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Villeneuve d’Ascq, 59655, France
Dmitry.Grigoryev@math.univ-lille1.fr

http://en.wikipedia.org/wiki/Dima Grigoriev

Abstract

An algorithm is designed which tests solvability of a system of k polynomial
equations in n variables with degrees d within complexity polynomial in nd3k

. If a
systems is solvable then the algorithm yields one of its solutions. Thus, for fixed d, k
the complexity of the algorithm is polynomial.
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Introduction

Consider a system of polynomial equations

f1 = · · · = fk = 0 (1)

where f1, . . . , fk ∈ Z[X1, . . . , Xn], deg fi ≤ d, 1 ≤ i ≤ k. The algorithm from [3], [1] (see
also [2]) solves (1) within complexity polynomial in M, k, dn2

, where M denotes the bound
on bit-sizes of (integer) coefficients of polynomials f1, . . . , fk. Moreover, this algorithm finds
the irreducible components of the variety in Cn determined by (1). We mention also that
in [8] an algorithm is designed which tests solvability of (1) reducing it to a system of
equations over R, within a better complexity polynomial in M, (k · d)n. We note that
the algorithm from [8] tests solvability of (1) and outputs a solution, provided that (1) is
solvable, rather than finds the irreducible components as the algorithms from [3], [1].

In the present paper we design an algorithm which tests solvability of (1) within com-

plexity polynomial in M ·
(

n+d3k

n

)
≤ M · nd3k

, which provides polynomial (in the size

M · k ·
(

n+d
n

)
of the input system (1)) complexity when d, k being fixed. If (1) is solvable

then the algorithm yields one of its solutions. Note that the algorithm from [8] has a
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polynomial complexity when, say d > n2 and k being polynomial in n; when d is close to
n the complexity is subexponential, while for small d the complexity is exponential.

We mention that in [6] an algorithm was designed testing solvability of (1) over R
(and finding a real solution, provided that it does exist) within the complexity polynomial
in M, n2k for quadratic equations (d = 2), and moreover, one can replace equations by
inequalities.

It would be interesting to clarify, for which relations between n, k, d the complexity of
solvability of (1) is polynomial. In particular, when d = 2 and k is close to n the problem
of solvability is NP -hard.

1 Testing points for sparse polynomials

Recall (see [4]) a construction of testing points for sparse polynomials in n variables.
Let pi denote i-th prime and sj = (pj

1, . . . , p
j
n) ∈ Zn, j ≥ 0 be a point. A polynomial

f ∈ C[X1, . . . , Xn] is called t-sparse if it contains at most t monomials.

Lemma 1.1 [4]. For a t-sparse polynomial f there exists 0 ≤ j < t such that f(sj) 6= 0.

The proof follows from the observation that writing f =
∑

1≤l≤t al·XIl where coefficients

al ∈ C and XIl are monomials, the equations f(sj) = 0, 0 ≤ j < t lead to a t × t linear
system with Vandermonde matrix and its solution (a1, . . . , at). Since Vandermonde matrix
is nonsingular, the obtained contradiction proves the lemma.

Corollary 1.2 Let deg f ≤ D. There exists 0 ≤ j <
(

n+D
n

)
such that f(sj) 6= 0.

2 Reduction of solvability to systems in few variables

The goal of this section is to reduce testing solvability of (1) to testing solvability of several
systems in k variables.

Let V ⊂ Cn be an irreducible (over Q) component of the variety determined by (1).
Observe that the algorithm described in the next Section does not need to produce V .
Then dimV =: m ≥ n− k and deg V ≤ dn−m ≤ dk due to Bezout inequality [9].

Let variables Xi1 , . . . , Xim constitute a transcendental basis over C of the field C(V )
of rational functions on V , clearly such i1, . . . , im do exist. Then the degree of fields
extension e := [C(V ) : C(Xi1 , . . . , Xim)] ≤ deg V equals the typical (and at the same
time, the maximal) number of points in the intersections V ∩ {Xi1 = c1, . . . , Xim = cm}
for different c1, . . . , cm ∈ C, provided that this intersection being finite. Observe that for
almost all vectors (c1, . . . , cm) ∈ Cn the intersection is finite and consists of e points.

