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Abstract. Given a quadratic map Q : Kn → Kk defined over a
computable subring D of a real closed field K, and p ∈ D[Y1, . . . , Yk]
of degree d we consider the zero set Z = Z(p(Q(X)), Kn) ⊆ Kn of
p(Q(X1, . . . ,Xn)) ∈ D[X1, . . . ,Xn]. We present a procedure that com-
putes, in (dn)O(k) arithmetic operations in D, a set S of (real univariate
representations of) sampling points in Kn that intersects nontrivially
each connected component of Z. As soon as k = o(n), this is faster
than the standard methods that all have exponential dependence on n

in the complexity. In particular, our procedure is polynomial-time for
constant k. In contrast, the best previously known procedure is only
capable of deciding in nO(k2) operations the nonemptiness (rather than
constructing sampling points) of the set Z in the case of p(Y ) =

∑

i Y
2
i

and homogeneous Q.
A by-product of our procedure is a bound (dn)O(k) on the number of
connected components of Z.
The procedure consists of exact symbolic computations in D and outputs
vectors of algebraic numbers. It involves extending K by infinitesimals
and subsequent limit computation by a novel procedure that utilizes
knowledge of an explicit isomorphism between real algebraic sets.
Keywords. symbolic computation, complexity, semialgebraic set,
quadratic map, univariate representation, infinitesimal deformation.
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1. Introduction and the results

The algorithmic problem of finding points in real algebraic sets has received
considerable attention, in particular as it forms a building block for a lot of
procedures in real algebraic geometry [5]. Even if the algebraic sets one is in-
terested in are subsets of Rn, the algorithms with the best known complexity
bounds use transcendental infinitesimals extending R to perform necessary ge-
ometric deformations of the sets. Hence it is natural to describe the procedures
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as operating over an arbitrary real closed field K, with the input data, i.e. the
polynomials, lying in D[X1, . . . , Xn] = D[X], with D ⊂ K a computable (in
sense discussed e.g. in [5, Sect. 8.1]) subring of K. In the case K = R one
usually assumes D = Z.

Let Si’s be the connected components of the real algebraic set S = Z(f, Kn),
f ∈ D[X]. In general the number of the Si’s is bounded by dO(n), where
d = deg f , and this bound is sharp, see [5, Theorem 7.23, Remark 7.22] and
Remark 1.7 below. We are interested in point-finding (also called sampling)
algorithms that produce a finite set of points that intersects each Si. Such al-
gorithms with the best known complexity bounds need at most dO(n) arithmetic
operations in D. Often such sets are exactly what is needed in applications.
We describe here a procedure that finds a point in each connected component
of our class of algebraic sets, namely the sets of the form Z(p(Q(X)), Kn), for
p ∈ D[Y1, . . . , Yk] of degree deg p = d and Q = (Q1(X), . . . , Qk(X)) ∈ D[X]k a
quadratic map, i.e. deg Qj ≤ 2 for 1 ≤ j ≤ k with the complexity (dn)O(k).

The result of [3], that bounded, in particular, the sum of the Betti num-
bers of the set of real solutions of a system of quadratic equations Q1(X) =
· · · = Qk(X) = 0 (that can obviously be written as Z(p(Q(X)), Rn) with
p(Y ) =

∑

j Y 2
j ) by a polynomial in k and n of degree O(k) was perhaps the

earliest indication that in the case Z(p(Q(X)), Kn) the number of connected
components has only polynomial dependence on n. However, until the present
work, an algorithmic procedure with the similar complexity bound (dn)O(k)

for finding points in Z(p(Q(X)), Kn) was unknown. Even procedures that de-
cide non-emptiness of Z(p(Q(X)), Kn) in time polynomial in n and d for fixed
k were, for general p, unknown; in [2] such a procedure was described for
p(Y ) =

∑

j Y 2
j , homogeneous Qi’s and K = R.

The technique we use is that of symbolic computation. All the data is
represented exactly, as (real) algebraic numbers, if necessary. More precisely,
elements of Kn that we compute with are given by real univariate representa-
tions. The latter are defined as follows. A sign condition for a set of poly-
nomials P = {P1, . . . , Ps} ⊂ K[Y ] is specified by σ ∈ {−1, 0, 1}s so that
σ = (sign P1(Y ), . . . , sign Ps(Y )). Thom encoding [5, Lemma 2.38, Sect. 10.4]
of a root α ∈ K of f ∈ K[T ] is a sign condition σα on the derivatives of f ,
that is σα = (sign f ′(α), . . . , sign f (deg f−1)(α)). Note that σα and f determine
α ∈ K. Let K denote the algebraic closure of K. A univariate representation of
u ∈ K

m
is an (m + 2)-tuple

(1.1) u(T ) = (f, g0, g1, . . . , gm)

of univariate polynomials in D[T ] satisfying u = 1
g0(α)

(g1(α), . . . , gm(α)) for a
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root α ∈ K of f , and such that f and g0 are coprime. Obviously, each u(T )
can represent as many as deg(f) distinct elements of K

m
. A real univariate

representation of u ∈ Km is a pair u(T ), σα, where σα is the Thom encoding of
a root α ∈ K of f.

The main result of the paper is as follows.

Theorem 1.2. Let Q = (Q1, . . . , Qk) ∈ D[X1, . . . , Xn]
k be a quadratic map

X 7→ Q(X), and let p ∈ D[Y1, . . . , Yk] satisfy deg p ≤ d. A set of real univariate
representations u(T ), σα of a set of points in Z = Z(p(Q(X)), Kn) meeting each
connected component of Z can be computed in (dn)O(k) arithmetic operations
in D. The degrees of polynomials in u(T ) are bounded by (dn)O(k). When
D = Z, the coefficients of u(T ) and the intermediate polynomial data will be
bounded by (dn)O(k) times the bitsize of the input data p, Q.

From now on whenever we talk about finding points in Kn, they are meant
to be given as real univariate representations.

Remark 1.3. Given a real univariate representation, the approximation of the
corresponding point in Kn in the ring of fractions of D can be found efficiently
as long as approximations α̃ of α can be computed efficiently (indeed, then one
can just compute u(α̃)). For instance when D = Z one can find an interval
I = [α−, α+] ∋ α with α± ∈ Q so that α is the only root of f in I, see e.g. [5,
Sect. 10.2]. Once I is known, one can compute its repeated (rational) bisections
to obtain approximations of α of needed precision; the complexity of the latter
is analyzed e.g. in [11] (see also [17]).

Note that by connected (component of) semialgebraic set, we mean semial-
gebraically connected, that is, connected in the semialgebraic topology, (com-
ponent of) semialgebraic set, see e.g. [8]. It is well-known that for the semial-
gebraic sets over R semialgebraic connectedness implies connectedness (in the
usual Euclidean topology), see e.g. [5, Thm. 5.21].

Theorem 1.2 is proved in Section 5 by exhibiting a procedure that does the
claimed task. It immediately implies the following.

Corollary 1.4. The number of connected components of the set Z is at most
(dn)O(k). �

An extra argument, to be published elsewhere, allowed us to show that the
latter bound holds for the sum of Betti numbers of Z, and not only for the 0-th
one, i.e. the number of components. As well, one can modify the procedure of
Theorem 1.2 to prove
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Theorem 1.5. Under the assumptions of Theorem 1.2, computing the exact
minimum and a minimizer (i.e. a point where the minimum is attained) of
r(Q(X)), for r ∈ D[Y ], deg r ≤ d, on Z(p(Q(X)), Kn), or checking that the
minimum is not attained and computing the infimum, can be done within the
same number of operations, and for D = Z within the same bitwise complexity,
as the computation of Theorem 1.2.

A proof of the latter, and a number of applications in mathematical program-
ming, will appear in the continuation of the present paper.

An easier than optimization problem is the problem of checking whether
the set Z(p(Q(X)), Kn) is empty, i.e. the feasibility problem. Our immediate
predecessor here is [2], where it was shown that for homogeneous Q the empti-
ness of Z(Q1(X)2 + · · ·+Qk(X)2, Rn−{0}) can be checked in nO(k2) operations
in D.

For the sake of completeness, we state the following straightforward impli-
cation of Theorem 1.2.

Corollary 1.6. The emptiness of Z(p(Q(X)), Kn) can be checked within the
same complexity bound as in Theorem 1.2. �

Remark 1.7. It is easy to see that the bounds of Theorem 1.2 are close to
best possible. Indeed, any real solution of degree 4 equation

(X2
1 − 1)2 + · · ·+ (X2

n − 1)2 = 0,

or the system of n quadratic equations

X2
1 = X2

2 = · · · = X2
n = 1

has coordinates 1 or −1, and there are in total 2n of them. In the continuation
of the present paper we will further sharpen this by showing a similar result
for a system of one cubic and two quadratic equations.

In a nutshell, the procedure at the core of Theorem 1.2 that we are going
to describe works as follows. First, we write down the equations for the critical
points of the projection map X 7→ X1 on Z = Z(p(Q(X)), Kn) by equating the
gradient of p(Q(X)) with the vector proportional to the gradient of X 7→ X1,
that is with a vector of the form (λ, 0, . . . , 0). These equations have a rather
special structure: the variables X occur either within Q(X), or linearly. By
introducing k new variables (Y1, . . . , Yk) = Y = Q(X), we thus obtain a system
of linear equations A(Y )X = b(Y ) in X. The next step is to solve this system;
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we simply loop through all the maximal (by inclusion) candidates for invertible
submatrices AUW of A(Y ) and the corresponding partition XW ∪XW of X into
XW and the remaining variables XW . For each of them we rewrite the system
to express XW as rational functions XW = A′(Y, XW ) of Y and XW . This
certainly only makes sense, from the complexity point of view, when rk(A(Y ))
never drops below certain threshold. We make sure by means of an infinitesimal
deformation that rk(A(Y )) ≥ n − k. Then |W | ≤ k and the coordinates of X
are expressed as rational functions in at most 2k variables Y and XW . We
are able to describe an isomorphism of a semialgebraic subset, that we call,
following [2], piece, of the critical points of X 7→ X1 on Z, that corresponds to
a particular AUW being maximal and invertible, to a semialgebraic subset of
Fk+|W |, for F being a real closed extension of K, that is defined by polynomials
of degree O(nd). These pieces cover the whole set of the critical points just
mentioned.

