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Introduction

In this paper we present an algorithm which, given a black box to evaluate a t-sparse (a

quotient of two t-sparse polynomials) n-variable rational function f with integer coefficients,

can find the coefficients and exponents appearing in a t-sparse representation of f using
(

t(nt) log d
)O(1)

black box evaluations and arithmetic operations and with arithmetic depth

(nt log d)O(1), where d denotes the degree of t-sparse representation of f (see the Theorem

at the end of section 4 for an exact statement of this result). Although these bounds involve

the size of the exponents, this dependency only arises at the end of our algorithm. The

algorithm genuinely produces (that is produces in a way whose arithmetic complexity does

not depend on the size of the coefficients of f or on the degree of f , [19]) a polynomial whose

roots are p-powers (for some small p) of the exponents appearing in a t-sparse representation

of f . All known algorithms to find the roots of this polynomial (even knowing that they

are p-powers) have complexity that depend on the size of the roots. This dependency also

occurs in algorithms for interpolating t-sparse polynomials (c.f.,[1]) for the same reason.

To find the exponents appearing in some t-sparse representation of a t-sparse univariate

rational function f(X) we proceed as follows: We consider representations of f(X) of the

form (Σt
i=1aiX

αi)/(Σt
i=1biX

βi), where ai, bi, αi, βi are real numbers. Such a function is

called a real quasirational function. Furthermore, we call such a representation minimal

if it has a minimal number of nonzero terms in the numerator and denominator and is

called normalized if some term is 1. We show that there are only a finite number of

minimal normalized representations and that the exponents must be integers. We are able

to produce a system T of polynomial equalities and inequalities (whose coefficients depend

on the values of f(X) at tO(t) points) that determine all the possible values of any such αi

and βi. Using the methods of [13], we can then find all αi and βi. To find the exponents

when f(X1, . . . , Xn) is a multivariate polynomial, we show how to produce sufficiently many

n-tuples of integers (ν1, . . . , νn) such that the exponents of f can be recovered from the

exponents of all the f(Xν1 , . . . , Xνn).

Complexity issues for t-sparse polynomial and rational function interpolation have

been dealt with in several papers. Polynomial (black box) interpolation was studied in

[1],[2],[9],[12],[17], [19],[27], [28]. For bounded degree rational interpolation (when the
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bound on the degree is part of the input) see [15],[16],[25]. Approximative unbound in-

terpolation arises also naturally in issues of computational learnability of sparse rational

functions (cf. [21]). The present authors have previously studied the problem of inter-

polation of rational functions in [10], but the algorithm presented there for finding the

exponents had considerably worse complexity. The present paper significantly improves

the results of that paper by introducing the notion of a minimal representation (allowing

us to directly compute a finite set of possible exponents instead of just bounding them)

and a new technique for reducing multivariate interpolation to univariate interpolation. As

we shall see these ideas give us a more efficient algorithm.

The rest of the paper is organized as follows: In Section 1 we give formal definitions

of a quasirational function and related concepts and prove some basic facts about these

functions. In Section 2 we introduce some useful linear operators on fields of these functions.

We use these operators to derive criteria for a function to be t-sparse. In Section 3 we

use these criteria to give an algorithm for t-sparse univariate interpolation. In Section 4,

we again use these operators to show how multivariate interpolation can be reduced to

univariate interpolation. Complexity analyses of the algorithms are also given in Sections

3 and 4.

1 Quasirational Functions

A finite sum
∑

I

cIX
I (1)

where I = (α1, . . . , αn), αi ∈ C , XI = Xα1 · . . . ·Xαn , cI ∈ C is called a quasipolynomial

of n variables. The set of quasipolynomials forms a ring under the obvious operations and

we denote this ring by C 〈X1, . . . , Xn〉. The subring of quasipolynomials (1) with αi ∈ IR

and cI ∈ IR will be referred to as the ring of real quasipolynomials and will be denoted

by IR〈X1, . . . , Xn〉. A ratio of two quasipolynomials (real quasipolynomials) is called a

quasirational function (real quasirational function). The set of such functions forms a

field that we denote by C 〈〈X1, . . . , Xn〉〉 (IR〈〈X1, . . . , Xn〉〉). Note that Q (X1, . . . , Xn) ⊂

IR〈〈X1, . . . , Xn〉〉. We use the expressions “polynomial” or “rational function” in the usual
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sense, that is for a quasipolynomial or quasirational function with non-negative integer

exponents in their terms.

