots of y are
exactly Ag,...,A,. Due to Sturm theorem, every Ay, ..., A, is greater than x if and only
if xi(#)xi+1(k) <0, 0 <7 <n—2 where yo = x, x1 = X and X2,..., Xn—1 is the
polynomial remainder sequence of yg, y1 [Lo 82]. Obviously deg,(x;) =n —1— 1.

Observe that every element of the matrix A can be represented as a fraction vy /79
where

v2 =By B lerad, (F)|)”

and 1 = I'(f1, ..., Bn=1, X1,...,Xy) is a polynomial in
B (X1s e X ) eon s Bret (X X ) X X

with I' € R[Z4,...,Z,-1,X1,..., X,]. Moreover, 1 + -+ + vp_1 + v < 2(n — 1) and
deg(T") < d(n — 1). Hence all elements of A are algebraic functions in Xi,...,X, of
quadratic-irrational type. By the degree of such quadratic-irrational function we mean
max{deg(I'), 11 + -+ 4+ vn—1 + v}. In what follows we deal with algebraic functions in
Xq,..., X, of the similar type.

Formula (2) and Habicht’s theorem [Lo 82] imply that deg(y;) < (nd)°W.

We summarize a description of the set of all points with large principal curvatures in
the following lemma.

Lemma 1. Fix 1 < iy < n. The set of all points + € {F = 0} such that grad, (F) =
(&1,...,ay) has &;, # 0 and all principal curvatures of the hypersuface {F = 0} at « are
greater than k can be represented as {F =0, g1 > 0,...,¢9, > 0}. Here g1 = d?o, ces s
are polynomials in k of degrees at most 2n with coefficients being quadratic-irrational
algebraic functions (see above) of degrees less than (nd)®™.
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Remark. Observe that a set given by a system of inequalities involving real algebraic
functions is semialgebraic. Hence the set introduced in Lemma 1 is semialgebraic.

2. Computations with infinitesimals

The following digest on infinitesimals follows [GV 88].

Let I{ be an arbitrary real closed field (see, e.g., [L 65]) and an element ¢ be infinites-
imal relative to elements of K. The latter means that for any positive element a € K
inequalities 0 < e < @ are valid in the ordered field K'(¢). Obviously, the element ¢ is tran-
scendental over K. For an ordered field K’ we denote by K its (unique up to isomorphism)
real closure, preserving the order on K' [L 65].

Let us remind some other well-known statements concerning real closed fields. A
Puiseux (formal power-fractional) series over K is series of the kind

b:Zaie""/“,

i>0

where 0 # a; € K for all : > 0, integers vy < v; < ... increase and the natural number
> 1. Thefield K (('/°°)) consisting of all Puiseux series (appended by zero) is real closed,

hence K ((¢'/°)) D K(¢) D K(¢). Besides the field K[v/—1]((c'/>)) is algebraically closed.

If vy < 0, then the element b € K((c'/>)) is infinitely large. If vy > 0, then b is
infinitesimal relative to elements of the field K. A vector (by,...,b,) € <K((€1/oo))>" is
called K-finite if each coordinate b;, 1 < < n is not infinitely large relative to elements
of K.

For any K-finite element b € K((c'/°)) its standard part st(b) is definable, namely
st(b) = ap in the case vy = 0 and st(b) = 0 if vy > 0. For any K -finite vector (by,...,b,) €
<K((€1/oo))>" its standard part is defined by the equality

st(by,...,bn) = (st(by),...,st(by)).
For a set W C <K((€1/oo))>" consisting of only K -finite vectors we define
st(W) = {st(w): w € W}.

The following “transfer principle” is true [T 51]. If K', K" are real closed fields with
K' C K" and P is a closed (without free variables) formula of the first order theory of the
field K', then P is true over K’ if and only if P is true over K.

In the sequel we consider infinitesimals €1, €5, . .. such that ;4 1s infinitesimal relative
to the real closure R; of the field R(eq,...,e;) for each ¢ > 0. We assume that Ry = R.

For an R;-finite element b € R4 its standard part (relative to R;) denote by st;(b) €
R;. Forany b € R;, j > ¢ we define st;(b) = st;(st;41(...st;—1(b)...). For a semialgebraic
set V. C R defined by a certain formula @ of the first order theory of the field R; we define
the completion V(i) C R of V as the semialgebraic set given in R} by the same formula

® (we say that V(i) is defined over R;). In a similar way one can define completions of
polynomials and algebraic functions.



Lemma 2 (cf. Lemma 4a) in [GV 88]). Let F be a smooth algebraic function defined
on an open semialgebraic set U C R} and determined by a polynomial with coefficients
from R;. Then ¢;4; is not a critical value of F' (i.e., grady(F) does not vanish at any point

(TS {F = €i—|—1} N U)

To prove Lemma 2 note that Sard’s theorem [Hi 76] and the transfer principle imply
the finiteness of the set of all critical values, moreover this set lies in R;.