Finally, we find representatives of connected components of the pieces over
F, obtaining Y and XW with values in F, and recover XW and XW in the
original field K by computing the limit.

The actual implementation of this procedure is more involved. Section 4
describes in detail the candidates for invertible submatrices AUW of A and
presents the explicit isomorphisms of pieces to semialgebraic subsets in Fk+|W |

mentioned above. In order to apply the result of Section 4 to Z, one needs
to deform p in such a way that 0 becomes a regular value of p(Q(X)) and of
p(Y ). Further, one needs to deform Q so that the number of pieces of the
set of critical points of X 7→ X1 on Z does not exceed (dn)O(k). In fact, our
deformation will give us a better bound, nO(k), on the latter. Lastly, one has
to ensure (again, using a deformation) that Z is bounded, otherwise we miss
connected components of Z whose projection on X1 is open.

Our deformations are done by extending K with a number of infinitesimals.
Subsequent limit computations are needed to recover elements in the original
set Z by using the following Theorem 1.10. To state it, let us recall some
notation. For a field F and a transcendental ζ , we denote by F〈ζ〉 ⊂ F((ζ

1
∞ ))

the subfield of Puiseux series algebraic over F(ζ). For

(1.8) a =
∑

i≥ν

aiζ
i/q ∈ F((ζ

1
∞ )), 0 < q ∈ Z

with the order ν/q ≥ 0, aν 6= 0, define the standard part (cf. e.g. [10]) of a to be
a0; in [5] it is called the limit a0 = limζ a. Note that if ν < 0 then limζ a is not
defined. When ζ is a vector of infinitesimals ζ1 ≫ ζ2 ≫ · · · ≫ ζℓ, the notation
limζ a is a shorthand for limζ1(limζ2(. . . (limζℓ

a) . . . )). It is often helpful to
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view ζ as a parameter and computing limζ a as computing limζ→0 a, where lim
is understood in the usual sense. Note that limζ is a ring homomorphism of
the ring F〈ζ〉b = {a ∈ F〈ζ〉 | ν(a) ≥ 0}, of all the elements of F〈ζ〉 bounded
over F, to F.

Let F〈ε〉 be a real closed extension of a real closed F with infinitesimals
ε = (ε1, . . . , εℓ) such that ε1 ≫ ε2 ≫ · · · ≫ εℓ, and let D ⊂ F be a computable
subring of F. For F ∈ D[ε][Y1, . . . , Yq−1], let ZF = Z(F (Y ), F〈ε〉q−1), and let

Ψ : F〈ε〉q−1 → F〈ε〉m be a rational mapping

Y 7→
(

Ω1(Y )

Λ(Y )
, . . . ,

Ωm(Y )

Λ(Y )

)

, Ωi, Λ ∈ D[ε][Y ], 1 ≤ i ≤ m.
(1.9)

Theorem 1.10. Let F and Ψ be as above, with the Y -degree of F at most d
and the Y -degrees of Ωi and Λ less than d−1, and their ε-degrees at most d. A
set of univariate representations u(T ) of a set of points meeting each connected
component of limε Ψ(ZF ) ⊆ Fm can be computed in (m + d)O(qℓ) arithmetic
operations in D.
The degrees of the polynomials in u(T ) are at most dO(q). When D = Z, the
bitsizes of the coefficients of u(T ) and of the intermediate data are bounded by
a polynomial in d, m and dO(qℓ) times the bitsize of the input data.

Theorem 1.10 generalizes [5, Alg. 11.61] to non-identity mappings Ψ.
The remainder of the paper begins with presenting the procedures behind

Theorem 1.10, along with its proof, in Sections 2 and 3. Then Section 4 presents
the aforementioned decomposition of the zero set of p(Q(X)) under the reg-
ularity conditions. Finally, Section 5 describes the deformations of p(Q(X))
that are needed and completes the proof of the main Theorem 1.2.

2. Limits of solution images: dimension 0

As the first part of the proof of Theorem 1.10, in this section we address the
problem of finding limits of the images P (x) of the real roots x ∈ Z(B, F〈ε〉q) of
a 0-dimensional polynomial system B ⊂ F〈ε〉q with respect to ε = (ε1, . . . , εℓ) →
0 under a polynomial mapping P : F〈ε〉q → F〈ε〉m.

The separating element based methods for finding limits of the real roots
of B, such as [16], [5, Chapter 11], cannot deal directly with this situation,
even in the simplest case of P being the orthogonal projection onto a subset of
coordinates.

In this section we generalize these methods to accommodate our needs.
We introduce P -separating elements a ∈ F〈ε〉[S1, . . . , Sm] such that the map
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P (x) 7→ a(P (x)) is injective on P (Z), where Z = Z(B, F〈ε〉q), that is to say
that a(P (y)) 6= a(P (x)) whenever P (y) 6= P (x) for x, y ∈ Z. We introduce
below, in Section 2.2, the corresponding notion for the limit setting, well-P -
separating elements.

It turns out that the machinery of [16], see also [1], generalizes here rela-
tively smoothly. Let an ideal (W) ⊆ F〈ε〉[S1, . . . , Sn] = F〈ε〉[S] be generated
by its Gröbner basis W ⊆ D[ε][S]. That is, we fixed a particular monomial
ordering on F〈ε〉[S], and the leading (with respect to this ordering) terms of W
generate the ideal of leading terms of (W). Following [5, Sect. 11.3], we call W
parametrized special if it is of the form W = {b1S

d1
1 +U1, . . . , bnS

dn
n +Un}, where

the leading terms are b1S
d1
1 ,. . . , bnS

dn
n , and deg(Ui) < di, degSj

(Ui) < dj for

1 ≤ i, j ≤ n. Note that the quotient algebra F〈ε〉[S]/(W) has the natural basis
U(W) of monomials under the staircase, that is, of monomials Sα = Sα1

1 . . . Sαn
m

with αi < di for 1 ≤ i ≤ n. In particular, the dimension of the quotient alge-
bra is d1 . . . dn. In order to keep doing the arithmetic in D[ε] when reducing
with respect to W (and this is one of the purposes of a parametrized special
Gröbner basis), one works in the basis U(W) = {b|α|Sα | Sα ∈ U(W)}, where
|α| = α1 + · · ·+ αn and b a common multiple of b1,. . . ,bn ∈ D[ε].

The basis W naturally appears when critical points of a coordinate projec-
tion of a certain special type of hypersurface are computed, as in [5, Sect. 11.6],
in contrast to a common situation when calculation of a Gröbner basis of an
ideal is computationally very costly (the latter can generally require doubly
exponential, in the number of variables, running time, cf. [14]). Given W,
one can efficiently compute the multiplication table of the quotient algebra, see
[5, Alg. 11.22]. Namely, when the degrees of the elements of W in S (resp.
in ε) are bounded by d (resp. by λ) it takes (dλ)O(nℓ) operations in D, the
ε-degrees never exceed λ(nd)O(1); when D = Z, the bitsize of the data involved
is bounded by a polynomial in n and (λd)nℓ times the bitsizes of the elements
of W, cf. [5, pp. 381–382].

Theorem 2.1. For D a computable subring of F, let B ⊂ D[ε][X1, . . . , Xq]
define a 0-dimensional polynomial system, that is its own special Gröbner basis
with the LCM of the leading terms equal to bB ∈ D[ε]. Let

N = dim F〈ε〉[X]/(B).

Assume the degrees of the elements of B in X as well as in ε, and the degree of bB
in ε, bounded by d. Let P be a polynomial mapping X 7→ (P1(X), . . . , Pm(X)),
with Pi ∈ D[ε][X] of degree < d in X and at most d in ε.
Then a set of at most (m − 1)N3 candidates for univariate representations
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u(T ) ∈ Dm+2 for the elements of limε P (Z) can be computed in (m + N)O(ℓ)

arithmetic operations in D. The degrees of the polynomials in u(T ) are at most
N .
When D = Z, the bitsizes of the coefficients of u(T ) and of the intermediate
data are bounded by a polynomial in d, m and N ℓ times the bitsize of the input
data B.

Note that B will be constructed in Theorem 3.1.

Remark 2.2. The number (m− 1)N3 of candidates can be reduced to N , see
Remark 2.29 later in this section.

The remainder of the section is devoted to the proof of Theorem 2.1.

2.1. On P -separating elements.. Here we prepare the ground for the limit
computations. Denote by χ(a, T ) the characteristic polynomial of a linear
transformation a ∈ A. The Stickelberger’s lemma [5, Thm. 4.69] states in par-
ticular that

(2.3) χ(a, T ) =
∏

x∈Z

(T − a(x))µ(x).

where µ(x) is the multiplicity of x as a root of B. For a given a ∈ A, denote
by [x] ⊆ Z the equivalence class of x with respect to the equivalence relation
defined by a, so that x is equivalent to y when a(x) = a(y). Then

(2.4) χ(a, T ) =
∏

[x]⊆Z

(T − a(x))µ[x] , where µ[x] =
∑

y∈[x]

µ(y).