We say that the quasipolynomial (1) is t-sparse if at most t of the cI are nonzero. If

a quasirational function f can be written as a quotient of a numerator that is t1-sparse

and a denominator that is t2-sparse then we say that f is (t1, t2)-sparse. For example,

(Xm − 1)/(X − 1) = Xm−1 + · · ·+ 1 is (2, 2)-sparse and also (m, 1)-sparse. If f is (t1, t2)-

sparse but not (t1 − 1, t2)- or (t1, t2 − 1)-sparse, we say that f is minimally (t1, t2)-sparse.

Note that the above example is both minimally (2, 2)-sparse and minimally (m, 1)-sparse.

We say that a representation f = p/q is a minimal (t1, t2)-sparse representation if f is

minimally (t1, t2)-sparse and p is t1-sparse and q is t2-sparse.

We will need a zero test for (t1, t2)-sparse rational functions. This is similar to the

well known zero test for t-sparse polynomials (c.f., [1],[9],[11]). We assume that we are

given a black box for an n-variable rational function f with integer coefficients in which

we can put points with rational coefficients. The output of the black box is either the

value of the function at this point or some special sign, e.g., “∞”, if the denominator

of the irreducible representation of the function vanishes at this point (a representation

f = g/h, g, h ∈ C [X1, . . . , Xn], is irreducible if g and h are relatively prime).

Lemma 1. Let f be a (t1, t2)-sparse rational function of n variables, let p1, . . . , pn be n

distinct primes and let P j = (pj1, . . . , p
j
n) 1 ≤ j ≤ t1+ t2− 1. Then f is not identically zero

if and only if the black box outputs a number different from 0 and ∞ at one of the points

P j.

Proof. Recall that ifM1, . . . ,Mt are distinct positive numbers then any t× t subdetermi-

nant of the r× t matrix (M j
s )1≤s≤t, 1≤j≤r is non-singular (c.f., [5]). Since the black box gives

output based on an irreducible representation of f , we see that any zero of the denominator

of such a representation is zero of the denominator of a (t1, t2)-sparse representation of f .

Using the remark about the matrix (M j
s ) above we see that the denominator can vanish at,

at most, t2 − 1 of these points. A similar argument applies to the numerator. Therefore,

the (t1, t2)-sparse function f is not identically zero if and only if the black box outputs a
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number different from 0 and ∞ at one of these points P j.

We note that Lemma 1 is not true for quasirational functions. For example, let p =

2 and f(X) = 1 − X
2π

√
−1

log 2 . We then have that f(2i) = 0 for all i. If one restricts

oneself to real quasirational functions, then Lemma 1 is also not true for n ≥ 2. To see

this, let f(X1, X2) = X
log2 5
1 − X

log3 5
2 and p1 = 2, p2 = 3. However, we do have a zero

test for univariate real quasirational functions. We will only need such a test for real

quasipolynomials which we state in the following lemma.

Lemma 2. Let p be a positive real number and let f ∈ IR〈X〉 be t-sparse. If f(pi) = 0

for i = 0, . . . , t− 1, then f ≡ 0.

Proof. Let f = Σt
i=1aiX

αi where αi 6= αj for i 6= j. Since f(pi) = 0 for i = 0, . . . , t − 1

then
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Since the αi are real, pαi 6= pαj if i 6= j. Therefore the above t × t matrix is non-singular

and so a1 = . . . = at = 0.