3. Curved points

In what follows we assume w.l.o.g. that polyhedron P is compact, a reduction of a
general case to this one is described in Section 2 of [GKV 94].

For an m-plane @ C R} and a point « € R? denote by Q(x) the m-plane collinear to
() and containing .

Two planes @)1, Q2 of arbitrary dimensions are called transversal if

dim(Ql(O) N Q2(0)> = max{0, dim<Q1(0)> + dim<Q2(0)> —n}.

For every 0 < ¢ < n choose an (n — ¢)-plane II,,_; (defined over R) transversal to any
facet of the polyhedron P.

Denote f = f? —|—---—|—f,?1.
Fix 0 < i < n and denote by f the restriction of f on II,—i(x).

~

Definition. A point y € {f = 3} is called i-curved if grad,(f — e3) # 0, all principal
curvatures of the variety {f = e3} C M,—;(y) at y are greater than ;7" and fi, +1(y) >
ey Jr(y) > e

Remark. We fix an orthogonal basis in II,,_;(0) with coordinates belonging to R. Then
in Definition we consider curvatures in II,,_;(y) with respect to the basis obtained from
the fixed one by the shift Y — Y 4 y.

One can consider this definition as a kind of “localization” of the key concept of an
angle point from [GV 94].

Denote the set of all i-curved points by K;. Observe that K; is semialgebraic due to the
remark at the end of Section 1. Denote K; = sto(K;) C R", this set is also semialgebraic
[RV 94].

Lemma 3. Let for an i-facet P; of P the dimension dim(WNP;) =i. Then WNP; C K;.

Corollary. If dim(W N P;) = then dim(K; N P;) = 1.

This Corollary implies that in order to prove Theorem 2 it is sufficient to bound the
number of i-facets P; for which dim(K; N P;) = 1.

Lemma 4. For any smooth point z € K; with the dimension dim,(K;) > ¢ + 1 the
tangent plane T, to K; at z is not transversal to II,,_;.
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Remark. In the particular case : = 0 Lemma 4 states that K consists of a finite number
of points.

4. Facets of P and Whitney stratification of K,

Denote by B,(r) the open ball in R} centered at  and of the radius r.
For a subset E C R? denote by ¢l(E) its closure in the topology with the base of all
open balls. Denote by 0F the boundary

{y e R : forany 0 <r € R; 0 # By(r) N E # By(r)}.

Recall that K;, as any semialgebraic set, admits a Whitney stratification (see, e.g.,
[GM 88]). Namely, I{; can be represented as a disjoint union I; = U]‘ S; of a finite number
of semialgebraic sets, called strata, which are smooth manifolds and such that:

(1) (frontier condition) Sj Necl(S;,) # 0 if and only if S;, C ¢l(S},);

(2) (Whitney condition A) Let S; C ¢l(S},) and a sequence of points z; € S;, tends to
a point y € S, when | — oo. Assume that the sequence of tangent planes T, to 5;, at
points 2; tends to a certain plane T. Then T,, C T where T} is a tangent plane to S;, at y.

Lemma 5. Let for an i-facet P; of P the dimension dim(K; N P;) = ¢. Assume that S,
is a stratum of IK; such that dim(cl(Sj) NK; N Pi> =1. Then S; C P;.

Denote ¢ = fr, -+ fx. Choose 0 < 1 € R satisfying the following properties:

(a) p is less than the absolute values of all critical values of the restrictions of ¢ on
i-facets P; (note that Sard’s theorem implies the finiteness of the number of all critical
values, moreover they all belong to R);

(b) for any P; such that dim(X; N P;) = ¢ the dimension
dim({g =u}nel(S;)NK;N Pi> <i—2

for every stratum S; which is not contained in P; (observe that due to Lemma 5 there
exists at most finite number of u violating this condition).

Fix i-facet P; for which dim(W N P;) = ¢. Denote K| = I; N {g = p}.

i From the properties (a), (b) using Lemma 3 we deduce the following lemma.
Lemma 6. The variety
KnPi={g9g=u}n{fe, >0,...,frk >0} NP
is a nonempty smooth hypersurface in P;. Moreover

dim((cl(K!\ P)n (Kl nPy)) <i—2.



The next important step is the proof of the following lemma.

Lemma 7. The number of i-facets P; such that K! N P; is a nonempty smooth hyper-
surface in P; and

dim((cl(K!\ )N (K!NP;)) <i-—2,
does not exceed (nkd)°™"),
Theorem 2 immediately follows from Lemmas 6 and 7. A sketch of a proof of Lemma 7

is given in the next section.

Lemma 8.
KL = sto(Ki N {lg — il < e2).

5. Extremal points of a linear function on K;

Take a generic linear function L = ~; X7 +- - -+, X, with coefficients v1,...,v, € R.
Since P is compact the function L attains its maximal value, say 6y, on !N P; at a certain
point v. Denote by V' a connected component of ! N P; which contains v. There exists
0 < r € R such that B,(r) N K! = B,(r) NV due to the property (b) (see Section 4).
Moreover, there exists 0 < r1 € R such that the values of L on the set K| N dB,(r) are
less than 6y — r1. This implies, using Lemma 8, the following lemma.