Let 0 6= b ∈ A be an a-class function on the relation [∗] induced by a, that is,
b(y) = b(x) for any y ∈ [x]. Let S be a variable and consider polynomials

χ(a + Sb, T ) =
∏

[x]⊆Z

(T − a(x) − Sb(x))µ[x] ,(2.5)

g(a, b, T ) =
∂χ(a + Sb, T )

∂S
|S=0.(2.6)

Then

(2.7) g(a, b, T ) = −
∑

[x]⊆Z

b(x)µ[x](T − a(x))µ[x]−1
∏

[x] 6=[y]⊆Z

(T − a(y))µ[y].
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Observe that

g(µ[x]−1)(a, b, T ) = −b(x)(µ[x])!
∏

[x] 6=[y]⊆Z

(T − a(y))µ[y] + (T − a(x))h(T ).

for some polynomial h(T ). Therefore

(2.8) g(µ[x]−1)(a, b, a(x)) = −b(x)(µ[x])!
∏

[x] 6=[y]⊆Z

(a(x) − a(y))µ[y].

In particular the following holds.

Lemma 2.9. For a P -separating a, any 0 6= r ∈ F〈ε〉 and x ∈ Z,

(2.10) Pi(x) =
g(µ[x]−1)(a, rPi, a(x))

g(µ[x]−1)(a, r, a(x))
for each 1 ≤ i ≤ m.

Proof. As a is P -separating, g(µ[x]−1)(a, r, a(x)) never vanishes, and [x] 6= [y]
as soon as Pi(x) 6= Pi(y). Thus Pi(X) is a a-class function, and (2.8) holds
for b = Pi. Now (2.8) implies the statement of the lemma, as the terms
r(µ[x])!

∏

[x] 6=[y](a(x) − a(y))µ[y] occur in both numerator and denominator of

the right-hand side of (2.10). �

Note that N =
∑

x∈Z µ(x). To compute the coefficients of χ(a + Sb, T ), it
is convenient to write it as

χ(a + Sb, T ) =

N
∑

j=0

bj(S)T j, where bj ∈ F[S], deg bj = N − j.

We need to be able to compute the trace Tr(f(S)) of a linear transformation
f(S) ∈ A[S]. By additivity of the trace, this is easy to do once a basis U(B)
of A, the multiplication table for A in U(B), that is, a tensor λι

αω specifying
linear combinations

αω =
∑

ι∈U(B)

λι
αωι for α, ω ∈ U(B),

and the expression of f(S) as a linear combination of the elements of U(B)
with coefficients in F[S] is known. Namely,

Tr(f(S)) = Tr(
∑

ω∈U(B)

fω(S)ω) =
∑

α∈U(B)

∑

ω∈U(B)

fω(S)λα
αω,
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and the computation can be done separately for each coefficient of the polyno-
mial Tr(f(S)).

It is well-known (cf. e.g. [5, Thm. 4.69]) that for f ∈ A

(2.11) Tr(f j) =
∑

x∈Z

µ(x)f(x)j, j ≥ 0.

It follows that
(2.12)

Tr((a + Sb)j) =
∑

x∈Z

µ(x)(a(x) + Sb(x))j =
∑

[x]⊆Z

µ[x](a(x) + Sb(x))j , j ≥ 0.

Then, the bj(S)’s (that is, the elementary symmetric functions of the roots) can
be computed knowing the power symmetric functions (also known as Newton
sums) Tr(a + Sb), . . . , Tr((a + Sb)N ) of the roots of χ(a + Sb, T ). Namely, the
following holds (cf. [5, (4.2), (11.8)]).

∂χ(a + Sb, T )

∂T
= χ(a + Sb, T )

∑

m≥0

Tr((a + Sb)m)

Tm+1
.

By equating the coefficients of T j, for each j satisfying −1 ≤ j < N , on the
both sides of the latter, and recalling that χ(a + Sb, T ) is monic in T , that is,
bN (S) = 1, one obtains the following.

Lemma 2.13. Let χ(a + Sb, T ) =
∑N

j=0 bj(S)T j be the characteristic polyno-
mial of a linear transformation a + Sb ∈ A[S]. Then

(2.14) bi(S) = − 1

N − i

N−i
∑

j=1

bi+j(S)Tr((a + Sb)j), 0 ≤ i ≤ N − 1, bN = 1

gives a recurrence for bi(S)’s, for i = N − 1, N − 2, . . . , 0. �

Remark 2.15. Formulae similar to (2.14) are known since long time, and
attributed to [12]. An explicit expression for bi(S) in terms of a determinant of
certain “almost Toeplitz” matrix with entries specified by Tr((a + Sb)j)’s can
be found by using [13, Ex. I.2.8]. See also [13, (2.14)].

Using the latter lemma, we can construct χ(a, T ) and g(a, b, T ) given a, b ∈
A. We do not need to compute χ(a + Sb, T ) completely; namely, only S-linear
parts of bi(S) and Tr((a + bS)j) need to be computed, in view of (2.14) and
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(2.6). To avoid the necessity to handle rational expressions arising from the
term 1

N−i
in (2.14), compute N ! χ(a, T ) and N ! g(a, b, T ) instead.

In what follows we restrict ourselves to separating elements of the form
a(P (X)), for a ∈ D[T1, . . . , Tm]. Note that a P -separating a exists and can be
chosen as follows, for some 0 ≤ j ≤ (m − 1)

(

N
2

)

:

(2.16) a(P (X)) = a(j, P (X)) =
m
∑

i=1

ji−1Pi(X).

To see this, one proceeds as in e.g. [5, Lemma 4.60]. Let s 6= y ∈ P (Z), and
observe that the univariate polynomial a(Y, s) − a(Y, y) =

∑m
i=1(si − yi)Y

i−1

is not identically 0, and has at most m − 1 roots. Thus by avoiding at most
m− 1 values of j, one can make sure that a separates s and y. As there are at
most

(

N
2

)

distinct pairs of s and y as above, the claim follows.

Thus we can construct univariate representations of the elements s ∈ P (Z)
of multiplicity µ(s) = µ + 1 in the form

(2.17) u(T ) = N ! (χ(a, T ), g(µ)(a, r, T ), g(µ)(a, rP1(X), T ), . . . ,

g(µ)(a, rPm(X), T )),

where r ∈ D[ε] is chosen so that the functions ra(X), rP1(X),. . . , rPm(X) of A
are D[ε]-linear combinations of the basis elements of A. The latter are chosen
so that the entries of the multiplication table of A belong to D[ε], as dictated
in turn by the coefficients of the leading monomials in B. Taking r to be the
LCM bB of the coefficients of the leading monomials in B suffices; the numbers
µ(s) ≤ N are not known a priori, thus we have roughly N -fold redundancy in
the output.

To summarize, we have the following.

Proposition 2.18. Let B, P be as in Theorem 2.1, A = F〈ε〉[X]/(B) be of
dimension N , and a ∈ Z[T1, . . . , Tm] define a P -separating element a(P (X))
given by (2.16) with coefficients in Z of size at most O(log mN).
Then a set of at most NO(1) univariate representations u(T ) ∈ D[ε]m+2 of
the form (2.17), containing for each s ∈ P (Z), a representation (2.17) with
µ = µ(s) − 1, can be computed in NO(ℓ) arithmetic operations in D. The
degrees of the polynomials in u(T ) are at most N , and their coefficients are of
degree at most O(d3) in ε.
When D = Z, the bitsize of the coefficients of u(T ) and of the intermediate
data is bounded as stated in Theorem 2.1.
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The complexity analysis is very similar to algorithms in [5, Chapter 11]. The
most expensive part is computing the appropriate multiplication table for A, see
the exposition preceding Theorem 2.1 and [5, Alg. 11.22]), and this is identical
to the special case considered in [loc.cit.]. Note that Pi’s are expressed as linear
combinations of the basis elements of A and therefore our setting for complexity
analysis of computation of u(T ) is essentially the same as in [loc.cit.].

2.2. Computation of the limit.. We proceed to computing the limits of the
points given by univariate representations u(T ) of Proposition 2.18. We show
that the limits of points in P (Z) correspond to the limits S<∞ of bounded roots
of χ(a, T ). Then we normalize the polynomials in u(T ) by a Puiseux monomial
in ε that makes the coefficients of χ(a, T ) and of the rational functions Pi(T ) =
g(µ)(a,bXi,T )

g(µ)(a,b,T )
, for each 1 ≤ i ≤ m, bounded. At the same time the values of the

limit of the normalized denominator g(µ)(a, b, T ) will be nonzero on S<∞. Thus
limε Pi(T ) at S<∞ can be computed by taking the limits of the coefficients
of Pi(T ), and then evaluating on the elements of S∞. We will give explicit
formulae for limε Pi(T ) in terms of the appropriate repeated derivatives of the
numerator and of the denominator.

We need some further notation related to a real closed extension F〈ζ〉 of a
real closed field F by infinitesimals ζ1 ≫ ζ2 ≫ · · · ≫ ζℓ, and its algebraic closure
F〈ζ〉. Let 0 6= τ ∈ F〈ζ〉. Then τ can be written uniquely as τ = ζo(τ)(in(τ)+τ ′),
with 0 6= in(τ) ∈ F and o(τ) ∈ Qℓ such that ζo(τ) is the biggest, with respect to
the order in F〈ζ〉, ζ-monomial of τ , and τ ′ satisfying limζ τ ′ = 0. In particular
τ ′ is bounded over F, and limζ τ = in(τ) iff o(τ) = 0. Further, for 0 6= v ∈ F〈ζ〉n
define o(v) = max

1≤j≤n
o(vj), with max taken in the sense of the ordering in F〈ζ〉.