If f is a quasirational function, we call a representation f = g/h, g, h ∈ C 〈X1, . . . , Xn〉

normalized if g or h contains the constant term 1. For an arbitrary representation f = g̃/h̃,

there are a finite number of monomials M such that (g̃/M)/(h̃/M) is normalized.

Lemma 3. a) Assume p/q = p̄/q̄ are normalized representations of a multivariate

quasirational function and assume that p/q is a minimal (t1, t2)-sparse representation.

Then the ZZ-module generated by the exponent vectors of p and q is a submodule of the

ZZ-module generated by the exponent vectors of p̄ and q̄.

b) There exist at most (t1 + t2)
O(t1+t2) minimal (t1, t2)-sparse representations. Fur-

thermore, for given exponent vectors, the coefficients in the corresponding minimal repre-
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sentation are unique.

c) Assume the same conventions as in a). Then

max{| deg(p)|, | deg(q)|} ≤ 2(t1 + t2)max{| deg(p̄)|, | deg(q̄)|}.

Proof. Let I1, . . . , It1 be the exponent vectors of p, J1, . . . , Jt2 be the exponent vectors of

q and let {Īi} (respectively {J̄j}) be the exponent vectors of p̄ (respectively q̄). We define a

weighted directed graph G in the following way. The vertices of G correspond to the t1+ t2

exponents of p/q. We join Ii and Jj if Ii+ J̄j1 = Jj+ Īi1 for some i1, j1 and assign the weight

Īi1 − J̄j1 to the edge (Ii, Jj). We join Ii and Ii1 if Ii + J̄j = Ii1 + J̄j1 for some j 6= j1 and

assign weight J̄j1 − J̄j to the edge (Ii, Ii1). Finally, we join Jj and Jj1 if Jj + Īi = Jj1 + Īi1

for some i 6= i1 and assign weight Īi1 − Īi to the edge (Jj, Jj1).

We claim that G is connected. If not, let Go be the connected component which contains

the exponent vector (0, . . . , 0). One sees that the representation po/qo obtained from p/q

by deleting all terms with exponent vectors not belonging to this connected component

equals p̄/q̄. This contradicts the minimality of p/q and proves the claim.

To prove a) and c), consider a spanning tree T of G and let (0, . . . , 0) be the root of T .

Any exponent vector Ii (respectively Ji) equals the sum of the weights along the unique

path connecting Ii (respectively Ji) with the root and so lies in the module generated by

the Īi and J̄i.

To prove b), note that the spanning tree above uniquely determines the set of expo-

nent vectors that can occur in p/q. Therefore the number of exponent vectors in the

numerator and denominator is at most the product of the number of such weighted trees

and

(

t1 + t2
t1

)

(the latter value being the number of choices of exponents for the nu-

merator and denominator). The number of rooted trees with (t1 + t2) vertices is at most

(t1 + t2)
0(t1+t2). For a fixed tree, the number of ways to assign weights of the above form

from a fixed set
{

Īi
}t1

i=1
∪ {J̄j}

t2
j=1 can be bounded by (t1 + t2)

0(t1+t2). Thus the number of

exponent vectors can also be bounded by (t1 + t2)
0(t1+t2).

We now prove the last statement of b). Assume that po/qo = p/q are two different
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minimal (t1, t2)-sparse representations with the same exponent vectors in the corresponding

numerators and denominators. For suitable c ∈ C ,
po − cp

qo − cq
=
p

q
is a representation that

is either (t1 − 1, t2)- or (t1, t2 − 1)-sparse, contradicting the minimality of (t1, t2). This

completes the proof of Lemma 3.

We have the following immediate consequence of Lemma 3 a).

Corollary 4. Any normalized minimal (t1, t2)-sparse quasi-rational representation of a

rational function has exponents that are integers.

2 Linear Operators

In the following sections it will be useful to consider the actions of certain linear operators

on fields of quasirational functions.