Lemma 9. L attains its maximal value 6 on the set
c(Kin{lg — pl < e2}) N By(r/2)

(at a point, say, w) and for a suitable 0 < r; € R the values of L on the set
cl(KiN{lg — ul < e2}) NOB.(r/2)

are less than 8 — ry.
In particular, L attains a local maximum on 9(K; N {|g — p| < e2}) at w.

For a point y let

~

grady(f —e3) = (U1, ..., Up—y)

(cf. Definition). The set K;N{|g—p| < e2} of the points y = (y1,...,yn) can be represented
as a union of n — ¢ semialgebraic sets of the form

U(iO):{f_€3:07u120>07p1>07--'7p8>0}7 l<u=n-—

for some algebraic functions pq,...,ps of the quadratic-irrational type introduced in Sec-
tion 1, i.e., rational functions in yq,...,y, and in

VA ANATES —I-Uf%(z) ,...,\/ulzo —I-uf%(z) —I-...—I-ufrio(n_i) (3)
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(see Lemma 1). Here 7;, is a permutation of {1,2,...,n — ¢} such that =;,(1) = ¢¢ (cf.
Section 1).
Denote

q=(e2 = (f —e3)?)(ui, —ea)(pr —ea) -~ (ps — 4).

Introduce the semialgebraic set
U0 — {g=ce} N {ci > (f — 53)2, u?o > E4, PL > E4ye-n,Ps > Eqle
The next lemma follows from Lemmas 1, 4 in [GV 92].

Lemma 10.

stg(U(iO)) = cZ(U(iO)).

Lemma 11. For an appropriate 1 <19 < n — the function L attains its maximal value
61 on the set U0 n B,(r/3) and for a certain 0 < ry € R the values of L on the set
Ut N 0B,(r/3) are less than 61 — rq.

Lemma 11 follows from Lemmas 9, 10. For a proof, take 1 <1y < n — ¢ such that the

corresponding point w (see Lemma 9) lies in ¢l(U0)),

Corollary The number of i-facets P; satisfyving the conditions of Lemma 7 does not
exceed the number of local maxima of L on the set U1<i0<n—i U,

Observe that in the open semialgebraic set {uj > 0} all the square roots (3) are

positive. Therefore all algebraic functions p1,. .., ps occuring in U(*®) are smooth, hence ¢
1s smooth as well. Because of Lemma 2 €4 1s not a critical value of ¢ in the set {u?o > 0}.
Then the implicit function theorem implies the following lemma.

Lemma 12. 2" is a smooth hypersurface.

Finally, let us prove the following lemma.

Lemma 13. The number v of local maxima of L on U'%) does not exceed (nkd)o(").

Together with Corollary to Lemma 11 this implies Lemma 7 (and hence Theorem 2).

Because of Lemma 12, v does not exceed the number of connected components of the
semialgebraic set

dq dq L
M:{qu_‘gG:’YiE_’yjﬁv 1<i<j<n}.
j 7

Replace each occurrence of the square root

A e S o

Trio(m)7
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1 <m < n-—11in ¢ by a new variable Z,,. Denote the resulting rational function by
Q€ Rs[Xq,....X0](Z1,...,Zn) (cf. Section 1).

Introduce the semialgebraic set

M={0=Q o=l 00

—y,——., 1 <1< <
an ’YjaXi7 =1 7=

Zm >0, Zizu?o—l—uiio(z)—l—---—l—uz lﬁmﬁn—i}CRg""m.

Tig(m)?

Consider the linear projection
pRIT™ — RE p(Xiyeo o, Xy 2y Z) = (X1, .., X)),

Then p(M) = M. Hence the number of connected components of M is less than or equal
to the number of connected components of M.

Observe that the degrees of rational functions occuring in M can be bounded from
above by (knd)o(l) due to Lemma 1. Therefore, the number of connected components of

M does not exceed (knd)®™ by [Mi 64].
This completes the proof of Lemma 13 and thereby Theorems 2 and 1.

6. Lower bounds for concrete polyhedra

In this section we give an application of the lower bound from Theorem 1 to a concrete
class of polyhedra. We follow the construction of cyclic polyhedra (see [MS 71]), used in
the analysis of the simplex method.

Take any m > Q(n?) points in R" of the form (tj,t?, ...,t7) for pairwise distinct
t;, 1 < j < m. Consider the convex hull of these points and denote by P, ,, C R" its

dual polyhedron [MS 71]. Then P, ,, has m faces of the highest dimension n — 1 and the
number of faces of all dimensions

(see [MS T1]).

Therefore, Theorem 1 implies that the complexity of testing membership to P, ., is
bounded by Q(log N) > Q(nlogm).

We would like to mention that Section 4 of [GKV 94] provides a weaker bound Q(log m)
even for algebraic computation trees.
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