Note that boundedness of τ = ℜτ + iℑτ ∈ F〈ζ〉 is understood here and
elsewhere in this section in the usual sense of the norm

√

(ℜτ)2 + (ℑτ)2 being
bounded over F. As well, limζ τ is understood purely algebraically, that is,
in the appropriate order setting to 0 the corresponding infinitesimals. In just
introduced notation, τ is bounded if and only if either o(τ) = 0, or the rightmost
nonzero entry of o(τ) is positive.

Let f(T ) =
∑m

j=0 cjT
j ∈ F(ζ)[T ]. Then o(f) is defined to be such that ζo(f)

is minimal, with respect to the order in F〈ζ〉, monomial making ζ−o(f)cj for
0 ≤ j ≤ m bounded over F. In fact o(f) = o(cj) for some j. Define

(2.19) f̂(T ) = lim
ζ

ζ−o(f)f(T ),
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where the limit is taken coefficient-wise. For F (T ) ∈ F(ζ)[T ]q, we denote

(2.20) o(F ) = max
1≤i≤k

o(Fi).

The following statement is an extension of Lemma 11.37 from [5] adjusted to
the non-multiplicity-free situation, and will be used repeatedly.

Lemma 2.21. Let f(T ) ∈ F(ζ)[T ] be monic. Denoting Zf = Z(f(T ), F〈ζ〉),
one has

o(f) =
∑

τ∈Zf ,
unbounded

µ(τ)o(τ), Z(f̂(T ), F) = lim
ζ

Zf .

Let y ∈ Z(f̂(T ), F). Then µ(y) =
∑

τ∈Zf ,
limζ τ=y

µ(τ) equals the multiplicity of y as a

root of f̂ . Here the summands µ(τ) denote multiplicities of roots τ of f .

Proof. (Sketch.) The coefficients fi of f =
∑d

i=0 fiT
i, where fd = 1, are

elementary symmetric functions of x ∈ Zf taken with multiplicities. Let Σ
denote the multiset of roots of f . Then

(2.22) fd−i =
∑

Θ⊆Σ
|Θ|=i

∏

τ∈Θ

τ,

implying

o(fd−i) ≤ max
Θ⊆Σ
|Θ|=i

∑

τ∈Θ

o(τ),

where the inequality might be struct due to a possible cancellation of higher
order terms in the sum (2.22). When one of the multisets Θ equals Υ, the
sub-multiset of unbounded roots of f , this inequality turns into equality o =
o(fd−|Υ|) =

∑

τ∈Υ o(τ), as the order of the remaining summands in (2.22) is
strictly less than o. As o ≥∑τ∈Θ o(τ) for any Θ ⊆ Σ, and we obtain o(f) = o.
Therefore

f̂(T ) = lim
ζ

ε−o(f)f(T ) = lim
ζ

∏

τ∈Σ−Υ

(T − τ)
∏

τ∈Υ

ε−o(τ)(T − τ) =(2.23)

=
∏

τ∈Υ

(−in(τ))
∏

τ∈Σ−Υ

(T − lim
ζ

τ),(2.24)

and the first part of the lemma follows. The second part follows from (2.24). �
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A P -separating element a will be called well-P -separating (with respect to
limε) if the following conditions hold:

1. for any s, y ∈ P (Z) such that limε s 6= limε y one has a(limε s) 6= a(limε y);

2. o(P (u)) = o(a(P (u))) for any u ∈ Z.

In particular, 2 implies that if s ∈ P (Z) is unbounded over F then a(s) is also
unbounded over F.

Lemma 2.25. Let a, b ∈ D[T1, . . . , Tm] be linear. Let a be well-P -separating.
Then for any s ∈ limε P (Z) of multiplicity µ[s]

b(s) =
ĝ(µ[s]−1)(a, b, a(s))

ĝ(µ[s]−1)(a, 1, a(s))
. In particular, sj =

ĝ(µ[s]−1)(a, Pj, a(s))

ĝ(µ[s]−1)(a, 1, a(s))
,

for any 1 ≤ j ≤ m.

Proof. As a is well-P -separating, b is an a-class function on P (Z) as well as
on limε P (Z). Note that b satisfies limε b(P (x)) = b(limε P (x)), for any x ∈ Z
for which limε P (x) is defined. We shall express limε b(P (X)) as a univariate
rational function, that gives limε b(P (y)) when evaluated at a(P (y)). With
a = a(P (X)) and b = b(P (X)), denote

η(a, b, S, T ) = lim
ε

ε−o(χ(a,T ))χ(a + Sb, T ).

Denoting by Z<∞ the set of x ∈ Z such that a(P (x)) is bounded, using (2.5)
and Lemma 2.21 (in particular (2.24)) one obtains

η(a, b, S, T ) = lim
ε

ε−o(χ(a,T ))
∏

[x]⊆Z

(T − a(P (x)) − Sb(P (x)))µ[x] =

=
∏

[x]⊆Z<∞

lim
ε

(T − a(P (x)) − Sb(P (x)))µ[x]×

×
∏

[x]⊆Z−Z<∞

lim
ε

(

ε−o(a(P (x)))(T − a(P (x)) − Sb(P (x)))
)µ[x]

=

= G(S)
∏

[y]⊆limε P (Z)

(T − a(y) − Sb(y))µ[y], where

G(S) =
∏

[x]⊆Z−Z<∞

(−in(a(P (x))) − Sb(lim
ε

ε−o(P (x))P (x)))µ[x] ∈ F[S],
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as o(a(P (x))) = o(P (x)). Moreover, G(0) 6= 0, as in(a(P (x))) 6= 0 on un-
bounded x ∈ P (Z).

In view of (2.24) one obtains in particular

(2.26) χ̂(a, T ) = C
∏

[y]⊆limε P (Z)

(T − a(y))µ[y], with 0 6= C ∈ F,

where µ[y] denotes the multiplicity of a(y) as a root of χ̂(a, T ).
Next, we compute, for g(a, b, T ) defined by (2.6), limε ε−o(χ(a,T ))g(a, b, T ).

We see that it equals to ĝ(a, b, T ) (if it would not be the case, it had to vanish
identically, as o(χ(a, T )) ≥ o(g(a, b, T ))), as defined in (2.19), so we get

ĝ(a, b, T ) =
∂

∂S
η(a, b, S, T )|S=0 = −G′(0)

∏

[y]⊆limε P (Z)

(T − a(y))µ[y]−

− G(0)
∑

[y]⊆limε P (Z)

µ[y]b(y)(T − a(y))µ[y]−1
∏

[y] 6=[s]⊆limε P (Z)

(T − a(s))µ[s] .

Then, for any y ∈ limε P (Z),

ĝ(µ[y]−1)(a, b, T ) = −G(0)b(y)(µ[y])!
∏

[s]⊆limε P (Z)
[y] 6=[s]

(T − a(s))µ[s] + (T − a(y))H(T ),

for H(T ) ∈ F[T ]. Hence

ĝ(µ[y]−1)(a, b, a(y)) = −G(0)b(y)(µ[y])!
∏

[y] 6=[s]⊆limε P (Z)

(a(y) − a(s))µ[s]

and we obtain, in view of (2.26), the statement of the lemma. �

Let us show that a can be taken to be a = a(j, P (X)) for a certain j as in
(2.16). The only difference with the argument above is that we have to avoid
more “wrong” values of j. Let x, y ∈ P (Z) be such that limε x and limε y
exist and are not equal. Then the polynomials a(Y, limε x) − a(Y, limε y) and
a(Y, x) − a(Y, y) are not identically 0 and each of them has at most m − 1
roots. Thus by avoiding at most 2(m − 1) values of j, one can make sure that
a separates limε x and limε y, as well as x and y.

To ensure the remaining condition in the definition of well-P -separating
element, consider W = {limε ε−o(s)s | 0 6= s ∈ P (Z)}. Choose j such that
a(j, w) 6= 0 for any w ∈ W . Such a choice is always possible: a(Y, w) ∈ F[Y ]
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has at most m − 1 roots; thus avoiding (m − 1)|W | values of j achieves the
required. Then o(a(s)) = o(s) for all s ∈ P (Z), implying condition 2 of the
definition.

As there are at most
(

N
2

)

distinct pairs of s and y as above, and since
|W | ≤ N , we obtain

Lemma 2.27. There exists an integer 0 ≤ j ≤ (m−1)N2 such that a(P (X)) =
a(j, P (X)) is well-P -separating. �

Combining Lemmas 2.25 and 2.27 gives for an appropriate a at most O(
√

N)
candidates for univariate representations u(T ) for the points in limε P (Z), as
χ(a, T ) has at most O(

√
N) different root multiplicities. We outline now how

u(T ) are actually computed. Let b = Pi for some 1 ≤ i ≤ m. We loop
through 1 ≤ j ≤ (m − 1)N2 in order to be sure to find an appropriate well-P -
separating a(P (X)) = a(j, P (X)). This means that we will return candidate
representations for each such j.

A further technical point is that we operate in the ring D[ε] rather than in
a field. We utilize the idea of [5, Remark 11.44] for r = bB:

(2.28) χ(ra + Srb, rT ) = rNχ(a + Sb, T )

and proceed similarly to the procedure of [5, Alg. 11.45].

