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Abstract

We introduce a concept of a fractional-derivatives series and prove that any linear par-
tial differential equation in two independent variables has a fractional-derivatives series so-
lution with coefficients from a differentially closed field of zero characteristic. The obtained
results are extended from a single equation toD-modules having infinite-dimensional space
of solutions (i. e. non-holonomic D-modules). As applications we design algorithms for
treating first-order factors of a linear partial differential operator, in particular for finding
all (right or left) first-order factors.
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Introduction

It is well-known that any polynomial equation t(x, y) = 0 has degy(t) (counting with multi-
plicities) zeroes being Newton-Puiseux series (see e. g. [26])

y(x) =
∑

i0≤i<∞
yix
−i/q (1)

for suitable integers q ≥ 1, i0 and the coefficients yi from an algebraically closed field.
In this paper an analogue of Newton-Puiseux series for partial linear differential equations

T = 0 is proposed, and we prove that T = 0 has a solution of this form. Whereas a
Newton-Puiseux series is developed for a (plane) curve, we restrict ourselves with linear
partial differential operators T in two derivatives dx, dy (in case of 3 or more derivatives there
are no solutions of this form in general, see Remark 4.10).

One of the principal features of Newton-Puiseux series is the appearance of fractional
exponents. Thus, a question arises, what could be an analogue of fractional powers, so to
say ”fractional derivatives”? An evident observation shows that in the derivative y′(x) =∑

i(−i/q + 1)yi−qx−i/q the i-th coefficient depends on the (i− q)-th coefficient of y(x) itself.
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That is why as a differential analogue of Newton-Puiseux series we suggest a fractional-
derivatives series of the form ∑

0≤i<∞
hiG

(−i/q)

where hi being elements of a differentially closed (or universal in terms of [13]) field F
and G(−i/q) is called (−i/q)-th fractional derivative of G. The symbol G = G(0) =
G(s2,...,sk)(f1, f2, . . . , fk) is defined by rational numbers 1 > s2 > · · · > sk > 0 and
f1, . . . , fk ∈ F (if to continue the analogy with curves, G plays a role of a uniformizing
element). For any rational s the s-th fractional derivative G(s) fulfills the identity

dG(s) = (df1)G(1+s) + (df2)G(s2+s) + · · ·+ (dfk)G(sk+s)

where either a derivative d = dx or d = dy. The common denominator q of s2, . . . , sk plays a
role similar to one of the common denominator of the exponents in a Newton-Puiseux series
(1). The inequality k ≤ q holds.

In a particular case k = 1 we have q = 1 and as G one can take g(f1) for any univari-
ate (”undetermined”) function g, provided that the composition makes sense, the fractional
derivatives G(s) = g(s)(f1) for integers s. We note that finite sums∑

i0≤i≤i1

hiG
(−i)

(so, for k = q = 1) appear in the Laplace method as solutions of some second-order equations
T = 0 (see e. g. [4, 25]).

One can find necessary in the sequel information on D-modules in [2], [16], a survey on
their algorithmical aspects in [20]. We mention that there are also applications of Newton
polygons over the Weyl algebra C[x, dx]: in [16] to meromorphic connections, in [17] to micro-
differential operators and in [18] to the Fourier transform. In case of linear ordinary differential
operators Newton polygons are employed to produce the canonical form basis of the space of
solutions (see e. g. [27], also [7] where an algorithm for this problem with a better complexity
bound was designed). A similar form of solutions for linear partial differential operators were
studied in [1] where, nevertheless, also examples are exhibited of operators without solutions
of this form. On the problem of factoring a linear ordinary differential operator one can look
in [19], see also [7].

In Section 1 we introduce the principal concept of fractional-derivatives series and give
some their basic properties.

In the sequel the crucial role plays the multiplicity m of a linear factor of the symbol of
the linear partial differential operator T (with coefficients in F ) of an order n: the symbol is
a homogeneous polynomial in two variables dxf1, dyf1 of the degree n which corresponds to
the highest derivatives of T . In Section 2 we develop a method for constructing fractional-
derivatives solutions of T = 0 and prove the existence of such a solution with q ≤ m. The
method is similar to the Newton-Puiseux expansion, it produces a relevant convex polygon
similar to the Newton one, but differs in several aspects. The main of the latter is that the
leading equation corresponding to a certain (leading) edge of the polygon is not a univariate
polynomial unlike the Newton-Puiseux expansion, but rather a non-linear first-order partial
differential equation. This creates difficulties in defining a multiplicity of a solution of the
leading equation. Also it is unclear, what could be a differential analogue of the statement (cf.
above) that an algebraic equation t = 0 has precisely degy(t) Newton-Puiseux series solutions
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of the form (1)? Partially these questions are answered for the introduced in Section 3 generic
fractional-derivatives series solutions.

In Section 4 the result of Section 2 is extended from a single partial linear differential
equation to a system of equations in several unknown functions having an infinite-dimensional
space of solutions (or in other words, to a D-module of a non-zero differential type, one can call
it a non-holonomic D-module). To this end for any left ideal J ⊂ F [dx, dy] of the differential
type 1 we yield an operator p ∈ F [dx, dy] and show that any fractional-derivatives series
solution of the equation p = 0 which corresponds to a linear factor (different from dyf1) of
the symbol of p, is a solution of the ideal J as well. In Section 5 we exploit the relation of
equivalence of ideals introduced in [10] and establish a kind of duality between equivalence
classes of non-holonomic ideals and their sets of fractional-derivatives series solutions. Namely,
it is proved that two non-holonomic left ideals J, J1 ⊂ F [dx, dy] are equivalent if and only
if their respective sets of fractional-derivatives series solutions coincide. Also we express the
quotient of the spaces of fractional-derivatives series solutions of non-holonomic ideals J ⊂ J1

via the module of relative syzygies [10] of this pair of ideals.
In Section 6 it is shown that in case of a separable operator T any its power series

solution can be obtained as a sum of specifications of its suitable fractional-derivatives series
solutions, thereby establishing completeness of the latter. In Section 7 we provide applications
of fractional-derivatives series to studying first-order factors of an operator, exploiting that
in case of a first-order operator T = dy + adx + b its fractional-derivatives series solutions
turn to a single term of the form hG(f) where (dy + adx)f = 0 and h being a particular
solution of T = 0. In Subsection 7.1 an algorithm is designed which finds first-order factors
of a given operator, and in Subsection 7.3 an algorithm which constructs the intersection
of all the principal ideals generated by the first-order factors of the operator. In Section 8
the possible fractional-derivatives series solutions of a second-order operator obtained by the
algorithm from Section 2 are described. This description can help to imagine the shape of
fractional-derivatives series solutions and the difficulties which appear while their developing.

1 Fractional-derivatives series

Let F be a differential field of the characteristic 0 with the derivatives {dj} and a subfield of
constants C ⊂ F [13].

Definition 1.1 Let f1, . . . , fk0 ∈ F and rational numbers 1 > s2 > · · · sk0 > 0. We introduce
a symbol G = G(0) = Gs2,...,sk0

(f1, f2, . . . , fk0) together a set {G(s)}s∈Q of its fractional s-th
derivatives satisfying the following rule of differentiation for any derivative d = dj:

dG(s) = (df1)G(1+s) + (df2)G(s2+s) + · · ·+ (dfk0)G(sk0
+s)

Clearly, these differentiations commute with each other and one can consider the free
F -module with the basis {G(s)}s∈Q as a D-module.

Definition 1.2 Let q be the common denominator of s2, . . . , sk0 and hi ∈ F, i ≥ 0, s0q ∈ Z.
Then

H =
∑

0≤i<∞
hiG

(s0−i/q) (2)

we call a fractional-derivatives series.
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For a given G all the fractional-derivatives series (with added 0) constitute a D-module
(we study it below in Section 4). Obviously, k0 ≤ q.

It is easy to see that G satisfies a suitable linear partial differential equation with coeffi-
cients in F .

Remark 1.3 The symbol G plays a role in H similar to the role of the parameter x in a
Newton-Puiseux series (1). In particular, specifying the values of x in a certain field one gets
points of (a branch of) the curve given by (1). Here one can also provide some specifications
of G. Indeed, for an arbitrary family {ci/q}i∈Z where ci/q ∈ C the following set

G(s) =
∑

j1≥0,...,jk0
≥0

c−s−j1−j2s2−···−jk0
sk0

f j11

j1!
· · ·

f
jk0
k0

jk0 !

satisfies Definition 1.1.
For example, in case when F is the ring of functions analytic in a certain neighborhood of

a given point in the multidimensional complex space and the absolute values |ci/q| are bounded,
the latter series also converges in a suitable neighborhood.

From now on let F have two derivatives {dx, dy}. Consider a linear operator

T = T0 + · · ·+ Tn (3)

of the order n where Tp =
∑

0≤j≤p bj,pd
j
xd
p−j
y contains the derivatives of the order p and

the coefficients bj,p ∈ F . The following lemma holds, in fact, for an arbitrary number of
derivatives, nevertheless, the assumption that F has two derivatives simplifies the notations
and in the sequel we deal just with operators in two derivatives (one can verify lemma by a
direct calculation).

Lemma 1.4 djxd
p−j
y (hG) equals the sum of the terms of the form

1
w1! · · ·wN !

(
j

l1,1, . . . , l1,m1 , . . . , lk0,1, . . . , lk0,mk0
, l

)(
p− j

r1,1, . . . , r1,m1 , . . . , rk0,1, . . . , rk0,mk0
, r

)
∏

1≤i≤m1

(dl1,i
x d

r1,i
y f1) · · ·

∏
1≤i≤mk0

(d
lk0,i
x d

rk0,i
y fk0)(dlxd

r
yh) ·G(m1+s2m2+···+sk0

mk0
)

for all partitions l1,1 + · · · + l1,m1 + · · · + lk0,1 + · · · + lk0,mk0
+ l = j of j and r1,1 + · · · +

r1,m1 + · · · + rk0,1 + · · · + rk0,mk0
+ r = p − j of p − j such that lκ,i + rκ,i ≥ 1 for ev-

ery 1 ≤ κ ≤ k0, 1 ≤ i ≤ mκ , where w1, . . . , wN denote the cardinalities of the partition
of the triples (l1,1, r1,1, 1), . . . , (l1,m1 , r1,m1 , 1), . . . , (lk0,1, rk0,1, k0), . . . , (lk0,mk0

, rk0,mk0
, k0)

into equal ones, in particular, w1 + · · ·+ wN = m1 + · · ·+mk0.