There exists a primitive element Y =
∑

i 6=i1,...,im
bi ·Xi of the extension C(V ) of the field

C(Xi1 , . . . , Xim) for appropriate integers bi [7] (moreover, one can take integers 0 ≤ bi ≤ e
for all i, see e. g. [1], [3], but we do not need here these bounds). Moreover, there exist
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n−m linearly over C independent primitive elements Y1, . . . , Yn−m of this form. One can
view Y1, . . . , Yn−m, Xi1 , . . . , Xim as new coordinates.

Consider a linear projection πl : Cn → Cm+1 onto the coordinates Yl, Xi1 , . . . , Xim , 1 ≤
l ≤ n−m. Then the closure πl(V ) ⊂ Cm+1 is an irreducible hypersurface, so dim πl(V ) =
m. Denote by gl ∈ Q[Yl, Xi1 , . . . , Xim ] the minimal polynomial providing the equation of
πl(V ). Then deg gl = deg πl(V ) ≤ deg V [9] and degYl

gl = e, taking into account that Yl

is a primitive element.
Rewriting gl =

∑
q≤e Y

q
l · hq, hq ∈ Q[Xi1 , . . . , Xim ] as a polynomial in a distinguished

variable Yl, we denote Hl := he · DiscYl
(gl) ∈ Q[Xi1 , . . . , Xim ], where DiscYl

denotes the
discriminant with respect to the variable Yl (the discriminant does not vanish identically
since Yl is a primitive element). We have degHl ≤ dk + d2k. Consider the product
H :=

∏
1≤l≤n−mHl, then D := degH ≤ (n−m) · (dk + d2k) ≤ d3k.

Due to Corollary 1.2 there exists 0 ≤ j <
(

D+m
D

)
≤ md3k

such that H(sj) =

H(pj
1, . . . , p

j
m) 6= 0. Observe that the projective intersection V ∩ {Xi1 = pj

1 ·X0, · · · , Xim =
pj

m ·X0} in the projective space PCn ⊃ Cn with the coordinates [X0 : X1 : · · · : Xn] consists
of e points, where V denotes the projective closure of V . On the other hand, coordinate
Yl of the points of the affine intersection V ∩ {Xi1 = pj

1, . . . , Xim = pj
m} attains e differ-

ent values, taking into account that Hl(sj) 6= 0, 1 ≤ l ≤ n − m. Therefore, all e points
from the projective intersection lie in the affine chart Cn. Consequently, the intersection
V ∩ {Xi1 = pj

1, . . . , Xim = pj
m} is not empty.

3 Test of solvability and its complexity

Thus, to test solvability of (1) the algorithm chooses all possible subsets {i1, . . . , im} ⊂
{1, . . . , n} with m ≥ n− k treating Xi1 , . . . , Xim as a candidate for a transcendental basis
of some irreducible component V of the variety determined by (1). After that for each
0 ≤ j <

(
D+m

D

)
where D ≤ d3k, the algorithm substitutes Xi1 = pj

1, . . . , Xim = pj
m into

polynomials f1, . . . , fk and solves the resulting system of polynomial equations in n−m ≤ k
variables applying the algorithm from [1], [3]. The complexity of each of these applications
does not exceed a polynomial in M ·

(
D+m

D

)
· d(n−m)2 , i. e. a polynomial in M · nd3k

.
Moreover, the algorithm from [1], [3] yields a solution of a system, provided that it does
exist. Summarizing, we obtain the following theorem.

Theorem 3.1 One can test solvability over C of a system (1) of k polynomials f1, . . . , fk ∈
Z[X1, . . . , Xn] with degrees d within complexity polynomial in M ·

(
n+d3k

n

)
≤M ·nd3k

, where
M bounds the bit-sizes of (integer) coefficients of f1, . . . , fk. If (1) is solvable then the
algorithm yields one of its solutions.

Corollary 3.2 For fixed d, k the complexity of the algorithm is polynomial.

The construction and the Theorem extend literally to polynomials with coefficients
from a field F of characteristic zero (for complexity bounds one needs that the elements of
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F are given in an efficient way). For F of a positive characteristic one can obtain similar
results replacing the zero test from Section 1 by the zero test from [5].
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