Remark 2.29. Compared to [loc.cit.], our simplification is that we do not
try to filter out “wrong” a; such a check would require finding |P (Z)| to be
able to verify that a is P -separating, and then proceed similarly to remarks on
[5, p.398].To obtain “good” a, one first selects a’s with the biggest degree of
χ(a, T ); among the latter select a’s that are P -separating, by choosing a’s with

minimal degree of gcd(χ(a, T ), dχ(a,T )
dT

).
To ensure that a is well-P -separating, select a’s with minimal degree of

gcd(χ̂(a, T ), dχ̂(a,T )
dT

). Finally, to make sure that o(a(x)) = o(x) for any x ∈
P (Z), check that o(χ(a, T )) ≥ o(g(a, Pi, T )) for all 1 ≤ i ≤ m. Anyhow this
does not worsen the asymptotic running time.

Thus we compute χ(ra + Srb, T ), as already outlined in the first part of
this section, and then operate with ε−o(χ(ra,rT ))χ(ra + Srb, rT ) to obtain the
remaining data for the limit computation. We have

χ̂(ra + Srb, rT ) = lim
ε

ε−o(χ(ra,rT ))χ(ra + Srb, rT ).

Using the latter to compute ĝ(ra, rb, bT ) and ĝ(ra, r, bT ) as in the proof of

Lemma 2.25, by (2.28) we obtain b(x) = ĝ(µ)(ra,rb,ra(x))

ĝ(µ)(ra,r,ra(x))
for each x ∈ limε P (Z)
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of multiplicity µ + 1, as required. For each j we loop through all the possible
values of µ. Thus in total we will have no more than (m − 1)N3 univariate
representations, as stated in the theorem.

The complexity analysis for a given j runs parallel to the analysis given
in [5, Sect. 11.5] (see also a remark following Proposition 2.18 above) and is
omitted. This completes the proof of Theorem 2.1.

3. Limits of solution images: dimension > 0

In Section 2 we described a procedure to compute limits of images of finite
algebraic sets under polynomial mappings. To complete the proof of Theo-
rem 1.10, we proceed to computing limits, with respect to ε → 0, of rational
images of samples of connected components of real algebraic sets, by reducing
to the 0-dimensional case.

For F0 ∈ D[ε][Y1, . . . , Yq−1], let Z0 = Z(F0(Y ), F〈ε〉q−1), and let Ψ be as in
(1.9). We want to find points in each connected component of limε Ψ(Z0) ⊆ Fm.

Theorem 3.1. Let F0 and Ψ be as above, with the Y -degree of F0 at most
d and the Y -degrees of Ωi and Λ less than d − 1, and their ε-degrees at most
d. Then one can construct a (q + 2)-variate 0-dimensional polynomial system
B over the real closed transcendental extension F〈ε1, . . . , εℓ+2〉 of F〈ε〉 by two
infinitesimals 0 < εℓ+2 ≪ εℓ+1 ≪ εℓ, with zero set Z(B) such that

L = lim
ε1,...,εℓ+2

Ψ(π(Z(B))),

where π is the orthogonal projection to Y1, . . . , Yq−1, intersects each connected
component of limε1,...,εℓ

Ψ(Z0).
The system B can be constructed in (m + d)O(qℓ) operations over D, and it
satisfies the properties required by Theorem 2.1; the set L can be computed
using the procedure of Theorem 2.1.

In the proof we will denote µ = εℓ+1 and ζ = εℓ+2.
First of all, let us reduce the setting to the case when Λ = 1. Assume that

F0(Y ) ≥ 0, otherwise replace F0 with F 2
0 . Consider

F (Y1, . . . , Yq) = F0(Y ) + (1 − YqΛ(Y ))2, Z = Z(F (Y ), F〈ε〉q).

Then Ψ(Z0) = P (Z), where P ∈ D[ε][Y1, . . . , Yq]
m is given by

(Y1, . . . , Yq) 7→ (YqΩ1(Y ), . . . , YqΩm(Y )).
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Thus from now on we consider the problem of computing representatives of
connected components of the set limε P (Z) ⊆ Fm. Note that the map P is as
required by Theorem 2.1.

The idea is to look for points of minimal norm in the connected components
of P (Z). We will repeatedly use the following statement.

Proposition 3.2. ([5, Prop. 11.56]) Let S ⊆ K〈ε〉n be a semialgebraic set,
for K〈ε〉 a real closed extension of a real closed field K by an infinitesimal ε.
Then limε S ⊆ Kn is a closed semialgebraic set. If S is in addition connected
and bounded over K then limε S is connected. �

Introduce another variable Y0 that will help us in this task; we will write
down, after necessary preparations, equations that specify the critical points of
the projection Y 7→ Y0. Replace F by

F ′(Y0, . . . , Yq) = F (Y ) + (Y0 −
m
∑

i=1

Pi(Y )2)2.

We extend P to the zero set Z ′ of F ′ by “ignoring” Y0. Obviously P (Z) =
P (Z ′).

Next, we need to make the set Z ′ bounded, in the standard way of e.g. [5,
Chapt. 11]. Introduce an infinitesimal 0 < µ ≪ εℓ, a variable Yq+1 and define

Fµ(Y0, . . . , Yq+1) = F ′(Y ) + (1 − µ2

q+1
∑

j=0

Y 2
j )2, Z<∞

µ = Z(Fµ, F〈ε, µ〉q+2).

Again, extend P onto Z<∞
µ by “ignoring” Yq+1. Define

Zµ = Z(F ′, F〈ε, µ〉q+1)

Lemma 3.3. The following holds:

(i) P (Z<∞
µ ) is closed;

(ii) P (Z<∞
µ ) ⊆ P (Zµ);

(iii) limµ P (Z<∞
µ ) equals the closure of P (Z).
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Proof. The first part of the lemma follows from [5, Thm. 3.20], as P (Z<∞
µ )

is the image of a closed and bounded semialgebraic set under a continuous
semialgebraic function.

The second part is straightforward, by observing that the projection of Z<∞
µ

on the first q + 1 coordinates is a subset of Zµ.
Then, limµ P (Z<∞

µ ) is closed by Proposition 3.2. Next, limµ P (Z<∞
µ ) ⊇

P (Z). Indeed, if u = P (y) with y ∈ Z then there exists yq+1 ∈ F〈ε, µ〉 such
that µ2‖yµ‖2 = 1, where we denoted yµ = (y0, y1, . . . , yq+1) ∈ Z<∞

µ , implying
Fµ(yµ) = 0 and u = P (yµ) ∈ P (Z<∞

µ ).
Finally, the inclusion of limµ P (Z<∞

µ ) in the closure of P (Z) follows from
the second part. �

The next step is to introduce a deformation, same as in [5, Sect. 11.6],
that ensures smoothness. As in [5, (11.13)-(11.14)], introduce an infinitesimal
0 < ζ ≪ µ, and set

(3.4) Fζ(Y ) = ζ

(

µd

(

Y d
0 +

q+1
∑

j=1

(Y d
j + Y 2

j )

)

− 2q − 3

)

+ (1 − ζ)Fµ(Y ).

Note that the difference between [5, (11.13)-(11.14)] and (3.4) is purely nota-
tional: variables and infinitesimals have different names, and they range slightly
differently (i.e. there are q + 2 variables Y instead of q variables X). Here d
is the minimal positive even number strictly bigger than the degree of Fµ; this
simplification of [5, (11.13)-(11.14)] is explained in [5, Rem. 11.49].

By [5, 11.50-11.51], the set Zζ = Z(Fζ, F〈ε, µ, ζ〉q+2) is a nonsingular alge-
braic hypersurface contained in the ball of radius 1

µ
, and such that limζ Zζ =

Z<∞
µ . In particular limζ u exists for any u ∈ Zζ .

Consider the set Kζ of the critical points of the projection Y 7→ Y0 on Zζ .
They satisfy the system of equations

(3.5) 0 = Fζ(Y ) =
∂Fζ

∂Y1
= · · · =

∂Fζ

∂Yq+1
.

The zero set Kζ ⊇ Kζ of (3.5) in the algebraic closure of F〈ε, µ, ζ〉 is analysed
in detail in [5, Sect. 11.6]. In particular, |Kζ | ≤ dO(q) (cf. [5, Prop. 11.57]).
Note that Fζ(Y ) can be reduced (cf. [5, Notation 11.59]) using the relations
∂Fζ

∂Yj
= 0, j ≥ 1 so that the degree in Yj of the result is strictly less than d. The

result of these reductions, together with the
∂Fζ

∂Yj
, j ≥ 1, forms the polynomial

system B of Theorem 3.1 we are proving.
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To complete the proof that L is as claimed, it remains to prove the follow-
ing lemma. It will make sure that we recover in L a representative of each
component of limε P (Z).

Lemma 3.6. The set limζ,µ P (Kζ) intersects each connected component of
P (Z) in a point of minimal norm.

Proof. By construction, P (Kζ) contains the local minima of Y 7→ Y0 on
P (Zζ).

By [5, 11.55], the set Kµ = limζ Kζ (the set of pseudo-critical points) inter-
sects each connected component of Z<∞

µ .
As P does not depend upon ζ , we have that

lim
ζ

P (Zζ) = P (lim
ζ

Zζ) = P (Z<∞
µ ).

Due to closedness and boundedness over F〈ε, µ〉 of P (Z<∞
µ ) (cf. Lemma 3.3),

Y 7→ Y0 reaches its minimum on each connected component Cµ ⊆ P (Z<∞
µ ).

Note that by Proposition 3.2 we have Cµ = limζ Cζ, for a connected Cζ ⊆
P (Zζ). Consider P−1(Cµ) ⊆ Z<∞

µ . This set is a union of connected components
of Z<∞

µ , and Kµ intersects each of them; among these intersection points there
are ones with minimum value of Y0. Therefore P (Kµ) contains representatives
of the local minima (that need not be singletons any more) of Y 7→ Y0 on
P (Zµ).

