Polynomial complexity of solving systems of few algebraic equations with small degrees

Dima Grigoriev
CNRS, Mathématiques, Université de Lille
Villeneuve d'Ascq, 59655, France
Dmitry.Grigoryev@math.univ-lille1.fr
http://en.wikipedia.org/wiki/Dima_Grigoriev

Abstract

An algorithm is designed which tests solvability of a system of k polynomial equations in n variables with degrees d within complexity polynomial in $n^{d^{3 k}}$. If a systems is solvable then the algorithm yields one of its solutions. Thus, for fixed d, k the complexity of the algorithm is polynomial.

Keywords: polynomial complexity, solving systems of few equations with small degrees

Introduction

Consider a system of polynomial equations

$$
\begin{equation*}
f_{1}=\cdots=f_{k}=0 \tag{1}
\end{equation*}
$$

where $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right], \operatorname{deg} f_{i} \leq d, 1 \leq i \leq k$. The algorithm from [3], [1] (see also [2]) solves (1) within complexity polynomial in $M, k, d^{n^{2}}$, where M denotes the bound on bit-sizes of (integer) coefficients of polynomials f_{1}, \ldots, f_{k}. Moreover, this algorithm finds the irreducible components of the variety in \mathbb{C}^{n} determined by (1). We mention also that in [8] an algorithm is designed which tests solvability of (1) reducing it to a system of equations over \mathbb{R}, within a better complexity polynomial in $M,(k \cdot d)^{n}$. We note that the algorithm from [8] tests solvability of (1) and outputs a solution, provided that (1) is solvable, rather than finds the irreducible components as the algorithms from [3], [1].

In the present paper we design an algorithm which tests solvability of (1) within complexity polynomial in $M \cdot\binom{n+d^{3 k}}{n} \leq M \cdot n^{d^{3 k}}$, which provides polynomial (in the size $M \cdot k \cdot\binom{n+d}{n}$ of the input system (1)) complexity when d, k being fixed. If (1) is solvable then the algorithm yields one of its solutions. Note that the algorithm from [8] has a
polynomial complexity when, say $d>n^{2}$ and k being polynomial in n; when d is close to n the complexity is subexponential, while for small d the complexity is exponential.

We mention that in [6] an algorithm was designed testing solvability of (1) over \mathbb{R} (and finding a real solution, provided that it does exist) within the complexity polynomial in $M, n^{2 k}$ for quadratic equations $(d=2)$, and moreover, one can replace equations by inequalities.

It would be interesting to clarify, for which relations between n, k, d the complexity of solvability of (1) is polynomial. In particular, when $d=2$ and k is close to n the problem of solvability is $N P$-hard.

1 Testing points for sparse polynomials

Recall (see [4]) a construction of testing points for sparse polynomials in n variables. Let p_{i} denote i-th prime and $s_{j}=\left(p_{1}^{j}, \ldots, p_{n}^{j}\right) \in \mathbb{Z}^{n}, j \geq 0$ be a point. A polynomial $f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is called t-sparse if it contains at most t monomials.

Lemma 1.1 [4]. For a t-sparse polynomial f there exists $0 \leq j<t$ such that $f\left(s_{j}\right) \neq 0$.
The proof follows from the observation that writing $f=\sum_{1 \leq l \leq t} a_{l} \cdot X^{I_{l}}$ where coefficients $a_{l} \in \mathbb{C}$ and $X^{I_{l}}$ are monomials, the equations $f\left(s_{j}\right)=0,0 \leq j<t$ lead to a $t \times t$ linear system with Vandermonde matrix and its solution $\left(a_{1}, \ldots, a_{t}\right)$. Since Vandermonde matrix is nonsingular, the obtained contradiction proves the lemma.

Corollary 1.2 Let $\operatorname{deg} f \leq D$. There exists $0 \leq j<\binom{n+D}{n}$ such that $f\left(s_{j}\right) \neq 0$.

2 Reduction of solvability to systems in few variables

The goal of this section is to reduce testing solvability of (1) to testing solvability of several systems in k variables.