2 Constructing fractional-derivatives series solutions

From now on we suppose that the field F is differentially closed (or universal in terms of [13]).
The main purpose of this section is to prove that a linear partial differential equation

T = 0, see (3), has a solution of the form (2). To simplify the notations we put s0 = 0 and
h = h0 6= 0 in (2).
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Denote by T̄p(dxf1, dyf2) =
∑

0≤j≤p bj,p(dxf1)j(dyf1)p−j a homogeneous form of the degree
p in dxf1, dyf1. Sometimes, T̄n = symb(T ) is called the symbol of T . Fix a linear factor
a1dxf1 + a2dyf1 of T̄n having a multiplicity m, the coefficients a1, a2 ∈ F .

Expanding T (H) with respect to the fractional derivatives {G(s)}s for k = 1 (in other
words, assuming for the time being that dG(s) = (df1)G(1+s), see Definition 1.1), we get
that the coefficient at G(n) vanishes, i. e. h · symb(T ) = 0. Thus, we can suppose that
(a1dx + a2dy)f1 = 0. Choose any such f1 with grad(f1) 6= 0.

For k ≥ 2 we introduce an auxiliary polygon Pk playing the role similar to the Newton
polygon. Now let k = 2, in other words, we assume (for the time being) that dG(s) =
(df1)G(1+s) + (df2)G(s2+s). The next purpose is to construct s2 and f2. It suffices to consider
the expansion of the first term T (hG) of T (H) (we’ll come back to this issue at the end of the
present section). When we talk about the expansion of T (hG) we always refer to Lemma 1.4.
If a term b(

∏
1≤i≤t(d

li
xd

ri
y f2))G(s+s2t) occurs in T (hG), where b is a differential polynomial in

f1 and in h (being linear in h), then we place the point (s, t) in P2 (observe that s, t ≥ 0 in
P2 are always integral). As P2 we take the convex hull of these points with the origin (0, 0).
If to assign the weight 1 to every derivative dlxd

r
yf1 then any term in b gets the weight s due

to Lemma 1.4.
One can observe that P2 lies to the left from the line L̄1 = {s + t = n} with the slope 1

(under the slope of the line {s+ jt = const} we mean j) again due to Lemma 1.4. Moreover,
the point (n−m,m) ∈ L̄1 belongs to P2 because the non-zero term

T̄n
((a1dx + a2dy)f1)m

· ((a1dx + a2dy)f2)m ·G(n−m+s2m)

occurs in the expansion of T (hG), taking into account that the factor (a1dx + a2dy)f1 has
the multiplicity m in T̄n, and no other term from this expansion gives a contribution in the
coefficient at the point (n − m,m). Similarly, one verifies that the points (n − t, t) with
0 ≤ t ≤ m− 1 do not belong to P2.

Now we assign a (yet unknown) weight s2 to every derivative dlxd
r
yf2. Therefore, to find

s2 < 1 we consider the edges of P2 with the positive slopes less than 1. Choose any such edge
L2 (we call it leading) with the endpoints (j1, t1), (j2, t2), t1 > t2; we have seen already that
t1 ≤ m. Then the slope of L2 provides s2 = (j1 − j2)/(t1 − t2).

To find f2 we consider the leading differential polynomial Q2(f2) which equals the sum
of the coefficients at all the points of P2 which lie on L2. Then Q2(f2) coincides with the
coefficient at G(j1+s2t1) in the expansion of T (hG). As f2 ∈ F we take a solution of the leading
equation Q2(f2) = 0. Evidently, j1 + s2t1 < n since the point of intersection of the line L̄2

(which contains the edge L2) with j-axis {t = 0} is located to the left of the intersection of
L̄1 with j-axis.

Thus, we are able to formulate the recursive hypothesis of the procedure under description
which constructs 1 > s2 > s3 > · · · and f1, f2, f3, . . .. Suppose that s2, . . . , sk and f1, f2, . . . , fk
are already constructed. In addition, a polygon Pk is constructed being a convex hull of the
points (j, t) (together with the origin (0, 0)) such that a term

b(
∏

1≤i≤t
dlixd

ri
y fk)G

(j+skt) (4)

occurs in the expansion of T (hG) under the assumption dG = (df1)G(1) + (df2)G(s2) + · · · +
(dfk)G(sk), see Definition 1.1 (observe that for k ≥ 3 a rational coordinate j ≥ 0 can be
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non-integral, while t ≥ 0 is always integral). A certain leading edge Lk of Pk is chosen with
a slope sk > 0 and with the endpoints (j3, t3), (j4, t4), t3 > t4. We name (j3, t3) the pivot
of Lk and t3 the multiplicity of Lk. The leading differential polynomial Qk(fk) equals the
sum of the coefficients at all the points of Pk which lie on Lk. Then Qk(fk) coincides with
the coefficient at G(j3+skt3) in the expansion of T (hG). As fk ∈ F a solution of the leading
equation Qk(fk) = 0 is taken. The points of intersections of the lines L̄1, L̄2, . . . with j-axis
decrease. Denote by qk the common denominator of s2, . . . , sk, obviously q1 = 1.

To carry out the recursive step, we make the assumption dG = (df1)G(1) + (df2)G(s2) +
· · · + (dfk)G(sk) + (dfk+1)G(sk+1). The boundary of the polygon Pk+1 above the pivot of Lk
(including the pivot itself) is the same as of Pk.

Let us calculate the points of Pk+1 located on the line L̄k. Denote by Bt (t4 ≤ t ≤ t3) the
coefficient of Pk at the point (j3+sk(t3−t), t) ∈ Lk. Then Qk =

∑
t3≤t≤t4 Bt. One can observe

that Bt contains no higher derivative dlxd
r
yfk with l+r ≥ 2. Indeed, if otherwise Bt contained a

term of the form (4) then the coefficient of Pk at the point (j3+sk(t3−t), t+
∑

1≤i≤t(li+ri−1))
would contain the term

b(dxfk)
∑

1≤i≤t li(dyfk)
∑

1≤i≤t riG(j3+sk(t3+
∑

1≤i≤t(li+ri−1)))

due to Lemma 1.4, hence the point (j3 + sk(t3 − t), t+
∑

1≤i≤t(li + ri − 1)) should belong to
Pk which leads to a contradiction when

∑
1≤i≤t(li + ri − 1) ≥ 1.

Besides, Bt is a linear form in the derivatives of h. We claim that Bt = hB̃t for an appropri-
ate differential polynomial B̃t in f1, . . . , fk. Indeed, if Bt contained a term (dlxd

r
yh)b̃G(j3+skt3)

with l+r ≥ 1 for a certain b̃ being a differential polynomial in f1, . . . , fk, then the coefficient of
Pk at the point (j3+sk(t3−t), t+l+r) would contain the term hb̃(dxfk)l(dyfk)rG(j3+sk(t3+l+r))

due to Lemma 1.4, therefore, the point (j3 + sk(t3 − t), t + l + r) should belong to Pk, the
achieved contradiction proves the claim.

Thus, Bt will be treated as a homogeneous (of the degree t) polynomial in dxfk, dyfk. For
more generality of the auxiliary results below we deem that Bt is a homogeneous polynomial in
the variables v1, . . . , vp, thereby p = 2 and v1 = dxfk, v2 = dyfk. We denote the corresponding
derivatives v̄1 = dxfk+1, v̄2 = dyfk+1.

Remark 2.1 Since the main purpose of the present section is to prove the existence of so-
lutions of the form (2) of an equation T = 0 (see (3)) it suffices to study only the canonical
solutions, namely, when each sk is the slope of a certain edge of Pk and fk satisfies a leading
equation. Alternatively, one could take sk to be the slope of some line passing through a single
vertex, say (j3, t3) of Pk. In this case Bt3(fk) = 0, because Bt3 is a homogeneous polynomial
in dxfk, dyfk, we get that fk fulfills a certain first-order linear equation b1dxfk + b2dyfk = 0.
There is no way to bound the denominators sk for non-canonical solutions (2), the number of
steps k0, moreover, the procedure of constructing 1 > s2 > s3 > · · · and f1, f2, f3, . . . could last
infinitely. One might even choose real exponents sk (cf. [11] where an analogue of Newton-
Puiseux series solutions with real exponents was studied for non-linear ordinary differential
equations).

Denote by B̄t(0 ≤ t ≤ t3) the coefficient at the point (j3 + sk(t3 − t), t) ∈ L̄k of Pk+1.
Taking into account the assumption on dG and Lemma 1.4, we have

B̄t =
∑

i1+···+ip=t

1
i1! · · · ip!

∂tQk

∂vi11 · · · ∂v
ip
p

v̄i11 · · · v̄
ip
p (5)

6



Therefore, B̄t = hB̂t where B̂t can be treated as a homogeneous polynomial in v̄1, . . . , v̄p of
the degree t with the coefficients being differential polynomials in f1, . . . , fk. Let t0 be the
minimal t such that B̄t 6= 0. Then t0 ≥ 1 because Qk(fk) = 0, and t0 ≤ t3 because B̄t3 is
obtained from Bt3 by means of replacing vi for v̄i, 1 ≤ i ≤ p. One can view t0 as a kind of
multiplicity of the solution fk in Qk.

Lemma 2.2 t0 ≤ t4 + (t3−t4)qk−1

qk
.