As P (Z<∞
µ ) is the intersection of P (Zµ) with P (B1/µ), where B1/µ denotes

the ball of radius 1
µ

and centre at the origin, each connected component C

of P (Zµ) that intersects P (B1/µ) will contain a connected component Cµ of
P (Z<∞

µ ).
We assume now, without loss of generality, that C contains a point of F〈ε〉-

finite norm. Consider the intersection Cr of C and the (smaller) set P (Br),
where 1 + minu∈C ‖u‖ < r ∈ F〈ε〉. This is a bounded over F〈ε〉 semialgebraic
set, with finitely many connected components Ci

r. By Proposition 3.2 the set
limµ Ci

r is connected, for any i. As Ci
r ⊆ Cµ, and as Y0 has a local minimum

on Ci
r, each Ci

r ∩ P (Kµ) 6= ∅. Thus limµ P (Kµ) intersects each connected
component of P (Z) in a point of minimal norm, as required. �

A straightforward count of the number of operations needed to construct B
completes the proof of Theorem 3.1.

To complete the proof of Theorem 1.10, apply Theorem 3.1 (with ℓ = 2)
to Z0 := ZF and F0 := F . We obtain a 0-dimensional system B of equations
in the real closed extension of F〈ε〉 by two extra infinitesimals µ = ε3 and
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ζ = ε4, with the set of solutions Kζ such that limµ,ζ Ψ(π(Kζ)) intersects each
connected component of Ψ(Z0) in a point of minimal norm. Hence applying to
B the procedure of Theorem 2.1 will produce a set limε,µ,ζ Ψ(π(Kζ)) intersecting
each connected component of limε ZF in required running time, as N ≤ dq. �

4. Pieces of extrema of a bounded level set over a

quadratic map

Let the quadratic map Q : Kn → Kk be given by

Qj : X 7→ 1

2
XT HjX + bT

j X + cj, 1 ≤ j ≤ k

cj ∈ D, bj ∈ Dn, Hj = HT
j ∈ Dn×n.

(4.1)

Let ζ ∈ K. We consider the ζ-level set V = Z(p(Q(X)) − ζ, Kn) of a
polynomial p ∈ D[Y1, . . . , Yk] of degree d over a quadratic map Q : Kn → Kk

given by (4.1).
We assume that D is a computable subring of a real closed field K and V is

bounded over K. The latter assumption is in fact technical. It can (and will)
be ensured in Section 5 by introducing an extra infinitesimal ε0 and two extra
variables, to make V the image of an algebraic set on the sphere of radius 1/ε0

under projection onto the first n coordinates, and subsequently removing ε0 by
restricted elimination.

As well, we assume that ζ is a regular value of p(Q(X)) and of p(Y ).
Let Vc ⊆ V denote the set of critical points of the projection map X 7→ X1

from V to K. Then, as ζ is not a critical value of p(Q(X)), Vc is an algebraic
set defined by

p(Q(X)) − ζ = 0,(4.2)

∂p(Q(X))

∂X2
= · · · =

∂p(Q(X))

∂Xn
= 0.(4.3)

Due to the assumption that V is bounded, Vc intersects nontrivially each con-
nected component of V, see [10], [5, Prop. 7.6]. Thus a set Sc of representatives
of each connected component of Vc will also intersect each component of V. A
useful property of Sc is that it will contain points in V with minimal value of
X1.

Define

pj(Y ) =
∂p(Y )

∂Yj
, for 1 ≤ j ≤ k.
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The set of m× n matrices A1, . . . , Ak over K, m ≤ n, is said to be in r-general
position with respect to V if

(4.4) rk(
k
∑

i=1

tiAi) ≥ r for all t ∈ (p1(Q(V )), . . . , pk(Q(V ))) ⊆ Kk.

Note that t is never 0 here, as ζ is not a critical value of p(Y ). This is a weaker
notion of general position than the one used in [2], where t was allowed to range

over K
k
, instead of belonging to the image of V under the polynomial mapping

X 7→ (p1(Q(X)), . . . , pk(Q(X))).
Note that all the nonzero K-linear combinations of almost any k-set of m×n,

m ≤ n, matrices over K have rank at least m + 1 − k.
Below we assume that the matrices Ĥj ’s, that are obtained from Hj’s by

removing the first row, are in r-general position with respect to V. For U ⊆
{1, . . . , m} we denote U = {1, . . . , m} − U. For U ⊆ {1, . . . , m} and W ⊆
{1, . . . , n} we denote by AUW the submatrix of A obtained by removing all the
rows in U and all the columns in W.

To compute Sc in less than exponential in n time, or even just to give an
upper bound on its size of order less than exponential in n, standard methods
such as one in [10], [5, Chapter 11] that treat the system (4.2)-(4.3) directly do
not suffice.

Indeed, in these methods the number of variables, n in this case, appears
unavoidably in the exponent of the bounds. In contrast, we are able to get
better results for r being close to n. We cover Vc by (at most nO(n−r)) semial-
gebraic sets we call pieces, each of them isomorphic to a semialgebraic set lying
in Kt with t ≤ k + n − r. (Here covering means simply that the union of the
pieces is Vc; they in general intersect, and can even be equal one to another.)
Each of the latter is defined by at most O(dn2) polynomials of degree at most
O(nd). To them, one can apply the standard technique, see e.g. [5], to bound
the number of its connected components, so there will be at most (nd)O(k+n−r)

of them, and to find their (perhaps non-unique) representatives. However, for
the latter, for a technical reason, namely the necessity to take limits with re-
spect to certain infinitesimals (in particular ζ will be treated as such), we shall
use the approach presented in Sections 2 and 3.

The main results of this section are as follows.

Theorem 4.5. Let ζ be a regular value of p(Q(X)) and p(Y ), and the level set
V = Z(p(Q(X))− ζ, Kn) be bounded over K. Further, let the matrices Ĥj’s be
in r-general position with respect to V . Then one can construct a covering of
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the set of critical points Vc ⊆ V of the projection map X 7→ X1 by semialgebraic
sets Vc(U, W ) indexed by invertible submatrices of

∑

j pj(Q(X))Hj with row
sets U ⊆ {2, . . . , n} and column sets W ⊂ {1, . . . , n} that satisfy r ≤ |U | =
|W | ≤ n − 1. For each such W , the polynomial mapping

φW : Kn → Kk+n−1−|W |

X 7→
(

Q(X)

XW

)

(4.6)

on each φW (Vc(U, W )) has explicitly given inverse

φ−1
UW : Kk+n−1−|W | → Kn

(

Y

T

)

7→
(

ΘUW (p1(Y ), . . . , pk(Y ), T )

T

)

,

where ΘUW is a vector of rational functions in pj(Y )’s and T, all with the same
denominator. The degrees of the latter and of the numerators are at most |W |.
The set φ(Vc(U, W )) is defined by p(Y ) = ζ and (n − |W |)2 + k + 1 + n − r
polynomial equations and one un-equation in the pj ’s, Y, and T, of degree
O(|W |). In total there are at most nO(n−r) pieces.

Remark 4.7. The statement of Theorem 4.5 holds un-amended in the more
general setting of p being a differentiable function, and “semialgebraic set”
replaced by “joint zeros of equations and non-zeros of inequations”. The proof
we give goes through in this case, too. We chose to remain in semialgebraic
setting for the sake of clarity only.

The following summarizes, in the setting of the paper, the necessary com-
plexity estimates for the procedure outlined in the course of proving Theo-
rem 4.5.

Proposition 4.8. In notation of Theorem 4.5, let K = L〈ε〉, with ε =
(ε1, . . . , εℓ) infinitesimals, ℓ ≥ 1, D = DL[ε], and p ∈ D[Y ] of degree d in
Y . Let the degrees of Q and p in ε be at most d′. The map φ−1

UW and the
definition for φ(Vc(U, W )) can be computed within (n(d + d′))O(ℓ+k+n−r) arith-
metic operations in DL. In the case DL = Z, the bitsizes of them and the
intermediate data are bounded by the bitsize of Q and p times a polynomial in
n, k, log d, log(1 + d′), and ℓ.
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In the course of the proof of Theorem 4.5 we construct the explicit maps
φ−1

UW and semialgebraic definitions for Vc(U, W ). Equations (4.3) can be written
as

∂p(Q(X))

∂Xi

(X) =
k
∑

j=1

pj(Q(X))eT
i (HjX + bj) = 0, 2 ≤ i ≤ k,

where ei is the standard i-th coordinate vector. Thus, denoting

Φ(Y ) =
k
∑

j=1

pj(Y )Ĥj, b(Y ) = −
k
∑

j=1

pj(Y )b̂j ,

where b̂j denotes bj with the first coordinate removed, one can write (4.3) in
the matrix form, as follows.

(4.9) Φ(Q(X))X = b(Q(X)).

At this point we would like to give an outline of the remainder of the proof of
Theorem 4.5. We will compute a set of solutions of the system of equations
(4.2)-(4.9) that intersects each connected component of V . Doing this in the
standard way would take an exponential in n number of operations, and this
is exactly what we want to avoid.

The structure of the equations (4.2)-(4.9) suggests the substitution Y =
Q(X). It turns (4.9) into a system of linear equations Φ(Q(Y ))X = b(Y )
with respect to X. We cannot simply “invert” Φ(Q(Y )), as it need not be
of full rank. However, rk(Φ(Q(Y ))) will always be at least r, allowing us to
“split” the solving into nO(n−r) cases, one for each maximal invertible submatrix
(parametrized by U and W ), that will be inverted. This gives (for each such
case) rational expressions φ−1

UW for r of the X’s in terms of Y and the remaining
n−r X’s (that we will denote T ), as well as giving extra (in)equations involving
Y and T . The latter define the sets Vc(U, W ), essentially completing the proof.