Definition. a) Let p1, . . . pn be distinct prime numbers and let Dn : C 〈〈X1, . . . , Xn〉〉 →

C 〈〈X1, . . . , Xn〉〉 be the C -linear operator defined by Dn(X
α
i ) = pαi X

α
i , where the number

pαi is defined to be eα log pi for some fixed branch of the logarithm. When n = 1 we will

write C 〈〈X〉〉 instead of C 〈〈X1〉〉 and D instead of D1.

b) Let D : C 〈〈X〉〉 → C 〈〈X〉〉 be the C -linear operator defined by

D(Xα) = X
d

dX
(Xα) = αXα.

Note that Dn is a homomorphism, i.e. Dn(fg) = Dn(f)Dn(g) while D is a derivation,

i.e. D(fg) = D(f)g + fD(g). This difference will force us to deal with these operators

separately. We begin by studying Dn.

Lemma 5. a) Let f ∈ C (X1, . . . , Xn) and assume that Dn(f) = f . Then f ∈ C .

b) Let f ∈ IR〈〈X〉〉 and assume that D(f) = f . Then f ∈ IR.

Proof. a) If Dn(f) = f , then f(X1, . . . , Xn) = f(p1X1, . . . , pnXn) =

f(p21X1, . . . , p
2
nXn) = · · · . Lemma 1 implies that f(X1, . . . , Xn) = f(X1Y1, . . . , XnYn)
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for new variables Y1, . . . , Yn. If f = g/h, let g =
∑

I

aIX
I , h =

∑

J

bJX
J . Comparing

coefficients of the corresponding monomials in X and Y we have that, after a suitable

re-ordering, I1 = J1, I2 = J2, . . . and aIbJ = aJbI for all I, J . Therefore f ∈ C .

b) The proof is the same as in a) using Lemma 2 instead of Lemma 1.

Note that Lemma 5 a) is not true for f ∈ IR〈〈X1, . . . , Xn〉〉 ⊂ C 〈〈X1, . . . , Xn〉〉, n ≥ 2.

To see this let f = X
log2 5
1 X

− log3 5
2 , p1 = 2, p2 = 3. Lemma 5 b) is not true for f ∈ C 〈〈X〉〉

since, for p = 2, f = X
2π

√
−1

log 2 gives a counterexample.

Lemma 6. a) If y1, . . . , ym ∈ C (X1, . . . , Xn) then y1, . . . , ym are linearly dependent

over C if and only if

WDn
(y1, . . . , ym) = det























y1 · · · ym

Dny1 · · · Dnym

...
...

...

Dm−1
n y1 · · · Dm−1

n ym























= 0

b) If y1, . . . , ym ∈ IR〈〈X〉〉, then y1, . . . , ym are linearly dependent over IR if and only

if WD1(y1, . . . , ym) = 0.

Proof. a) If y1, . . . , ym are linearly dependent over C then we clearly have

WDn
(y1, . . . , ym) = 0. Now assume that WDn

(y1, . . . , ym) = 0. In this case there exist

f1, . . . , fm ∈ C (X1, . . . , Xn), not all zero, such that

f1y1 + . . .+ fmym = f1Dny1 + . . .+ fmDnym = . . . = f1D
m−1
n y1 + . . .+ fmD

m−1
n ym = 0

We may assume f1 = 1. Applying Dn to each of these equations, we have

Di
ny1 +Dnf2D

iy2 + . . .+DnfnD
i
nym = 0

for i = 1, . . . , n. This implies that

(f2 −Dnf2)D
i
ny2 + . . .+ (fm −Dnfm)D

i
nym = 0
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for i = 1, . . . , n − 1. Either fi −Dnfi = 0 for i = 2, . . . ,m, in which case we are done by

Lemma 5, or by induction there exist α2, . . . , αm ∈ C , not all zero, such that α2Dny2 +

. . . + αmDnym = 0. Therefore Dn(α2y2 + . . . + αmym) = 0 so α2y+ . . . + αmym = 0. The

proof of part b) is similar and omitted.

Lemma 6 immediately implies the following criterion for a real quasirational function

to be (t1, t2)-sparse.