Proof. Suppose the contrary. First we observe that the gap between the ordinates of any
pair of consecutive points on Lk is at least qk/qk−1 and that e = (t3− t4)qk−1/qk is an integer
(cf. [26]). Hence Lk contains at most e+ 1 points. Without loss of generality for the sake of
conveniency of notations we assume that Lk contains exactly e+1 points (some among them,
perhaps, with zero coefficients Bt).

Due to the supposition and the choice of t0 we have B̄t = 0 for t4 ≤ t ≤ t4 + e, i. e. all
the derivatives

∂tQk

∂vi11 · · · ∂v
ip
p

of the order t vanish. Fix for the time being non-negative integers j1, . . . , jp with the sum
j1 + · · ·+ jp = t4. Then

0 =
∑

i1≥j1,...,ip≥jp;i1+...+ip=t

(t− t4)!
(i1 − j1)! · · · (ip − jp)!

∂tQk

∂vi11 · · · ∂v
ip
p

vi1−j11 · · · vip−jpp

=
∑
l≥t

(l − t4)!
(l − t)!

∂t4Bl

∂vj11 · · · ∂v
jp
p

due to the Euler’s formula. The latter equalities can be treated as a linear (e + 1) × (e + 1)
system with a non-singular matrix. Its non-singularity is justified by the following result [15]:
if n1 > · · · > nr ≥ 0;m1 > · · · > mr ≥ 0;n1 ≥ m1, . . . , nr ≥ mr then the r × r matrix with
the entries

(
ni
mj

)
is non-singular. Therefore,

∂t4Bl

∂vj11 · · · ∂v
jp
p

= 0

for any l and any j1, . . . , jp with j1 + · · ·+ jp = t4, in particular Bt4 vanishes identically, the
obtained contradiction proves the lemma.

Corollary 2.3 If t0 = t3 then the denominator qk−1 = qk does not change.

Now we are in position to continue the recursive step of the procedure constructing
sk+1, fk+1. The polygon Pk+1 either contains the edge with the slope sk and with the ordi-
nates t0 < t3, respectively, of its endpoints, or the edge of Pk+1 with its above endpoint (j3, t3)
has the slope less than sk. In the first case as a leading edge Lk+1 one takes an edge of Pk+1

having a positive slope sk+1 with the ordinate t5 of its upper endpoint (j5, t5) less or equal
to t0. In this case (j5, t5) plays the role of a new pivot with t5 being the multiplicity of Lk+1.
As above one produces the leading differential polynomial Qk+1(fk+1) and as fk+1 chooses a
solution of the equation Qk+1(fk+1) = 0. In the second case the denominator qk = qk−1 does

7



not increase due to Corollary 2.3, and as Lk+1 one takes an edge of Pk+1 having a positive
slope sk+1 with the ordinate t5 of its upper endpoint (the pivot) (j5, t5) less or equal to t3.
The rest is similar to the first case.

Thus, we have described a recursive procedure constructing 1 > s2 > s3 > · · · and
f1, f2, f3, . . . which one can view as a tree.

Lemma 2.4 i) The common denominator q of s2, s3, . . . does not exceed 2m−1;
ii) there exists a branch of the tree in which the common denominator q is less or equal

to m;
iii) every branch of the tree after at most of q steps arrives to a leading edge with a

non-positive slope.

Proof. First we recall that the multiplicity of any leading edge in P2 is less or equal to
m. Therefore, i) follows from Lemma 2.2: if at a certain step the common denominator qk−1

is multiplied by qk/qk−1 then the multiplicity decreases at least by qk/qk−1 − 1. After the
multiplicity reaches 1, the denominator does not change anymore.

ii) Let us take at each step of the described recursive procedure the leading edge with the
least possible slope, while the latter is positive. The ordinate of the lower endpoint of this
edge t4 = 0. Therefore, Lemma 2.2 entails that t0 ≤ t3qk−1/qk, this implies ii).

iii) follows from Definition 1.1 because k0 ≤ q.
Assume now that Pk+1 in the described procedure contains an edge having a non-positive

slope (see Lemma 2.4 ii)). Take such edge L = Lk+1 with the largest possible non-positive
slope in Pk+1. We have shown above that the coefficient B̄t5 at the pivot (j5, t5) of Lk+1 equals
to hB̂ where B̂ is a suitable homogeneous polynomial of the degree t5 in dxfk+1, dyfk+1 with
the coefficients being differential polynomials in f1, . . . , fk. Denote by B̄ the coefficient at the
point (j5, 0) of Pk+1, being a linear homogeneous operator in h (one can show that the order
of B̄ does not exceed t5 in the same manner as it was shown that B̄t5 has the order 0 in h).
If B̂ contains a term b(dxfk+1)l(dyfk+1)t5−l for some l and b being a differential polynomial
in f1, . . . , fk, then B̄ contains the term b((dx)l(dy)t5−lh) due to Lemma 1.4. Hence the order
of B̄ is greater or equal to t5 (actually, equals t5 as we have seen, although we use below only
that the order of B̄ is positive). In particular, the slope of L equals 0, and Pk+1 contains no
edges with negative slopes. In the construction under description fk+1 does not appear and
as h ∈ F we take a solution of the linear homogeneous differential equation B̄(h) = 0 (which
can be viewed as a leading equation on h).

This completes the construction of the first summand hG of the solution H of the form
(2). To obtain the next coefficient h1 of H we observe that in the expansion of T (h1G

(−1/q)) in
the fractional derivatives {G(i/q)}−∞<i<∞ the highest non-zero term equals B̄(h1)G(j5−1/q),
taking into account that this expansion is obtained by means of the shift by −1/q of the
expansion of T (hG) while replacing h for h1. Therefore, for h1 ∈ F we get a linear partial
differential equation (not necessary, homogeneous) of the form B̄(h1) = f̄ (so, of the same
order t5) for an appropriate f̄ ∈ F being a differential polynomial in h, f1, . . . , fk0 (in the
above notations k0 = k). In a similar way one obtains consecutively h2, h3, . . ..

Summarizing, the following theorem is proved.

Theorem 2.5 Any linear partial differential equation T = 0 of an order n (see (3)) for each
linear factor (a1dxf1 + a2dyf1) of a multiplicity m of its symbol symb(T ) has a non-zero
fractional-derivatives series solution of the form (2) with the denominator q ≤ m.
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One can continue every branch of the tree of the described procedure constructing 1 > s2 >
s3 > · · · and f1, f2, . . . to a solution of the form (2) of T = 0, and every solution of the form
(2) constructed by a described procedure has the denominator q ≤ 2m−1.

Corollary 2.6 If an LPDO T of an order n has no fractional-derivatives series solutions
with the denominator q < n then T is irreducible in F [dx, dy].

Remark 2.7 The bound q ≤ m is sharp as shows the following example. Take T (see (3))
such that (a1dxf1 + a2dyf1) has the multiplicity m in T̄n, the multiplicity greater or equal to
m − i in T̄n−i for every 1 ≤ i ≤ m − 2 and the multiplicity 0 in T̄n−m+1,respectively. Then
the polygon P2 has the edge with the endpoints (n − m,m) and (n − m + 1, 0) which being
taken as a leading one (actually, there is no other choice for a leading edge), provides the
slope s2 = 1/m.

Remark 2.8 Theorem 2.5 states the bound q ≤ m for a particular solution. It is unclear how
sharp is the bound q ≤ 2m−1 for all constructed solutions. The natural question is whether
one can improve it by m (one can verify it for m ≤ 7 by the direct calculations)? This would
be similar to the algebraic situation in which such a bound on the common denominator in all
Puiseux series (1) is well known (see e. g. [26]). We also mention that for solutions in the
canonical form basis [27] of linear ordinary differential equations a similar to the algebraic
situation bound on the common denominator (of the rational exponents) was established in
[7].

3 Multiplicity of generic fractional-derivatives series solutions

In the described recursive construction fk was chosen as a solution of the equation Qk(fk) =
0. Different choices of fk could yield different polygons Pk+1. Therefore, the set of (even
canonical fractional-derivatives series, see Remark 2.1) solutions of the equation T = 0 is
quite vast. An interesting open question is whether it is possible to introduce a concept of a
multiplicity of a set of fractional-derivatives series solutions and relate it to m? In the present
section we give a partial answer to this question for the so-called generic solutions.

We view Qk as a polynomial in two variables v1 = dxfk, v2 = dyfk. Note that this
polynomial is not homogeneous, consider its factorization Qk = βm1

1 · · ·βml
l β over F where β

is homogeneous and β1, . . . , βl are irreducible non-homogeneous. In the recursive construction
from Section 2 we distinguish a case which we call generic, namely, when βi(dxfk, dyfk) = 0
for a certain 1 ≤ i ≤ l such that mi = min{m1, . . . ,ml}, and the point (dxfk, dyfk) is a
non-singular one of the plane curve Qk = 0. In the generic case for the multiplicity of fk we
have t0 = mi due to (5). One can assign the multiplicity t0 to the set of all fk satisfying the
generic case. We call a solution (2) generic if for each of f2, . . . , fk0 the generic case happens
in the construction of (2). When k0 = 1 we call (2) generic as well. At the end of developing
any generic solution we arrive to a polygon Pk+1 having a leading edge Lk+1 with the slope 0.
Let the upper endpoint (pivot) of Lk+1 be (j5, t5), then to this generic solution we assign the
multiplicity t5. Observe that we have assigned the multiplicity to the set of all the generic
solutions (2) which follow the same branch in the tree of the construction from Section 2.

Proposition 3.1 Any linear partial differential equation T = 0 of an order n
i) has a generic solution of the form (2);

9



ii) the sum of multiplicities of the generic solutions does not exceed n;
iii) the denominator of every generic solution is less than nO(logn).

Proof. Each Qk, k ≥ 2 is non-homogeneous, that is why i) is justified taking into account
Theorem 2.5.

ii) follows (similar to the algebraic Newton-Puiseux series [26]) by inverse induction along
the tree of the procedure described in Section 2 due to the inequality m1 + · · ·+ml ≤ t3− t4.