We proceed with the detailed proof now, preparing the ground for intro-
ducting in (4.18) the variables Y . The r-general position assumption implies

rk(Φ(Q(x))) ≥ r for any x ∈ V.

Thus there are at most nO(n−r) maximal by inclusion invertible submatrices of
Φ(Q(X)). Indeed, there are at most s(r) = (

∑n
m=r

(

n
m

)

)2 of them, by counting
number of pairs (U, W ) of subsets U ⊆ {2, . . . , n}, W ⊂ {1, . . . , n} satisfying
r ≤ |U | = |W |. If r ≤ n/2 then s(r) < 2O(n) < nO(n−r). Otherwise one has

s(r) < (n − r)2
(

n
n−r

)2
< nO(n−r), again as required.
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As well, at least one Φ(Q(X))UW will be invertible. Hence

det Φ(Q(X))U ′W ′ = 0 for all |U ′| = |W ′| = |U | + 1

U ⊂ U ′ ⊆ {2, . . . , n}, W ⊂ W ′ ⊂ {1, . . . , n},
det Φ(Q(X))UW 6= 0.

(4.10)

Noting that (4.10) implies that det Φ(Q(X))U ′W ′ = 0 for all U ′ and W ′ of size
bigger than |U |, one obtains the following.

Lemma 4.11.

(4.12) Vc =
⋃

U⊆{2,...,n}
W⊂{1,...,n}

r≤|U |=|W |≤n−1

Vc(U, W ),

where Vc(U, W ) is defined by the equations (4.2)-(4.3) and by (4.10). The
number of elements in the union in (4.12) is at most nO(n−r).

Without loss in generality U = {2, . . . , r + 1}, W = {1, . . . , r}. Invert the
matrix Ψ = Φ(Q(X))UW using the Cramer rule:

(4.13) Ψ−1
ij =

(−1)i+j det Ψ(i, j)

det Ψ
, for 1 ≤ i, j ≤ r,

where Ψ(i, j) is the matrix obtained from Ψ by removing i-th row and j-th
column. Then the system Φ(Q(X))X = b(Q(X)) can be rewritten in the block
form as

(4.14)

(

Ψ ΦU,W

ΦU,W ΦUW

)[

XW

XW

]

=

[

bU

bW

]

,

where the common “(Q(X))” is dropped for the sake of readability. Applying
( Ψ−1 0
−Φ

U,W
Ψ−1 I

)

to both sides of (4.14), one obtains

(4.15)

(

I Ψ−1ΦU,W

0 0

)[

XW

XW

]

=

[

Ψ−1bU

bW − ΦU,WΨ−1bU

]

.

Thus the following, together with (4.10) and (4.2), provides another definition
of Vc(U, W ).

XW = Φ(Q(X))−1
UW · (b(Q(X))U − Φ(Q(X))UW XW ) ,(4.16)

b(Q(X))U = Φ(Q(X))UWΦ(Q(X))−1
UW · b(Q(X))U .(4.17)
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Observe that in the latter definition of Vc(U, W ) the only place where XW

appears other than as an argument to Q is the left-hand side of (4.16). Set up
the mapping φ−1

UW as follows.

φ−1
UW : Kk+n−1−r → Kn

(

Y

T

)

7→
(

Φ(Y )−1
UW · (b(Y )U − Φ(Y )UWT )

T

)

.
(4.18)

One establishes that φ−1
UW acts as claimed in the statement of the theorem.

Lemma 4.19. The mapping φW restricted onto Vc(U, W ) has inverse φ−1
UW , that

is,

φ−1
UW (φW (Vc(U, W ))) = Vc(U, W ).

Proof. We have to check that φ−1
UW (φW (x)) = x for any x ∈ Vc(U, W ). As

neither φW nor φ−1
UW change xW , in view of (4.18) it suffices to check that

Φ(Q(x))−1
UW (b(Q(x))U − Φ(Q(x))UW xW ) = xW . But the latter holds as it is

nothing but (4.16), a part of a definition for Vc(U, W ). �

We proceed to write down an explicit definition for φW (Vc(U, W )) in terms
of variables Y and T used in (4.18). Denoting Ω = det Φ(Y )UW , one has the
following polynomial equations

p(Y ) = ζ(4.20)

Ω2 Y = Ω2 Q(φ−1
UW (Y, T ))(4.21)

Ω b(Y )U = Ω Φ(Y )U,WΦ(Y )−1
UW · b(Y )U ,(4.22)

where puzzlingly looking multiplication of both sides of (4.21) and (4.22) by Ω
clears denominators coming from (4.13) in the right-hand sides, and

det Φ(Y )U ′W ′ = 0 for all |U ′| = |W ′| = |U | + 1

U ⊂ U ′ ⊆ {2, . . . , n}, W ⊂ W ′ ⊆ {1, . . . , n},
det Φ(Y )UW 6= 0.

(4.23)

Apart from (4.21), that “bootstraps” Q, these (in)equations already appeared
above, with Y substituted for Q(X) and T substituted for XW .

Lemma 4.24. The relations (4.20)-(4.23) provide a semialgebraic definition of
φW (Vc(U, W )).
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Proof. Let (y, t) belong to the semialgebraic set defined by (4.20)-(4.23),
and x = φ−1

UW (y, t). We shall check that x ∈ Vc(U, W ). Due to (4.21), the
equation (4.2) holds for X = x. Similarly, the remaining (in)equations (4.10),
(4.16)-(4.17) defining Vc(U, W ) hold for X = x.

By inspection, any x ∈ Vc(U, W ) gives rise to (y, t) = φW (x) in the set
defined by (4.20)-(4.23). �

The entries of the matrix Φ(Y ) are linear polynomials in p1, . . . , pk. Thus
the determinants of its m × m-submatrices, that come via (4.13) into the def-
inition of Vc(U, W ) by (4.20)-(4.23), will be polynomials of degree at most m.
Similar straightforward degree counts complete the proof of Theorem 4.5.

We proceed to prove Proposition 4.8. The only nontrivial part concerns the
complexity of computing the map φ−1(U, W ) using the Cramer rule (4.13).

To count the number of arithmetic operations in DL required to compute the
determinants, one can either slightly extend [2, (2.8)], or refer to [5, Alg. 8.38,
Rem. 8.39(b)], to obtain that computing the determinant of a submatrix of
Φ(Y ) can be done in nO(1) arithmetic operations in DL[ε, Y ], and then refer to
[5, Alg. 8.38].

Using the latter source, one sees that for DL = Z, the bitsizes in the answer
and in the intermediate data will be bounded by (τ +log n)n+(k+1) log(n(d+
d′) + 1), with τ a bound on the bitsize of coefficients in the entries of Φ(Y ).
Noting that τ is bounded by log d times the bitsize of p and Q completes the
computation of the bitsize bound for determinants. The remainder of the proof
is a straightforward use of the complexity analysis of arithmetic operations in
polynomial rings in [5, Algs. 8.8, 8.10].

5. Proof of Theorem 1.2

Let ε0 > 0 be an infinitesimal over K. We use it to deform Z = Z(p(Q(X)), Kn)
so that it becomes bounded. (A priori this deformation is not necessary if Z
is known to be bounded in the first place.) We can assume that p(Y ) ≥ 0 for
all Y , otherwise we can replace p by p2. Introduce extra variables X0 and Y0,
and set

p̃(Y ) = Y 2
0 + p(Y ).

Set

Q0(X) = 1 − ε2
0

n
∑

i=0

X2
i

and abuse slightly the notation by setting Q = (Q0, Q1, . . . , Qk). Further, set
k̃ = k + 1 and ñ = n + 1. Then for Ẑ = Z(p̃(Q(X)), K〈ε0〉ñ) one sees, by
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using [5, Prop. 11.47], that the projection to the last n coordinates of any set S
meeting every connected component of Ẑ meets every connected component of
Z(p(Q(X)), K〈ε0〉n). Assuming one can compute S as a set of univariate repre-
sentations in D[ε0, T ], one then can use restricted elimination [5, Alg. 12.43] to
replace ε0 by a sufficiently small element of the field of fractions of D to obtain
univariate representations of points of Z.

Next, we deform Q by defining Q̃(t) : Kñ → K[t]k̃ as follows

(5.1) Q̃j(t, X) = Qj(X) +
t

2
XT diag(1j, 2j, . . . , ñj)X, 0 ≤ j ≤ k.

Obviously Q̃(t) defines, as well, a quadratic map Fñ → Fk̃ for any field F ⊇
K〈t〉. The following lemma states that the Hessians of the Q̃j(t)’s are in gen-
eral position, in sense that their nonzero linear combinations (that will be the
matrices A(Y ) mentioned in the discussion in the beginning of this section) are
of maximal possible rank. The statement is similar to [2, (3.6)].

Lemma 5.2. Let the matrix A(Y, T ) with the entries in K[Y, T ] be defined by

A(Y, T ) =
k
∑

j=1

Yj(Hj + T diag(1j−1, 2j−1, . . . , nj−1)).

Let t be transcendental over K. Then for any field F ⊇ K〈t〉 and 0 6= y ∈ F
k
,

the rank of A(y, t) is at least n − k + 1.
There exists 0 < ι′ ∈ K such that for any ι ∈ K satisfying 0 < ι < ι′ and
0 6= y ∈ K the rank of A(y, ι) is at least n − k + 1.

