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Abstract

An algorithm is designed which tests solvability of a system of k polynomial
equations in n variables with degrees d within complexity polynomial in n® . If a
systems is solvable then the algorithm yields one of its solutions. Thus, for fixed d, k
the complexity of the algorithm is polynomial.
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Introduction

Consider a system of polynomial equations

fi=eo=fi=0 1)

where fi,..., fr € Z[X1,...,X,), deg fi < d, 1 < i < k. The algorithm from [3], [1] (see
also [2]) solves (1) within complexity polynomial in M, k, d**, where M denotes the bound
on bit-sizes of (integer) coefficients of polynomials fi, ..., fr. Moreover, this algorithm finds
the irreducible components of the variety in C" determined by (1). We mention also that
in [8] an algorithm is designed which tests solvability of (1) reducing it to a system of
equations over R, within a better complexity polynomial in M, (k - d)”. We note that
the algorithm from [8] tests solvability of (1) and outputs a solution, provided that (1) is
solvable, rather than finds the irreducible components as the algorithms from [3], [1].

In the present paper we design an algorithm which tests solvability of (1) within com-
plexity polynomial in M - ("Jf%) < M- ndak, which provides polynomial (in the size
M k- (":d) of the input system (1)) complexity when d, k being fixed. If (1) is solvable
then the algorithm yields one of its solutions. Note that the algorithm from [8] has a



polynomial complexity when, say d > n? and k being polynomial in n; when d is close to
n the complexity is subexponential, while for small d the complexity is exponential.

We mention that in [6] an algorithm was designed testing solvability of (1) over R
(and finding a real solution, provided that it does exist) within the complexity polynomial
in M, n? for quadratic equations (d = 2), and moreover, one can replace equations by
inequalities.

It would be interesting to clarify, for which relations between n, k, d the complexity of

solvability of (1) is polynomial. In particular, when d = 2 and k is close to n the problem
of solvability is N P-hard.

1 Testing points for sparse polynomials

Recall (see [4]) a construction of testing points for sparse polynomials in n variables.
Let p; denote i-th prime and s; = (p{,...,p)) € Z",j > 0 be a point. A polynomial
f e C[Xy,...,X,] is called t-sparse if it contains at most ¢ monomials.

Lemma 1.1 [4]. For a t-sparse polynomial f there exists 0 < j <t such that f(s;) # 0.

The proof follows from the observation that writing f = Y, .., a;- Xt where coefficients
a; € C and X' are monomials, the equations f(s;) = 0, 0 < j < tlead to a t x ¢ linear
system with Vandermonde matrix and its solution (ay, ..., a;). Since Vandermonde matrix
is nonsingular, the obtained contradiction proves the lemma.

Corollary 1.2 Let deg f < D. There exists 0 < j < ("ZD) such that f(s;) # 0.

2 Reduction of solvability to systems in few variables

The goal of this section is to reduce testing solvability of (1) to testing solvability of several
systems in k variables.

Let V' C C" be an irreducible (over Q) component of the variety determined by (1).
Observe that the algorithm described in the next Section does not need to produce V.
Then dimV =:m >n — k and degV < d" ™ < d* due to Bezout inequality [9].

Let variables X;,,..., X, constitute a transcendental basis over C of the field C(V')
of rational functions on V, clearly such iy,...,4, do exist. Then the degree of fields
extension e := [C(V) : C(X;,,...,X;,,)] < degV equals the typical (and at the same
time, the maximal) number of points in the intersections VN {X; = c1,...,X;,, = cn}
for different cq,...,c, € C, provided that this intersection being finite. Observe that for
almost all vectors (cy, ..., ¢,) € C" the intersection is finite and consists of e points.

There exists a primitive element Y =3, , . b;-X; of the extension C(V') of the field
C(Xi,,...,X;,, ) for appropriate integers b; [7] (moreover, one can take integers 0 < b; < e
for all i, see e. g. [1], [3], but we do not need here these bounds). Moreover, there exist



n — m linearly over C independent primitive elements Y7, ...,Y,_,, of this form. One can
view Y1, ..., Yoom, Xiy, ..., X;,, as new coordinates.

Consider a linear projection 7; : C* — C™*! onto the coordinates Y;, Xj,, ..., X

i)

1<
I < n—m. Then the closure m (V) € C™*! is an irreducible hypersurface, so dim (V) =
m. Denote by g, € Q[Y}, X, ..., X;,,] the minimal polynomial providing the equation of
m (V). Then degg, = degm (V) < degV [9] and degy, g1 = e, taking into account that Y;
is a primitive element.

Rewriting g = > . Y - hy, by € Q[Xy,, ..., X;, ] as a polynomial in a distinguished
variable Y}, we denote H; := h, - Discy,(¢;) € Q[Xi,,...,X,], where Discy, denotes the
discriminant with respect to the variable Y; (the discriminant does not vanish identically
since Y; is a primitive element). We have deg H; < d* + d**. Consider the product

H = Ilicicp_m Hi, then D :=deg H < (n—m) - (d¥ + d?*) < d3*.

Due to Corollary 1.2 there exists 0 < j < (PI™) < m® such that H(s;) =

: Y J p) = A j
H(py, ... ,p.) # 0. Observe that the projective intersection V N{X;, = p} - Xo, -+, X;, =
ph,- Xo} in the projective space PC" D C" with the coordinates [Xo : Xj : - -+ : X,,] consists

of e points, where V' denotes the projective closure of V. On the other hand, coordinate
Y, of the points of the affine intersection V N {X,; = pl,..., X, = pl } attains e differ-
ent values, taking into account that H(s;) # 0, 1 <1 < n — m. Therefore, all e points
from the projective intersection lie in the affine chart C". Consequently, the intersection
VNn{X; =pl,...,X,, =pl}is not empty.

3 Test of solvability and its complexity

Thus, to test solvability of (1) the algorithm chooses all possible subsets {iy,...,4,} C
{1,...,n} with m > n — k treating X;,,...,X;,, as a candidate for a transcendental basis
of some irreducible component V' of the variety determined by (1). After that for each
0 <j < (PI™) where D < d*, the algorithm substitutes X;, = pl...., X, =pl into
polynomials fi,..., fr and solves the resulting system of polynomial equationsinn—m < k
variables applying the algorithm from [1], [3]. The complexity of each of these applications
does not exceed a polynomial in M - (D J[r)m) - d=m?* i e. a polynomial in M - n®™.
Moreover, the algorithm from [1], [3] yields a solution of a system, provided that it does
exist. Summarizing, we obtain the following theorem.

Theorem 3.1 One can test solvability over C of a system (1) of k polynomials f1,..., fr €
Z[Xy, ..., X,] with degrees d within complexity polynomial in M - ("”:ff%) < M -n®, where
M bounds the bit-sizes of (integer) coefficients of fi,..., fx- If (1) is solvable then the
algorithm yields one of its solutions.

Corollary 3.2 For fixed d, k the complexity of the algorithm is polynomial.

The construction and the Theorem extend literally to polynomials with coefficients
from a field F of characteristic zero (for complexity bounds one needs that the elements of



F' are given in an efficient way). For F' of a positive characteristic one can obtain similar
results replacing the zero test from Section 1 by the zero test from [5].
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