The latter inequality together with Lemma 2.2 imply that t0 ≤ t3
qk

2qk−qk−1
. Therefore, in

developing a generic solution by means of the procedure from Section 2 there are at most
log3/2 n steps at which the denominator augments. At each such step the denominator grows
less than in n times (cf. the proof of Lemma 2.2), this entails iii).

Remark 3.2 In a particular case m = 1 we have q = k0 = 1, all the solutions of the form (2)
are canonical, the polygon P2 contains a single edge with a slope less than 1, namely, the edge
with the endpoints (n − 1, 1) and (n − 1, 0) having the slope 0. It provides the leading linear
equation on h of the first order, the leading equation (a1dx + a2dy)f1 = 0 on f1 is linear and
of the first order as well, thus, the multiplicity 1 is assigned to the set of (generic) solutions
in case m = 1.

Remark 3.3 While in (2) we consider series with decreasing orders of derivatives of G, one
can easily verify that an equation T = 0 for an arbitrary f ∈ F has a solution of the form∑

0≤i<∞
hiG

(i)

where G = G(f), with increasing orders of derivatives of G. Thus, continuing the analogy with
plane curves, the latter series could be viewed as corresponding to expanding at finite points
all being regular (so, without proper fractional derivatives, i. e. k0 = 1 in Definition 1.1),
while (2) corresponds to expanding at the infinity.

4 Fractional-derivatives series solutions of non-holonomic
D-modules

First let J = 〈p1, . . . , pl〉 ⊂ F [dx, dy] be a differential (non-holonomic) left ideal of the differ-
ential type 1 [13, 14]. This means that the Hilbert-Kolchin polynomial KJ(z) = ez + e0 of
J has the degree 1. Denote by symb(J) ⊂ F [dxf1, dyf1] a homogeneous ideal generated by
the symbols of elements of J (cf. Section 2). Then KJ coincides with the Hilbert polynomial
Ksymb(J) [2, 21] (one can also deduce this from the Janet base of J [22, 10], we mention that
the concept of Janet bases was a differential historical predecessor of the one of Groebner
bases). Denote g = GCD(symb(J)) ∈ F [dxf1, dyf1].

Lemma 4.1 The degree e of the ideal symb(J) coincides with deg(g).

Proof. Since symb(J) ⊂ 〈g〉 it suffices to verify that dimF (〈g〉/symb(J)) <∞. Nullstel-
lensatz entails that (symb(J)/g) ⊃ (dxf1, dyf1)s for a suitable s, therefore, the homogeneous
component

〈g〉deg(g)+s = g · (dxf1, dyf1)s ⊂ g · (symb(J)/g) = symb(J)

10



Remark 4.2 If ideal J ⊂ F [dx, dy] is holonomic (so, with differential type 0) then
GCD(symb(J)) = 1.

The degree e (being the leading coefficient of the Hilbert-Kolchin polynomial) is called
the typical differential dimension of J [13, 14].

For any homogeneous polynomial g0 ∈ F [dxf1, dyf1] and a ∈ F denote by multa(g0) the
multiplicity of the linear form dxf1 +adyf1 in g0. Also for any p ∈ F [dxf1, dyf1] we denote for
brevity multa(p) = multa(symb(p)). W.l.o.g. assume that dyf1 does not divide g (otherwise,
one can perform a suitable C-linear transformation of dx, dy). We have multa(symb(J)) =
multa(g) and e =

∑
amulta(g) (cf. Lemma 4.1). For the time being fix a ∈ F such that

multa(g) ≥ 1.
Now we introduce the ring R = F [dx, dy](F [dy])−1 of partial-fractional differential opera-

tors [8]. Its elements has the form p0b
−1 where p0 ∈ F [dx, dy], b ∈ F [dy]. One can verify (see

[8]) that R is an Ore ring [2], any element of R can be written in a form b̄−1p̄ for appropriate
p̄ ∈ F [dx, dy], b̄ ∈ F [dy]. Thereby R = (F [dy])−1F [dx, dy] and p0b

−1 = b̄−1p̄ if and only if
b̄p0 = p̄b. Also in [8] one can find the algorithms for addition and multiplication of elements in
R. Any element from R can be written in the form b−1

∑
0≤i≤w bid

i
x for suitable b, bi ∈ F [dy]

(because a finite family of elements from R has a common denominator which belongs to
F [dy], see [8]).

For the time being fix G = G(s2,...,sk)(f1, . . . , fk) such that (dx + ady)f1 = 0, dyf1 6= 0 (cf.
Section 1). Denote by V = VG the F [dx, dy]-module which consists of all fractional-derivatives
series of the form (2) added by 0.

Lemma 4.3 V is an R-module

Proof. For any 0 6= H ∈ V and 0 6= b ∈ F [dy] we claim that bH 6= 0. Indeed, let

H = hG(s) +
∑
i≥1

hiG
(s−i/q), h 6= 0; b = tnd

n
y +

∑
0≤i≤n−1

tid
i
y, tn 6= 0,

then
bH = htn(dyf1)nG[s+n) +

∑
i≥1

ĥiG
(s+n−i/q) 6= 0

For any H1 ∈ V we need to prove the existence of H̄ ∈ V such that b−1H1 = H̄, i. e. H1 =
bH̄ (the claim above implies that H̄ is unique). Let H1 = h1,0G

(s)+h1,1G
(s−1/q)+· · · ;h1,0 6= 0.

Then we look for H̄ = h̄G(s−n) + h̄1G
(s−n−1/q) + · · ·. Comparing the coefficients of H1 and

bH̄ at G(s), we get h1,0 = h̄tn(dyf1)n which yields h̄. Comparing the coefficients at G(s−1/q)

yields h̄1 and so on.

Remark 4.4 By the same token multiplying by 0 6= p ∈ F [dx, dy] on V is an isomorphism,
provided that (dx + ady)f1 does not divide symb(p).

The ring R is left-euclidean (as well as right-euclidean) with respect to dx over the skew-
field F [dy](F [dy])−1, cf. Lemma 1.3 [8]. Hence the ideal J = 〈p1, . . . , pl〉 ⊂ R is principal, let
J = 〈p〉 for an appropriate p ∈ J ⊂ F [dx, dy]. Then for any p0 ∈ J (actually, moreover for
p0 ∈ J) the equalities

p0p = b0p0, bp =
∑

1≤j≤l
pjpj (6)
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hold for suitable pj ∈ F [dx, dy]; 0 6= b, b0 ∈ F [dy].
According to (6) we have symb(p0)symb(p) = symb(b0)symb(p0), whence

multa(p0) = multa(b0) +multa(p0) = multa(p0) +multa(p) ≥ multa(p),

therefore, multa(p) ≤ multa(J) since

multa(J) = multa(g) = min
p0∈J

multa(p0).

On the other hand, from (6) we get

multa(p) = multa(b) +multa(p) = multa(
∑

1≤j≤l
pjpj) ≥ multa(J)

Thus, the following lemma is proved.

Lemma 4.5 For any a ∈ F we have multa(p) = multa(J).

Proposition 4.6 A fractional-derivatives series H with dyf1 6= 0 (see (2)) is a solution of
the linear partial differential equation p = 0 if and only if H is a solution of the ideal J .

Proof. If pH = 0 then from (6) we have 0 = p0pH = b0p0H. Hence p0H = 0 due to
Lemma 4.3. The inverse statement follows again from (6) and Lemma 4.3.

Corollary 4.7 For any a1, a2 ∈ F such that mult(a1dxf1+a2dyf1)(symb(J)) ≥ 1, the ideal J ⊂
F [dx, dy] has a solution of the form (2) with a denominator q ≤ mult(a1dxf1+a2dyf1)(symb(J))
and a1dxf1 + a2dyf1 = 0, grad(f1) 6= 0.

Proof. It follows from Lemma 4.5, Proposition 4.6, Lemma 2.4 and Theorem 2.5.

Remark 4.8 If for every a ∈ F the ideal J has the multiplicity multa(J) ≤ 1 then all the
solutions of J of the form (2) are canonical, and J has precisely e =

∑
a∈F multa(J) (which

equals the typical differential dimension of J , cf. Lemma 4.1) families of fractional-derivatives
series solutions. Moreover, to each of these families a multiplicity 1 can be naturally assigned
(cf. Remark 3.2).

Finally, let U ⊂ (F [dx, dy])l be a (non-holonomic) F [dx, dy]-module of the differential type
at least 1, obviously, the differential type does not exceed 2 (recall that the differential type
equals the degree of the Hilbert-Kolchin polynomial of U [13, 14]). Denote by u1, . . . , ul a
free base of (F [dx, dy])l. For any 1 ≤ r ≤ l consider the submodule Ur = {

∑
r≤i≤l piui ∈ U}

where pi ∈ F [dx, dy]. Denote by Jr = {pr} ⊂ F [dx, dy] the left ideal being the projection of Ur
on the r-th component. Then the differential type of U coincides with the maximum of the
differential types of {Jr}1≤r≤l (one can verify this, e. g. using the Janet bases of {Jr}1≤r≤l
which provide a triangular Janet base of U). Take the minimal r0 such that Jr0 has the
differential type at least 1.

One has the natural action U ×V l → V on the free F [dx, dy]-module V l = {
∑

1≤i≤lHivi}
where Hi ∈ V (cf. Lemma 4.3) and v1, . . . , vl is a free base of V l. If

∑
1≤i≤l piHi = 0 then

we call
∑

1≤i≤lHivi a solution of
∑

1≤i≤l piui (we shall choose G and thereby, V = VG later).
We are looking for a solution of the form

∑
1≤i≤lHivi of the module U .
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First we put Hr0+1 = · · · = Hl = 0 and as Hr0 6= 0 take a fractional-derivatives series
being a solution of the ideal Jr0 according to Corollary 4.7 in case when the differential type
of Jr0 equals 1. When the differential type of Jr0 equals 2, in other words, Jr0 = 0, we take
as Hr0 6= 0 an arbitrary fractional-derivatives series. In both cases Hr0vr0 is a solution of the
submodule Ur0 . Thus, we have chosen G = G(s2,...,sk)(f1, . . . , fk) and thereby, V = VG. As
above we can assume w.l.o.g. that in the equation (a1dx + a2dy)f1 = 0 we have a1 6= 0, so
(dx + ady)f1 = 0 (performing if necessary a suitable C-linear transformation of dx, dy).