Let $V \subset \mathbb{C}^{n}$ be an irreducible (over \mathbb{Q}) component of the variety determined by (1). Observe that the algorithm described in the next Section does not need to produce V. Then $\operatorname{dim} V=: m \geq n-k$ and $\operatorname{deg} V \leq d^{n-m} \leq d^{k}$ due to Bezout inequality [9].

Let variables $X_{i_{1}}, \ldots, X_{i_{m}}$ constitute a transcendental basis over \mathbb{C} of the field $\mathbb{C}(V)$ of rational functions on V, clearly such i_{1}, \ldots, i_{m} do exist. Then the degree of fields extension $e:=\left[\mathbb{C}(V): \mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)\right] \leq \operatorname{deg} V$ equals the typical (and at the same time, the maximal) number of points in the intersections $V \cap\left\{X_{i_{1}}=c_{1}, \ldots, X_{i_{m}}=c_{m}\right\}$ for different $c_{1}, \ldots, c_{m} \in \mathbb{C}$, provided that this intersection being finite. Observe that for almost all vectors $\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{C}^{n}$ the intersection is finite and consists of e points.

There exists a primitive element $Y=\sum_{i \neq i_{1}, \ldots, i_{m}} b_{i} \cdot X_{i}$ of the extension $\mathbb{C}(V)$ of the field $\mathbb{C}\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)$ for appropriate integers $b_{i}[7]$ (moreover, one can take integers $0 \leq b_{i} \leq e$ for all i, see e. g. [1], [3], but we do not need here these bounds). Moreover, there exist
$n-m$ linearly over \mathbb{C} independent primitive elements Y_{1}, \ldots, Y_{n-m} of this form. One can view $Y_{1}, \ldots, Y_{n-m}, X_{i_{1}}, \ldots, X_{i_{m}}$ as new coordinates.

Consider a linear projection $\pi_{l}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m+1}$ onto the coordinates $Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}, 1 \leq$ $l \leq n-m$. Then the closure $\overline{\pi_{l}(V)} \subset \mathbb{C}^{m+1}$ is an irreducible hypersurface, so $\operatorname{dim} \overline{\pi_{l}(V)}=$ m. Denote by $g_{l} \in \mathbb{Q}\left[Y_{l}, X_{i_{1}}, \ldots, X_{i_{m}}\right]$ the minimal polynomial providing the equation of $\overline{\pi_{l}(V)}$. Then $\operatorname{deg} g_{l}=\operatorname{deg} \overline{\pi_{l}(V)} \leq \operatorname{deg} V[9]$ and $\operatorname{deg}_{Y_{l}} g_{l}=e$, taking into account that Y_{l} is a primitive element.

Rewriting $g_{l}=\sum_{q \leq e} Y_{l}^{q} \cdot h_{q}, h_{q} \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$ as a polynomial in a distinguished variable Y_{l}, we denote $H_{l}:=h_{e} \cdot \operatorname{Disc}_{Y_{l}}\left(g_{l}\right) \in \mathbb{Q}\left[X_{i_{1}}, \ldots, X_{i_{m}}\right]$, where $\operatorname{Disc}_{Y_{l}}$ denotes the discriminant with respect to the variable Y_{l} (the discriminant does not vanish identically since Y_{l} is a primitive element). We have $\operatorname{deg} H_{l} \leq d^{k}+d^{2 k}$. Consider the product $H:=\prod_{1 \leq l \leq n-m} H_{l}$, then $D:=\operatorname{deg} H \leq(n-m) \cdot\left(d^{k}+d^{2 k}\right) \leq d^{3 k}$.