Lemma 7 a) Let f ∈ C (X1, . . . , Xn), f is (t1, t2)-sparse if and only if there exist

I1, . . . , It1 , J1, . . . , Jt2 ∈ ZZn, Ii 6= Ij, Ji 6= Jj for i 6= j such that WDn
(XI1 , . . . ,XIt1 ,

XJ1f, . . . ,XJt2f) = 0.

b) Let f ∈ IR〈〈X〉〉. f is (t1, t2)-sparse if and only if there exist

α1, . . . , αt1 , β1, . . . , βt2 ∈ IR, αi 6= αj, βi 6= βj for i 6= j such that

WD(X
α1 , . . . , Xαt1 , Xβ1f, . . . , Xβt2f) = 0.

Proof. a) f is (t1, t2)-sparse if and only if there exist I1, . . . , It1 , J1, . . . , Jt2 ∈

ZZn, Ii 6= Ij, Ji 6= Jj for i 6= j and a1, . . . , at1 , b1, . . . , bt2 ∈ C , not all zero,

such that
t1
∑

i=1

aiX
Ii +

t2
∑

j=1

bjX
Ijf = 0. By Lemma 6 this happens if and only if

WDn
(XI1 , . . . ,XIt1 , XJ1f, . . . ,XJt2f) = 0.

The proof of b) is similar.

We now consider the other linear operator D on C 〈〈X〉〉. We will need results similar

to Lemmas 5 and 6.

Lemma 8. If f ∈ C 〈〈X〉〉 and Df = 0 then f ∈ C .

Proof. First assume that f =
t
∑

i=1

aiX
αi ∈ C 〈X〉. If 0 = Df =

t
∑

i=1

aiαiX
αi , then t = 1

and a1 = 0, so f ∈ C .

Now let f ∈ C 〈〈X〉〉. f is minimally (t1, t2)-sparse for some (t1, t2). Let f = g/h be

a minimal (t1, t2)-sparse normalized representation. If Dh = 0, then we have just shown

that h ∈ C . Since Df = ((Dg)h − gDh)/h2 = (Dg)/h, so Dg = 0. Therefore g ∈ C
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and so f ∈ C . We will therefore now assume Dh 6= 0 and derive a contradiction. Since

(Dg)h− gDh = 0, we have g/h = Dg/Dh. Since g/h is normalized, Dg/Dh is a (t1 − 1, t2)-

or a (t1, t2 − 1)-sparse representation of f , a contradiction.

Lemma 9. If y1, . . . , ym ∈ C 〈〈X〉〉 then y1, . . . , ym are linearly dependent over C if and

only if

WD(y1, . . . , ym) = det























y1 · · · ym

Dy1 · · · Dym

...
...

...

D
m−1y1 · · · D

m−1ym























= 0

Proof. Lemma 8 implies that C 〈〈X〉〉 is a differential field with constant subfield equal

to C . The result now follows from ([18], Theorem 3.7).

3 Univariate Interpolation

Lemma 7 in the previous section allows us to characterize (t1, t2)-sparse rational functions

and is the basis of the following algorithm for finding the exponents of a sparse univariate

rational function.

Assume we are given a black box to evaluate a univariate rational function f ∈ Q (X)

and assume we are told that it is minimally (t1, t2)-sparse (the general case when we are

only told it is (t1, t2)-sparse is handled below). Consider the expression

S(pα1 , . . . , pαt1 , pβ1 , . . . , pβt2 , f(X), f(pX), . . . , f(pt1+t2−1X))

=
WD(X

α1 , . . . , Xαt1 , Xβ1f, . . . , Xβt2f)

Xα1 · . . . ·Xαt1 ·Xβ1 · . . . ·Xβt2

Note that S is a polynomial in the indicated terms with integer coefficients. Replac-

ing pα1 , . . . , pαt1 , pβ1 , . . . , pβt2 with new variables Y1, . . . , Yt1+t2 we get a polynomial