Now we construct Hr by recursion on r0−r ≥ 0. Suppose that we have already constructed
an element

∑
r+1≤i≤lHivi being a solution of Ur+1 for some r+1 ≤ r0. Since Jr has the differ-

ential type 0 (due to the choice of r0), Jr contains a certain element 0 6= b ∈ F [dy]. Consider
a corresponding element u = bur+

∑
r+1≤i≤l piui ∈ Ur. According to Lemma 4.3 one can find

Hr ∈ V such that bHr +
∑

r+1≤i≤l piHi = 0. For any element ū =
∑

r≤i≤l p̄iui ∈ Ur applying
the left euclidean division in R one can represent ū = p̄rb

−1u+ û for an appropriate û ∈ Ur+1.
Then û(

∑
r≤i≤lHivi) = 0 by the recursive hypothesis. Besides, p̄rb−1u(

∑
r≤i≤lHivi) = 0

because of Lemma 4.3. Hence ū(
∑

r≤i≤lHivi) = 0 which completes the recursive step.
Summarizing, the following main theorem of the paper is proved.

Theorem 4.9 Any (non-holonomic) module in (F [dx, dy])l of the differential type at least 1
has a fractional-derivatives series non-zero solution.

Remark 4.10 One could consider an ideal J ⊂ F [dx1 , . . . , dxt ] still of the differential type
1 with a number of derivatives t ≥ 3 and ask whether J has always a fractional-derivatives
series solution? The answer to this question is negative already for t = 3 and an ideal J =
〈p1, p2〉 ⊂ F [dx1 , dx2 , dx3 ] (being generic of the differential type 1) generated by an operator
p1 of the first order and p2 of the second order.

5 Duality between non-holonomic ideals and fractional-
derivatives series solutions

There is a well-known duality [13] between (left) differential ideals and their spaces of solutions
(being an analogue of the duality between radical ideals and varieties in algebraic geometry).
To establish a similar duality for non-holonomic ideals in F [dx, dy] (so, of the differential
type 1) we need to make use of the equivalence relation on ideals introduced in [10]. We
say that non-holonomic ideals 0 6= J, J0 ⊂ F [dx, dy] are equivalent if the leading coefficients
of degree 1 (see Section 4) Hilbert-Kolchin polynomials of three ideals J, J0, J ∩ J0 coincide
(denote these leading coefficients by e), then moreover, GCD(symb(J)) = GCD(symb(J0)) =
GCD(symb(J∩J0)) and the degree of the latter polynomial equals e (see Lemma 4.1). In this
case ideal 〈J, J0〉 is also non-holonomic and GCD(symb(〈J, J0〉)) = GCD(symb(J)) as well
[10, 3, 24] and moreover, clearly four ideals J, J0, J ∩ J0, 〈J, J0〉 are equivalent. Equivalence
classes of ideals play a similar role to classes (in algebraic geometry) of plane curves with the
same sets of 1-dimensional components. In this Section we prove that the sets of fractional-
derivatives series solutions of equivalent non-holonomic ideals coincide and that there is a
duality between the equivalence classes of ideals and their respective sets (which basically
means that to distinct classes correspond distinct sets).

In this Section we keep the notations from Section 4. The next lemma states that the
multiplication by 0 6= p ∈ F [dx, dy] on D-module V = VG is an epimorphism (the conditions
on its injectivity follow from Theorem 2.5, cf. also Remark 4.4).
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Lemma 5.1 For any 0 6= p ∈ F [dx, dy] we have pV = V .

Proof. Let 0 6= H1 = hG(s0) +
∑

i≥1 hiG
(s0−i/q) ∈ V (see (2)). We search for H =

hG(s) +
∑

i≥1 hiG
(s−i/q) ∈ V such that pH = H1. Treating h, s as indeterminates we get from

Lemma 1.4 that

p(hG(s)) = ηG(s+κ/q) +
∑

1≤i≤κ
ηiG

(s+κ/q−i/q) (7)

for certain integer κ ≥ 0 and linear ordinary differential operators η 6= 0, ηi in h (with
coefficients being differential polynomials in f1, . . . , fk which we recall are assumed to be
fixed). Indeed, such κ with non-zero η exists since in the expansion of p(hG(s)) the coefficient
at G(s) in (7) equals p(h), so is a non-zero linear ordinary differential operator. Therefore,
we put s = s0 − κ/q, and there exists h ∈ F for which η(h) = h (because F is differentially
closed). At the next step comparing the coefficients of pH and H1 at G(s+κ/q−1/q) one can
find h1 from an equation of the form η(h1) = h̃ for certain h̃ ∈ F , and so on one can find
h2, h3, . . . consecutively.

First consider two equivalent non-holonomic ideals J, J0 ⊂ F [dx, dy]. We claim that four
sets of all fractional-derivatives series solutions of J, J0, J ∩ J0, 〈J, J0〉, respectively, coincide.
As in Section 4 one can suppose w.l.o.g. that dyf1 does not divide g = GCD(symb(J))
and consider left ideals J, J0 ⊂ R being principal. Let J = 〈p〉, J ∩ J0 = 〈p0〉 for suitable
generators p, p0 ∈ F [dx, dy]. Then bp0 = p2p for appropriate p2 ∈ F [dx, dy], 0 6= b ∈ F [dy].
Lemma 4.5 implies that symb(p0) coincides with symb(p) up to a power of dyf1, whence
symb(p2) is a power of dyf1. Therefore, Proposition 4.6 and Remark 4.4 entail the required
claim on coincidence of the sets of fractional-derivatives series solutions of ideals J, J ∩ J0

(and in a similar way also of J0, 〈J, J0〉).
Now let non-holonomic ideals J ( J1 ⊂ F [dx, dy] be non-equivalent. Our purpose is

to find a fractional-derivatives series solution of J being not a solution of J1. Denote g1 =
GCD(symb(J1)), clearly g1|g. Again we suppose w.l.o.g. that dyf1 does not divide g. Let J =
〈p〉, J1 = 〈p1〉 ⊂ R. Then b1p = p3p1 for suitable p3 ∈ F [dx, dy], 0 6= b1 ∈ F [dy]. Since J, J1

are not equivalent we have deg(g1) < deg(g) (see Lemma 4.1) and because of that Lemma 4.5
implies that symb(p3) has a divisor of the form dxf1 + a3dyf1 for a certain a3 ∈ F . Due
to Theorem 2.5 there exists a fractional-derivatives series solution H1 =

∑
i≥i0 hiG

(−i/q) (see
(2)) of equation p3H = 0 for appropriate G = Gs2,...,sk

(f1, f2, . . . , fk) where dxf1+a3dyf1 = 0.
Now we apply Lemma 5.1 to p1 and obtain a fractional-derivatives series H ∈ VG such that
p1H = H1. Therefore, b1pH = 0 and hence pH = 0 in view of Lemma 4.3. Thus, H is a
desired solution of J being not a solution of J1.

Finally, consider non-equivalent non-holonomic ideals J, J1 ⊂ F [dx, dy] and assume that
their respective sets of fractional-derivatives series solutions coincide. Then ideal 〈J, J1〉
has also the same set of fractional-derivatives series solutions, in particular 〈J, J1〉 is non-
holonomic by virtue of Remark 4.2 and of Theorem 2.5. Therefore, due to the proved above
three ideals J, 〈J, J1〉, J1 are equivalent which contradicts to the assumption.

We summarize the proved duality in the following

Proposition 5.2 Non-holonomic left ideals J, J0 ⊂ F [dx, dy] are equivalent if and only if
they have the same sets of all fractional-derivatives series solutions.
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For a non-holonomic ideal I ⊂ F [dx, dy] denote by [I] the equivalence class of non-
holonomic ideals which contains I and by V (I) the set of all fractional-derivatives series
solutions of I. In [10] we define the following partial ordering on the classes: [J ] is subordi-
nated to [I] if there exist ideals J1 ∈ [J ], I1 ∈ [I] such that J1 ⊂ I1.

Corollary 5.3 [J ] is subordinated to [I] if and only if V (I) ⊂ V (J).

Proof. Let V (I) ⊂ V (J), then V (〈I, J〉) = V (I). Proposition 5.2 entails that 〈I, J〉 is
equivalent to I, hence [J ] is subordinated to [I].

The inverse implication is evident.

Now we connect the subordination relation with localizations of ideals in the ring R =
F [dx, dy](F [dy])−1 (see Section 4).

Proposition 5.4 If V (I) ⊂ V (J) then J ⊂ I ⊂ R (provided that dyf1 does not divide
GCD(symb(I))).

Proof. Let J = 〈p〉, I = 〈q〉 for suitable p, q ∈ F [dx, dy] (cf. above). Then p = p0q for
appropriate p0 ∈ R. Whence V (I) ⊂ V (J) relying on Proposition 4.6.

For a pair of left ideals J ⊂ J1 ⊂ F [dx1 , . . . , dxm ] we have introduced in [10] a concept
of relative syzygies. Namely, let J1 = 〈p1, . . . , pt〉, then we define the left module of relative
syzygies

Syz(J, J1) = {(q1, . . . , qt) :
∑

1≤i≤t
qipi ∈ J ; qi ∈ F [dx1 , . . . , dxm ], 1 ≤ i ≤ t}.

Making use of [20] one can verify [10] that module Syz(J, J1) is independent of a choice of
generators p1, . . . , pt. Let us denote by U(J) ⊂ F the space of solutions of J which can be
treated as a C-vector space. It was proved in [10] that the quotient U(J)/U(J1) is isomorphic
to U(Syz(J, J1)) ⊂ F t.