Proof. Consider

B = B(Y, T, µ) =
k
∑

j=1

Yj(µHj + Tdiag(1j−1, 2j−1, . . . , nj−1))

and the homogeneous, with respect to Y , as well as with respect to {µ, T},
ideal J = (det BUW | U, W ⊂ {1, . . . , n}, |U | = |W | = n − k}) in the ring
D[Y, T, µ] ⊂ K[Y, T, µ].

Note that every (y∗, t∗) 6= 0 satisfying rk(A(y∗, t∗)) < n− k +1 gives rise to

0 6= (y∗, t∗, 1) ∈ Z(J) = Z(J, K
k+2

). Vice versa, 0 6= (y∗, t∗, 1) ∈ Z(J) obviously
implies rk(A(y∗, z∗)) < n − k + 1.

The idea is now to show that there exists a nonzero polynomial f(T ) ∈ K[T ]
such that f(t) = 0 for all (y∗, t) 6= 0 with rk(A(y∗, t)) < n − k + 1. As t is
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transcendental over K, that is, it cannot be a root of a polynomial in K[T ], this
will imply the statement of the lemma.

The ideal J ′ = (J : (Y )∞)∩K[T, µ], obtained by “projectively” eliminating
Y from J , is homogeneous. By the “Main Theorem of Elimination Theory”,
see e.g. [7, Theorem 14.1], the image of Z(J) under the corresponding pro-

jection is Zariski-closed. Hence it coincides with Z(J ′) = Z(J ′, K
2
). More-

over, J ′ is nonempty, as Z(J), and hence Z(J ′), do not contain elements with
µ = 0 and T = 1, as follows immediately from the properties of the diago-
nal matrices diag(1j , 2j, . . . , nj). Thus J ′ contains a homogeneous polynomial
f(T, µ) ∈ K[T, µ] that is not divisible by µ.

Hence any t for which there exists y∗ 6= 0 satisfying rk(A(y∗, t)) < n−k+1,
satisfies f(t, 1) = 0, that is, t is algebraic over K, a contradiction showing the
first part of the lemma. To obtain the second part, observe that f(T, 1) vanishes
only on finitely many elements of K. Choose ι′ to be the closest to 0 root of
f(T, 1) among the positive elements of K, if such a root exists. Otherwise
choose ι′ = 1. �

Next, we shall perturb p̃(Q̃(X)) so that 0 is not its (and neither that of
p̃(Y )) critical value by subtracting an appropriate constant τ from it. (Such
τ is called a regular value of p̃(Q̃(X)) and of p̃(Y )). We will talk about the
τ -level set of p̃(Q̃(X)), that is just Z(p̃(Q̃(X)) − τ, Kn). The following is an
immediate consequence of the semialgebraic Sard’s theorem [6, Thm. 9.6.2], [5,
Thm. 5.57].

Lemma 5.3. Let F be a real closed field and τ a transcendental infinitesimal
over F (respectively, τ > 0 a sufficiently close to 0 element of F). Then τ (and
any ι satisfying 0 < ι < τ) is a regular value of any nonzero f(Y ) ∈ F[Y ]. In
particular, provided that F contains the field generated by the coefficients of p
and Q, one has that τ (and any ι as above) is a regular value of p̃(Q̃(X)) and
of p̃(Y ). �

Let ε0 ≫ ε1 ≫ ε2 > 0 be two more extra infinitesimals over K, and denote
Q̃ = Q̃(ε2). We deform Ẑ as follows:

Z̃ = Z(p̃(Q̃(X)) − ε1, K〈ε0, ε1, ε2〉ñ).

At this point we are ready to use the tool from Section 4, where it is de-
scribed in slightly greater generality. According to Theorem 4.5 we have a
covering of the set Vc of the critical points of X 7→ X0 on Z̃ by nO(k) semial-
gebraic sets Vc(U, W ). Moreover, Theorem 4.5 gives us for each Vc(U, W ) an
isomorphism φW (given by polynomials in D[X] of degree at most 2d) so that
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φW (Vc(U, W )) ⊆ K〈ε0, ε1, ε2〉O(k), as well as its inverse φ−1
UW (given by rational

functions, with common denominator, with coefficients in D[ε], of degrees at
most ñ). By Proposition 4.8, this data can be computed by (n(d + d′))O(k)

arithmetic operations in D.
The sets φW (Vc(U, W )) and Vc(U, W ) are both defined by equations and one

inequation Λ 6= 0, with Λ ∈ D[ε][Y ] (respectively, Λ ∈ D[ε][X]). By adding
one extra variable as in the beginning of Section 3 we convert each of them
into a real algebraic set: add equation Yk̃+1Λ = 1 (respectively, Xñ+1Λ = 1)
and extend the maps φW and φ−1

UW by “ignoring” these extra variables. Apply
to ZF := φW (Vc(U, W )) and Ψ := φ−1

UW the procedure of Theorem 1.10. It will
produce a set R(U, W ) of univariate representations of points intersecting each
connected component of limε Vc(U, W ).

By the following lemma, the union of the R(U, W )’s over U , W will in-
tersect each connected component C of Z, as by Proposition 3.2 one has
C = limε1,ε2 Cε, where Cε is a connected component of Z̃, and Cε intersects
some Vc(U, W ).

Lemma 5.4. Ẑ = limε1,ε2 Z̃.

Proof. Denote ε = (ε2, ε1). As limε is a ring homomorphism from K〈ε〉b
to K, certainly limε Z̃ ⊆ Ẑ. We shall show the reverse inclusion. Let x ∈ Ẑ.
We find a point x̃ ∈ Z̃ satisfying limε x̃ = x. Note that p̃(Q̃(x)) ∈ ε2K and
p̃(Q̃(x)) − ε1 < 0, as ε1 ≫ ε2 > 0. On the other hand, as p̃(Q(X)) is not
identically 0, for any 0 < r ∈ K the ball of radius r around x in Kñ contains
a point y such that p̃(Q(y)) > 0. As x lies in the closure of the semialgebraic
set F+ defined by p̃(Q(X)) > 0, there exists a semialgebraic path γ : [0, 1] →
Kñ such that γ(0) = x and γ((0, 1]) ⊆ F+, cf. Curve selection lemma [5,
Thm. 3.19]. As the image of a closed and bounded semialgebraic set under a
continuous semialgebraic function on it is bounded, cf. [5, Thm. 3.20], γ([0, 1])
is bounded over K.

Let γ denote the extension of γ to K〈ε〉. Then by [5, Prop. 2.84] the set
γ([0, 1]) is bounded over K〈ε〉. By the semialgebraic intermediate value theorem
[5, Prop. 3.4] the set I(τ0) of all τ ∈ (0, τ0) ⊂ K〈ε〉 satisfying p̃(Q̃(γ(τ))) = 0 is a
nonempty closed semialgebraic set. Choose τ in the closest to 0 interval of I(τ0).
Then limε τ = 0, as τ0 is arbitrary close to 0. As limε is a ring homomorphism,
we have p̃(Q(limζ γ(τ))) = 0.

It remains to show that x = limε γ(τ). Identify τ with the correspond-
ing (representative of the) germ of semialgebraic continuous functions on K>0

and think of γ(τ) as of composition γ ◦ τ . To complete the proof, apply [5,
Lemma 3.21] that states that in this setting (γ a semialgebraic continuous
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function on a closed bounded semialgebraic set over K and τ an element of the
extension of this set to K〈ε〉) one has γ(limε τ) = limε(γ ◦ τ). �

At this point we obtained a set of univariate representations u(ε0, T ) ∈
D[ε0, T ]n+3 (see (1.1)) for points in each connected component of Ẑ. Now we
get rid of the infinitesimal ε0. Remove from u the polynomial g1 responsible
for X0-coordinate, that is no longer needed, and apply [5, Alg. 12.46] (Removal
of Infinitesimals), that consists of two steps.

The first step is running the restricted elimination algorithm [5, Alg. 12.43]
with the input consisting of the polynomial f and the following polynomials:

(5.5) f ′, f ′′, . . . , f (deg(f)−1), g
deg(p(Q))
0 p(Q(

g2

g0
, . . . ,

gn+1

g0
)).

It outputs a finite set S ⊂ D[ε0] such that the degree of f , the number of roots
of f in K, the number of common roots of f and h in K, and the signs of h at
the roots of f , for all h in (5.5), are fixed on each connected component of the
realization of any (realizable) sign condition on S.

The second step computes, for each polynomial

h(ε0) = hℓε
ℓ
0 + hℓ+1ε

ℓ+1
0 + · · · + hℓ+ωεℓ+ω

0 ∈ S, hℓ 6= 0,

the Cauchy lower bound |hℓ|
P

m |hm|
on the absolute value of its nonzero roots (see

[5, Lemma 10.3]) and substitutes the minimum a
b
, for a, b ∈ D, of these bounds

for ε0. The following remain unchanged upon substituting ε0 = a
b
:

◦ the number of real roots of f(a
b
, T ) and their Thom encodings;

◦ the signs of the polynomials in (5.5) at these roots. In particular the
Thom encodings of these roots will remain the same.

By construction, the set of points represented by the u(a
b
, T )’s intersects each

connected component of Z.
The number of arithmetic operations in D for these two steps is (dn)O(k),

according to [5, p. 462].

It remains to convert the u(a
b
, T ) = (f, g0, g2, . . . , gn+1)’s into real univariate

representations by computing the Thom encodings σ for each real root of f
using [5, Alg. 10.64] and [5, Rem. 10.66]. The complexity of this procedure
is (dn)O(k), and for the case D = Z the bitsizes of the intermediate data are
bounded by (dn)O(k) times the bitsize of the input, by [loc.cit.].

This completes the proof of Theorem 1.2.
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