Due to Corollary 1.2 there exists $0 \leq j<\binom{D+m}{D} \leq m^{d^{3 k}}$ such that $H\left(s_{j}\right)=$ $H\left(p_{1}^{j}, \ldots, p_{m}^{j}\right) \neq 0$. Observe that the projective intersection $\bar{V} \cap\left\{X_{i_{1}}=p_{1}^{j} \cdot X_{0}, \cdots, X_{i_{m}}=\right.$ $\left.p_{m}^{j} \cdot X_{0}\right\}$ in the projective space $\mathbb{P} \mathbb{C}^{n} \supset \mathbb{C}^{n}$ with the coordinates $\left[X_{0}: X_{1}: \cdots: X_{n}\right]$ consists of e points, where \bar{V} denotes the projective closure of V. On the other hand, coordinate Y_{l} of the points of the affine intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ attains e different values, taking into account that $H_{l}\left(s_{j}\right) \neq 0,1 \leq l \leq n-m$. Therefore, all e points from the projective intersection lie in the affine chart \mathbb{C}^{n}. Consequently, the intersection $V \cap\left\{X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}\right\}$ is not empty.

3 Test of solvability and its complexity

Thus, to test solvability of (1) the algorithm chooses all possible subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset$ $\{1, \ldots, n\}$ with $m \geq n-k$ treating $X_{i_{1}}, \ldots, X_{i_{m}}$ as a candidate for a transcendental basis of some irreducible component V of the variety determined by (1). After that for each $0 \leq j<\binom{D+m}{D}$ where $D \leq d^{3 k}$, the algorithm substitutes $X_{i_{1}}=p_{1}^{j}, \ldots, X_{i_{m}}=p_{m}^{j}$ into polynomials f_{1}, \ldots, f_{k} and solves the resulting system of polynomial equations in $n-m \leq k$ variables applying the algorithm from [1], [3]. The complexity of each of these applications does not exceed a polynomial in $M \cdot\binom{D+m}{D} \cdot d^{(n-m)^{2}}$, i. e. a polynomial in $M \cdot n^{d^{3 k}}$. Moreover, the algorithm from [1], [3] yields a solution of a system, provided that it does exist. Summarizing, we obtain the following theorem.

Theorem 3.1 One can test solvability over \mathbb{C} of a system (1) of k polynomials $f_{1}, \ldots, f_{k} \in$ $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ with degrees d within complexity polynomial in $M \cdot\binom{n+d^{3 k}}{n} \leq M \cdot n^{d^{3 k}}$, where M bounds the bit-sizes of (integer) coefficients of f_{1}, \ldots, f_{k}. If (1) is solvable then the algorithm yields one of its solutions.

Corollary 3.2 For fixed d, k the complexity of the algorithm is polynomial.
The construction and the Theorem extend literally to polynomials with coefficients from a field F of characteristic zero (for complexity bounds one needs that the elements of
F are given in an efficient way). For F of a positive characteristic one can obtain similar results replacing the zero test from Section 1 by the zero test from [5].

Acknowledgements. The author is grateful to the Max-Planck Institut für Mathematik, Bonn for its hospitality during writing this paper.

References

[1] A. Chistov, An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time, J.Soviet Math., 34 (1986), 1838-1882.
[2] A. Chistov, D. Grigoriev, Complexity of quantifier elimination in the theory of algebraically closed fields, Lect. Notes Comput. Sci., 176 (1984), 17-31.
[3] D. Grigoriev, Polynomial factoring over a finite field and solving systems of algebraic equations, J. Soviet Math., 34 (1986), 1762-1803.
[4] D. Grigoriev, M. Karpinski, The matching problem for bipartite graphs with polynomially bounded permanents is in NC, Proc. 28 Symp. Found. Comput. Sci., IEEE, (1987), 166-172.
[5] D. Grigoriev, M. Karpinski, M. Singer, Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields, SIAM J. Comput., 19 (1990), 1059-1063.
[6] D. Grigoriev, D. Pasechnik, Polynomial-time computing over quadratic maps I. Sampling in real algebraic sets, Computational Complexity, 14 (2005), 20-52.
[7] S. Lang, Algebra, Springer, 2002.
[8] J. Renegar, On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals, J. Symbolic Comput. 13 (1992), 255-299.
[9] I. Shafarevich, Foundations of algebraic geometry, MacMillan Journals, 1969.