Here we establish a similar result for non-holonomic ideals J ⊂ J1 ⊂ F [dx, dy] and their
spaces of fractional-derivatives series solutions VG(J) ⊂ VG of the form (2) for any G fixed
for the time being (see Section 4), again we treat VG(J) as a C-vector space. As in Section 4
one can assume w.l.o.g. that dyf1 6= 0.

Mapping ψ : v → (p1, . . . , pt)T v assures a monomorphism VG(J)/VG(J1) ↪→
VG(Syz(J, J1)). To show that it is an epimorphism take an arbitrary vector (w1, . . . , wt) ∈
VG(Syz(J, J1)) ⊂ V t

G. The following property holds: for any q1, . . . , qt ∈ F [dx, dy] such that∑
1≤i≤t qipi = 0 (moreover, one can suppose that

∑
1≤i≤t qipi ∈ J) we have

∑
1≤i≤t qiwi = 0.

Clearly, this property holds also for any q1 . . . , qt ∈ R (see Section 4). Consider principal ideal
J1 = 〈p1, . . . , pt〉 = 〈p〉 ⊂ R for suitable p ∈ F [dx, dy]. Then p = b−1

∑
1≤i≤t ηipi for appropri-

ate 0 6= b ∈ F [dy], η1, . . . , ηt ∈ F [dx, dy]. Denote w =
∑

1≤i≤t ηiwi ∈ VG. Due to Lemma 5.1
there exists v ∈ VG such that (

∑
1≤i≤t ηipi)v = w. For each 1 ≤ i0 ≤ t one can find λi0 ∈ R

for which pi0 = λi0p, the mentioned above property implies that wi0 = λi0b
−1(
∑

1≤i≤t ηiwi),
hence wi0 = pi0v, i. e. ψ(v) = (w1, . . . , wt). Finally, we check that v ∈ VG(J). Indeed, an
arbitrary q ∈ J can be represented as q =

∑
1≤i≤t qipi for certain q1, . . . , qt ∈ F [dx, dy], then

(q1, . . . , qt) ∈ Syz(J, J1), whence qv =
∑

1≤i≤t qiwi = 0. Thus, in the introduced notations
we have proved the following
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Proposition 5.5 For any non-holonomic ideals J ⊂ J1 ⊂ F [dx, dy] and G there is an iso-
morphism of C-vector spaces VG(J)/VG(J1) and VG(Syz(J, J1)).

One can deduce Proposition 5.2 from the latter Proposition invoking Theorem 4.9.
It would be interesting to clarify, whether for non-holonomic ideals I, J ⊂ F [dx, dy] the

equality

GCD(symb(I)) ·GCD(symb(J)) = GCD(symb(〈I, J〉)) ·GCD(symb(I ∩ J))

holds? Observe that the degrees of the polynomials in both sides of the latter equality coincide
in view of [3, 24] taking into account Lemma 4.1. A more subtle question is whether for any
G the equality VG(I ∩ J) = VG(I) + VG(J) is true?

6 Completeness of fractional-derivatives solutions for separa-
ble linear partial differential operators

Let T = Tn + · · · + T0 ∈ F [dx, dy] be a separable LPDO, i.e. its symbol symb(T ) = Tn =∏
1≤i≤n(dxf − aidyf) is the product of n pairwise distinct homogeneous linear forms in

dxf, dyf . One can always bring symb(T ) to this form monic with respect to dxf making,
if necessary, a C-linear transformation of dx, dy in case when symb(T ) has a divisor dyf .

For each 1 ≤ i ≤ n the equation T = 0 has a fractional-derivatives series solution of the
form (due to Theorem 2.5)

h0,iG
(0)(fi) + h1,iG

(−1)(fi) + · · · (8)

where dxfi − aidyfi = 0 and h = h0,i satisfies the first-order LPDE

Tn(fi)
(dxfi − aidyfi)

(dxh− aidyh) + Tn−1(fi)h = 0 (9)

We observe that hj,i; j = 1, 2, . . . satisfy similar to (9) equations with the highest (first-order)

form Tn(fi)
(dxfi−aidyfi)

(dxhj,i − aidyhj,i), being not necessary homogeneous.
From now on throughout this section we assume that F is the field of meromorphic

functions in a certain domain M ⊂ C2, thus the coefficients of T belong to F . For a suitable
point (x0, y0) ∈M the series (8) can be rewritten as a formal power series in x−x0, y−y0. Our
goal is to find a point (x0, y0) and look for solutions of T = 0 as power series in x−x0, y− y0.

We choose a point (x0, y0) ∈M such that all the coefficients of T at this point are defined
and in addition, the values ai(x0, y0) are pairwise distinct for 1 ≤ i ≤ n. The latter is
equivalent to that the discriminant of symb(T ) does not vanish at this point. Therefore, all
the points of M out of an appropriate analytic subvariety of M of the dimension 1 satisfy
these requirements.

One takes a solution fi (being a power series in x−x0, y−y0) of the equation dxfi−aidyfi =
0 with a vanishing free coefficient (which we denote by fi(x0, y0) = 0) and with a non-
vanishing vector of coefficients at the first powers of x − x0, y − y0 (which we denote by
(dxfi, dyfi)(x0, y0), thereby dyfi(x0, y0) 6= 0). We observe that this LPDE has always a
solution with arbitrary chosen free coefficient and non-vanishing vector of the coefficients at
the first powers of x − x0, y − y0 since the vector of the coefficients (1,−ai) at its highest
(first) derivatives does not vanish at the point (x0, y0). Hence the free coefficient of the power
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series dxfi − ajdyfi does not vanish when j 6= i due to the requirement on the discriminant.
Therefore, by the same token one can find a solution h of the equation (9) with a non-zero
free coefficient which we denote by h(x0, y0) 6= 0.

We take an arbitrary solution of T = 0, being a power series in x− x0, y − y0 and intend
to represent it as a sum of n solutions of the form (8) (for 1 ≤ i ≤ n) in which G(0)(fi) is
replaced by its specialization (see Remark 1.3)

∑
j≥0

cj,i
f ji
j!

with indeterminate coefficients cj,i ∈ C. Then

G(−l) =
∑
j≥0

cj,i
f j+li

(j + l)!
.

Suppose that by recursion on k the coefficients cj,i for j ≤ k − 1, 1 ≤ i ≤ n are already
produced. Our purpose is to produce ck,i, 1 ≤ i ≤ n. Clearly, any solution of T = 0 being
a power series of the form

∑
p,q≥0 bp,q(x− x0)p(y − y0)q is determined by the coefficients bp,q

with 0 ≤ p ≤ n− 1.
For each 0 ≤ p ≤ n− 1 the contribution of the term at ck,i (see (8)) into bp,k−p equals to

h(x0, y0)(dpxd
k−p
y

fki
k!

)(x0, y0) = h(x0, y0)(api (dyfi)
k)(x0, y0)

taking into account that fi(x0, y0) = 0, dyfi(x0, y0) 6= 0, h(x0, y0) 6= 0.
Therefore, we obtain a linear (algebraic) system (in general, not necessary homogeneous)

on ck,i; 0 ≤ i ≤ n − 1 with the matrix being of the van-der-Monde type (api (x0, y0)). This
allows one to find uniquely ck,i; 0 ≤ i ≤ n− 1 and thereby, carry out the recursive step.

Theorem 6.1 For a separable LPDO T of the order n with the coefficients being meromorphic
in a certain complex domain M the sum of n spaces of specialisations of fractional-derivatives
series solutions of T = 0 of the form (8) (for fixed fi and hj,i) coincides with the space of all
the solutions of T = 0 as formal power series in x− x0, y − y0 for any point (x0, y0) from M
out of a suitable analytic subvariety of the dimension 1.

It would be interesting to extend this theorem to a non-separable LPDO. Let us also
mention that in [9] an algorithm for factoring a separable LPDO was produced.

7 Applications to studying first-order factors of a linear par-
tial differential operator

7.1 Finding first-order factors of a linear partial differential operator

Let T = Tn + . . . + T0 be a LPDO of an order n in 2 independent variables, where Tj =∑
i ai,j−id

i
xd
j−i
y is a sum of the derivatives of the order j. We assume that the coefficients

ai,j are taken from the field Q(x, y) in order to design algorithms, while f is taken from a
universal field F (cf. Section 6).

17



As we are looking for the first-order factors of T of the form L = dx + ady + b ∈ F [dx, dy]
we need to study the solutions of L = 0 (w.l.o.g. one can assume that the coefficient at dx of
L does not vanish, otherwise one can change the roles of x and y). Take any solution f of the
symbol (dx +ady)f = 0 of L such that dyf 6= 0 and consider G = G(0)(f) (cf. Section 6). For
any h ∈ F being a “particular” solution of L = 0, we have that hG is a fractional-derivatives
series solution of L = 0.

Lemma 7.1 An operator T has a right first-order factor L if and only if the equation T = 0
has a solution of the form hG.

Proof. If T has a right factor L then T has a solution hG.
Conversely, assume that T = 0 has a solution hG. Dividing T with remainder by L one

can represent T = SL +
∑

0≤i≤n bid
i
y for a suitable operator S. Consider the largest k such

that bk 6= 0. Then in the expansion of (
∑

0≤i≤k bid
i
y)hG in {G(s)} the coefficient at G(k)

equals bkh(dyf)k 6= 0. The obtained contradiction shows that T = SL.
Thus, we are looking for a solution of T = 0 of the form hG. Expanding T (hG) = A0G

(0)+
· · · + AnG

(n), we get first that An = symb(T ). Therefore, we fix for the time being a linear
divisor of the form dxf + adyf of symb(T ) and assume that this divisor vanishes. Thereby,
the calculations below (arthmetic manipulations and polynomial factoring) will be carried
out over the field Q(x, y)[a]. This can be fulfilled representing Q(x, y)[a] ' Q(x, y)[z]/(g)
where g ∈ Q(x, y)[z] is the minimal polynomial of a (see [5]). So, we obtain n equations
A0 = · · · = An−1 = 0 treated as LPDO in h with the coefficients being non-linear differential
polynomials in f . We denote the ring of all these polynomials by P = Q(x, y)[a]{dxf, dyf}.
Applying to A0 = · · · = An−1 = 0 the procedure of constructing a Janet base [22] one gets the
conditions of solvability in h of A0 = · · · = An−1 = 0 expressed as a disjunction of systems of
the form

p1 = · · · = pl = 0, p0 6= 0 (10)

where pi ∈ P . Using the relation dxf + adyf = 0 one can reduce each pi to an (ordinary)
differential polynomial p̄i in dyf . Denote the ring of ordinary differential polynomials by
R = Q(x, y)[a]{dyf}.

Applying to the formula p̄1 = · · · = p̄l = 0, p̄0 6= 0 the subroutine of the elimination
procedure in the theory of ordinary differentially closed fields from [23] (see also [6] where
its improvement with a better complexity bound was designed) one obtains an equivalent
disjunction of systems of the form

r = 0, r0 6= 0 (11)

for suitable differential polynomials r, r0 ∈ R. Briefly, this subroutine consists in alterna-
tive executing 2 types of steps while there are more than one equality of (ordinary) dif-
ferential polynomials. The first type of steps is executed when all the highest derivatives
occurring in these polynomials are equal, in this case the algorithm calculates their GCD
viewing them as (algebraic) polynomials in this highest derivative (and branching depending
on vanishing the leading coefficients). Else, if not all the highest derivatives are equal, as
the second type of steps one can diminish the highest derivative. Moreover, if r contains
the dkyf as its highest derivative then r considered as an (algebraic) polynomial in the ring
K = Q(x, y)[a][f, dyf, . . . , dkyf ] is irreducible. In addition, r0 is less than r with respect to the
term ordering, i. e. if r0 contains dk0y f as its highest derivative then either k0 < k or k0 = k

and the degree of r0 with respect to dkyf is less than the similar degree of r.
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Replace dxf by −adyf in dxr. This yields a differential polynomial r̂ ∈ R of the order
at most k + 1 (its role is similar to an S-pair in Janet type algorithm [22]). If r̂ does not
belong to the differential ideal 〈r〉 ⊂ R, we again apply to the system r = r̂ = 0, r0 6= 0 the
used above subroutine from the elimination procedure and get an equivalent disjunction of
systems of the form (11) with less term ordering than of r and continue as above.

Now assume that r̂ belongs to 〈r〉. Then we claim that any solution of (11) provides a
solution of (10). Indeed, otherwise, the ideal 〈r, dxf+adyf〉 ⊂ P would contain an appropriate
power rs0 [13], p.146-148. This yields a relation of the form

rs0 =
∑
i,j

Ai,jd
i
xd
j
yr +

∑
i,j

Bi.jd
i
xd
j
y(dxf + adyf)

for suitable Ai,j , Bi,j ∈ P . Replacing in this relation dxf for −adyf and taking into account
that r̂ belongs to 〈r〉, we deduce that

rs0 =
∑
j

Âjd
j
yr (12)

for certain Âj ∈ R. From the equation dyr = 0 we express

dk+1
y f = B̂k+1/

∂r

∂(dkyf)

for an appropriate B̂k+1 ∈ K. After that express successively

dk+2
y f = B̂k+2/

∂r

∂(dkyf)
, dk+3
y f = B̂k+3/

∂r

∂(dkyf)
, . . . .

Substitute these expressions in (12), this results in the equality

rs0(
∂r

∂(dkyf)
)t = Ar

for some t and A ∈ K. But r is irreducible in K and r0 is less than r with respect to the
term ordering. The obtained contradiction proves the claim and the following theorem.

Theorem 7.2 There is an algorithm which tests whether an operator T ∈ Q(x, y)[dx, dy] has
a first-order factor with the coefficients in a universal field F . The algorithm invokes two
subroutines: the elimination of an unknown function in a system of LPDO’s (in other words,
a parametric Janet base), and a subroutine from the elimination procedure in the theory of
ordinary differentially closed fields.

Remark 7.3 If one uses a direct method of finding the coefficients of a first-order operator
L and of an (n − 1)-th order Q such that T = QL, then one has to apply an elimination in
the theory of partial differentially closed fields whose complexity is unclear how to estimate in
a reasonable way (cf. [23, 6]).

Remark 7.4 One can also search for left first-order factors of an LPDO (by means of con-
sidering an adjoint operator).

Corollary 7.5 There is an algorithm to factor LPDO’s of the orders at most 3.
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7.2 Intersection of principal first-order ideals

In this subsection by F we denote a differential field with derivatives dx, dy.
First consider the ideals Ii = 〈dx + ady + bi〉 with the same highest (first-order) forms

where a, bi ∈ F, 1 ≤ i ≤ n.

Proposition 7.6 The ideal I1 ∩ · · · ∩ In is principal

Proof. Denote E = dx + ady. The ring F [E] is left-euclidean, therefore, the intersection
Î1 ∩ . . . ∩ În = 〈Q〉 ⊂ F [E] is principal where we denote Îi = 〈dx + ady + bi〉 ⊂ F [E] and
Q = qsE

s + · · ·+ q0 for certain q0, . . . , qs ∈ F, qs 6= 0 and s ≤ n.
Our aim is to prove by induction on n that I1 ∩ · · · ∩ In = 〈Q〉 ⊂ F [dx, dy]. Assume that

it is already proved and consider the intersection I1 ∩ · · · ∩ In ∩ In+1. There can occur two
cases. Either Î1 ∩ . . . ∩ În ∩ În+1 = Î1 ∩ . . . ∩ În, in this case Q = N(dx + ady + bn+1) for a
suitable N ∈ F [E], therefore, In+1 ⊃ 〈Q〉 and I1 ∩ · · · ∩ In ∩ In+1 = 〈Q〉.

Or else Î1 ∩ . . . ∩ În ) Î1 ∩ . . . ∩ În ∩ În+1 = 〈M〉 for an appropriate M = ms+1E
s+1 +

· · · + m0 ∈ F [E] with m0, . . . ,ms+1 ∈ F . Clearly, M ∈ I1 ∩ · · · ∩ In ∩ In+1. It is necessary
to show that for any V ∈ I1 ∩ · · · ∩ In ∩ In+1 we have V ∈ 〈M〉. Since the highest derivative
with respect to dx which occurs in M is ds+1

x , one can divide V by M with remainder and
get V = WM + U where W,U ∈ F [dx, dy] for a certain U ∈ I1 ∩ · · · ∩ In ∩ In+1 such that
s0 = orddx(U) ≤ s. If U = 0 we are done, so suppose that U 6= 0. We have

U = ZQ = T (dx + ady + bn+1) (13)

for suitable Z, T ∈ F [dx, dy], hence s0 = s and orddx(Z) = 0, orddx(T ) = s − 1. One can
expand T = ts−1E

s−1 + · · ·+ t0 for appropriate t0, . . . , ts−1 ∈ F [dy]. Thus, the equation (13)
one rewrite with respect to the powers of E:

Z(qsEs + · · ·+ q0) = (ts−1E
s−1 + · · ·+ t0)(E + bn+1)

which is equivalent to a system of the following s+ 1 equalities:

Zqj = tj−1 + tjbj,j + tj+1bj,j+1 + · · ·+ ts−1bj,s−1 (14)

for suitable bj,j , . . . , bj,s−1 ∈ F ; 1 ≤ j ≤ s and

Zq0 = t0bn+1 + t1b0,1 + t2b0,2 + · · ·+ ts−1b0,s−1 (15)

Viewing the right-hand sides of the equations (14), (15) as a linear system in t0, . . . , ts−1 we
get that there is a unique linear combination (from the right) of s expressions in the right-
hand sides of (14) which equals (15), the coefficients f1, . . . , fs of this combination belong to
F . Therefore, the solvability of (14), (15) in Z 6= 0, t0, . . . , ts−1 entails the equality

q1f1 + · · ·+ qsfs = q0 (16)

Thus (13) implies (16). Hence as a solution of the system (14), (15) one can take Z = 1
and consecutively express ts−1 ∈ F from the equation (14) with j = s, after that express
ts−2 ∈ F from the equation (14) with j = s − 1 and so on, finally express t0 ∈ F from
(14) with j = 1. The last equation (15) of the system is fulfilled due to (16). As a result
we obtain (cf. (13)) Q = (ts−1E

s−1 + · · · + t0)(E + bn+1) with ti ∈ F , in other words
Î1 ∩ . . . ∩ În = 〈Q〉 ⊂ În+1 ⊂ F [E].
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This leads to contradiction with the assumption Î1 ∩ . . .∩ În ) Î1 ∩ . . .∩ În ∩ În+1, which
shows that the supposition U 6= 0 was wrong, thus I1∩ . . .∩In∩In+1 = 〈M〉. The proposition
is proved.

Corollary 7.7 The ideal I1 ∩ . . . ∩ In is generated by an element from F [E].

Now let the ideals Ii = 〈dx + aidy + bi〉 ⊂ F [dx, dy] be given, where ai, bi ∈ F, 1 ≤ i ≤ k.
Our goal is to study their intersection I = I1 ∩ . . .∩ Ik. Combining together all the classes of
the ideals with the same ai and making use of Corollary 7.7 we replace the intersection from
one class by 〈Zi〉 for a certain Zi ∈ F [Ei] where Ei = dx + aidy. Then I = I1 ∩ . . . ∩ Ik =
〈Z1〉 ∩ · · · ∩ 〈Zl〉 for some l. Denote si = ord(Zi); 1 ≤ i ≤ l and s = s1 + · · ·+ sl.

Lemma 7.8 For any Q ∈ I we have orddx(Q) ≥ s.

Proof. Observe that symb(Q) is divided by
∏

1≤i≤l(dxf + aidyf)si treated as a homoge-
neous polynomial in dxf, dyf .

Theorem 7.9 a) The ideal I is principal if and only if I contains Q with the order ord(Q) ≤
s;

b) in this case ord(Q) = s and I = 〈Q〉.

Proof. Obviously, the typical differential dimension dim(〈Zi〉) = si; 1 ≤ i ≤ l [13] and
dim(I) ≤ s due to [3, 24]. Hence if I = 〈L〉 is principal then ord(L) = dim(I) ≤ s.

Conversely, let Q ∈ I and ord(Q) ≤ s, by virtue of Lemma 7.8 we have ord(Q) = s and
the derivative dsx occurs in Q. Our purpose is to show that I = 〈Q〉. Indeed, take any V ∈ I
and divide V by Q with remainder, we get V = WQ + U where orddx(U) < s, therefore,
U = 0 due to Lemma 7.8. Thus, I = 〈Q〉.

Corollary 7.10 Let the differential field F = Q(x, y). There is a polynomial-time algorithm
which tests whether I is principal.

Proof. First the algorithm produces Zi; 1 ≤ i ≤ l by finding a non-zero solution of a linear
(algebraic) homogeneous system on the coefficients from F of T1, . . . , Tn ∈ F [Ei] such that
T1(dx+aidy + b1) = · · · = Tn(dx+aidy + bn) with the minimal possible order ord(T1) = · · · =
ord(Tn) (trying consecutively the orders 1,2...). Denote Zi = T1(dx + aidy + b1), si = ord(Zi),
then Zi is a generator of the ideal 〈dx + aidy + b1〉 ∩ · · · ∩ 〈dx + aidy + bn〉, see Corollary 7.7.

Thereupon the algorithm looks for V1, . . . , Vl ∈ F [dx, dy] with ord(Vi) ≤ s − si; 1 ≤ i ≤ l
such that V1Z1 = · · · = VlZl. The latter we treat as a linear (algebraic) homogeneous system
in the coefficients from F of V1, . . . , Vl. Theorem 7.9 entails that this system has a non-zero
solution if and only if I is principal.

Remark 7.11 Observe that the usual method of finding the intersection of ideals invoking
Groebner bases, runs in double-exponential time.
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7.3 Constructing intersection of all first-order factors

In this subsection F denotes a universal field [13] with two derivatives dx, dy.
The purpose of this subsection is to construct the intersection U ⊂ F [dx, dy] of all the

principal ideals 〈L〉 for the first-order factors L ∈ F [dx, dy] of T ∈ Q(x, y)[dx, dy]. Evidently,
U ⊃ 〈T 〉. We mention that in [10] a radical of a module of a differential type τ was defined
as the intersection of the maximal classes of τ -equivalent modules, and a question was posed
whether one can calculate the radical. Here U (which could be called a first-order radical) is
defined as an ideal (rather than a class of equivalent ideals) and moreover, we calculate U .

Observe that the construction from the Subsection 7.1 represents the family V of all the
solutions of the form hG (and which correspond to first-order factors of T due to Lemma 7.1)
as follows (we use the notations from Subsections 7.1, 7.2). We assume that a is fixed, while
f just satisfies the equality dxf + adyf = 0. The family V is a union of subfamilies of the
form V0 where V0 is given by means of a Janet base

{
∑
i1,i2

vi1,i2,ld
i1
x d

i2
y h}l (17)

for h where vi1,i2,l ∈ R together with a system (11) for f .
For each element hG ∈ V consider the first-order LPDO LhG = dx + ady + bhG such

that LhG(hG) = 0 (see Lemma 7.1). We claim that one can extend Proposition 7.6 from
a finite to an infinite number of principal ideals and conclude that the ideal ∩hG∈V 〈LhG〉 is
principal and moreover, is generated by a suitable element Q =

∑
0≤i≤s qiE

i ∈ F [E] (see
Corollary 7.7). Indeed, one add consecutively the ideals I1 = 〈Lh1G1〉, I2 = 〈Lh2G2〉, . . . for
hjGj ∈ V , while the intersection Î1 ∩ · · · ∩ Îj−1 ∩ Îj ( Î1 ∩ · · · ∩ Îj−1 decreases (cf. the proof
of Proposition 7.6). Then Î1 ∩ · · · ∩ Îj = 〈Qj =

∑
0≤i≤j qi,jE

i〉 for appropriate qi,j ∈ F (cf.
the proof of Proposition 7.6). Hence 〈T 〉 ⊂ I1 ∩ · · · ∩ Ij = 〈Qj〉 due to Corollary 7.7. Thus,
j ≤ n and ∩hG∈V 〈LhG〉 = I1 ∩ · · · ∩ Ij which proves the claim.

To produce Q = Qj =
∑

0≤i≤j qiE
i the algorithm successively tries j = 0, 1, . . ., treating

qi as indeterminates. The aim is to find Q such that Q(hG) = 0 for any hG ∈ V0 (for each
subfamily V0 of V ). The algorithm expands Q(hG) = A0G

(0) + · · · + AjG
(j) (cf. Subsec-

tion 7.1). One can view each Ai as an LPDO in h with the coefficients being linear forms
in q0, . . . , qj over R. The algorithm divides every Ai, 0 ≤ i ≤ j with the remainder by the
Janet base (17), as a result we obtain LPDO Āi =

∑
i1,i2

ai,i1,i2d
i1
x d

i2
y . Thus, Q vanishes at

any hG ∈ V0 if and only if ai,i1,i2 = 0 for all 0 ≤ i ≤ j; i1, i2 under condition (11).
Denote by S the conjunction of the systems ai,i1,i2 = 0 for all 0 ≤ i ≤ j; i1, i2 and for all

subfamilies of the form V0 of V . One can treat S as a homogeneous linear over q0, . . . , qj system
with parameters being derivatives f, dyf, . . . , dlyf for a certain l. Solving this parametric linear
system (see e.g. [7]) the algorithm finds the (algebraic) conditions on f, dyf, . . . , d

l
yf under

which the system is solvable and in addition, finds the expressions for solutions (being rational
functions in the parameters). After that the algorithm tests whether these conditions are
compatible with (11), applying the subroutine from the elimination procedure which yields
formula (11) in Subsection 7.1. If yes then the algorithm produces a solution q0, . . . , qj ∈ R
of the parametric linear system. Else, the algorithm proceeds from the current value j to the
next value j + 1.

Thus, the algorithm for each a such that dxf + adyf is a (linear) divisor of symb(T ), pro-
duces applying the described above construction a generator Qa ∈ F [dx, dy] of the (principal)
ideal being the intersection of all the principal ideals generated by the divisors of the form
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dx + ady + b of T for varying b. Finally, the algorithm finds the intersection U = ∩a〈Qa〉
over all the divisors dxf + adyf of symb(T ) making use of Janet bases (cf. [10]). Thus, the
following theorem is proved.

Theorem 7.12 For any LPDO T ∈ Q(x, y)[dx, dy] one can construct the intersection of all
the principal ideals generated by the first-order factors of T .

8 Fractional-derivatives series solutions of a second-order op-
erator and factoring

In this section we study a particular case of a second-order LPDO T = T0 + T1 + T2 and
describe its possible fractional-derivatives series solutions being outputs of the algorithm
from Section 2. First, if the symbol symb(T ) is separable then for each of its two different
linear divisors dxf1 + adyf1 the algorithm provides a fractional-derivatives series solution of
T of the form (cf. (8)) ∑

0≤i<∞
hiG

(−i)

where G = G(f1) and dxf1 + adyf1 = 0, f1 6= const. The vertices of the Newton polygon
P2 are (0, 2), (0, 0), (1, 1), (1, 0) and its only edge with a slope less than 1 is the edge with
endpoints (1, 1), (1, 0) having slope 0. Thus, the construction of G terminates after the first
step of the algorithm.

From now on let us assume that symb(T ) is non-separable and write T = d2
x + 2adxdy +

a2d2
y + b0,1dx + b1,0dy + b0,0. The first step of the algorithm from Section 2 yields f1 such that

dxf1 + adyf1 = 0. Introduce the discriminant of T as follows:

(−T + b0,0)f1 = (dxa+ 2adya+ ab0,1 − b1,0)(dyf1) =: Disc · (dyf1).

If Disc 6= 0 we take any f2 which satisfies the following (non-homogeneous) first-order
LPDE:

dxf2 + adyf2 =
√
Disc · (dyf1)

and G = G1/2(f1, f2) (see Definition 1.1), then the algorithm constructs a fractional-
derivatives series ∑

0≤i<∞
hiG

(−i/2)

being a solution of T = 0. Each of two values of the sign of the square root provides a
generic solution of the multiplicity 1 (see Section 3). It corresponds to the leading edge of
the Newton polygon P2 (whose vertices are (0, 2), (0, 0), (1, 0)) with endpoints (0, 2), (1, 0)
having the slope 1/2 at the second step of the algorithm. After the second step the vertices of
the Newton polygon P3 are (0, 2), (0, 0), (1/2, 1), (1/2, 0) and its only edge with a slope less
than 1/2 is the edge with endpoints (1/2, 1), (1/2, 0) having slope 0. Thus, the construction
of G terminates after the second step of the algorithm.

When Disc = 0 the algorithm yields a (fractional-derivatives series) solution hG(f1) of
T = 0 for an arbitrary particular h such that T (h) = 0. It corresponds to the leading edge
with endpoints (0, 2), (0, 0) having the slope 0 at the second step of the construction (the
Newton polygon P2 coincides with the same edge), thus the construction of G terminates
after the first step and the algorithm provides a generic solution of the multiplicity 2. Relying
on Lemma 7.1 one obtains the following corollary (cf. [9]).
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Corollary 8.1 A second-order LPDO with a non-separable symbol is irreducible if and only
if Disc 6= 0.
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