S(Y1, . . . , Yt1+t2 , f(X), f(pX), . . . , f(pt1+t2−1X)) with at most (t1 + t2)
t1+t2 terms in the

variables Y1, . . . , Yt1+t2 and multilinear in the black boxes f(X), f(pX), . . . , f(pt1+t2−1X).
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Since we are looking for the exponents of a normalized minimal (t1, t2)-sparse representa-

tion of f , we may assume Y1 = 1. By lemma 7b) (0, α2, . . . , αt1 , β1, . . . βt2) ∈ IR(t1+t2) will

be a vector of such exponents if and only if

S(1, pα2 , . . . , pαt1 , pβ1 , . . . , pβt2 , f(X), f(pX), . . .) = 0 (2)

0 6= αi 6= αj, βi 6= βj for i 6= j (3)

Observe that S as a rational function from IR(X) is ((t1 + t2)
2(t1+t2), tt1+t2

2 )-sparse, hence

by lemma 1 condition (2) is equivalent to the condition that S is either ∞ or 0 for X =

pi, i = 0, . . . , 2(t1 + t2 + 1)2(t1+t2) − 1. For at least (t1 + t2 + 1)2(t1+t2) of these points

(being independent from α2, · · · , βt2), S will be zero. Using the black box for f(X), we

can determine a system T consisting of (t1 + t2 + 1)2(t1+t2) equations in the unknowns

Y2, . . . , Yt1+t2 of degree at most (t1 + t2)
2, of inequalities 1 6= Yi 6= Yj 6= 1, 2 ≤ i < j ≤ t1,

Yi 6= Yj, t1 < i < j ≤ t1 + t2 and of inequalities Y2 ≥ 1, · · · , Yt1+t2 ≥ 1 that is equivalent

to (2),(3) (for Y2 = pα2 , · · · , Yt1+t2 = pβt2 ). By Lemma 3 b), T has a finite number of

solutions in IRt1+t2−1. Note that Corollary 4 implies that these solutions are integers. We

can apply the algorithm of [13], [14] (cf. also [1]) to this system and find these solutions

with
(

(t1 + t2)
(t1+t2) log d

)O(1)
arithmetic operations and depth ((t1 + t2) log d)

O(1), where

d is the maximum of the exponents α2, . . . , βt2 . Note that the algorithm of [13], [14] will

yield a polynomial satisfied by these p-powers with (t1 + t2)
O(t1+t2) arithmetic operations

and (t1 + t2)
O(1) depth. As we noted in the introduction, the dependence on d of the final

complexity is introduced when we find the roots of this polynomial. One can find these

roots as in [23] or more simply by considering the powers of p that divide the coefficients.

We remark that this algorithm also implies that there are at most (t1 + t2)
0(t1+t2) solutions

(cf. lemma 3b)) and that these solutions pα2 , · · · , pβt2 are bounded by pd ≤ exp(M(t1 +

t2)
O(t1+t2)) where M is a bound on the bitsize of the values yielded by the black box when

we evaluate f(pi+j) for i = 0, . . . , t1 + t2 − 1, j = 0, . . . , 2(t1 + t2 + 1)2(t1+t2) − 1. Hence

the exponents α2, · · · , βt2 of the rational function f do not exceed d ≤ M(t1 + t2)
O(t1+t2).

Notice that the algorithm can find the exponents α2, · · · , βt2 in
(

(t1 + t2)
(t1+t2) log d

)O(1)

arithmetic operations with the depth ((t1 + t2) log d)
O(1).
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We can find the coefficients by solving a system of linear equations gotten from
(

t2
∑

i=1

biX
βi

)

f(X) =
t1
∑

i=1

aiX
αi

by letting X = pj, j = 0, 1, . . . , t1+ t2− 1. Note that Lemma 3 b) implies that this system

will have a unique solution. This can be found with (t1+ t2)
0(1) arithmetic operations with

depth ((log(t1 + t2))
0(1), since to set up this system one has to compute powers pαi , pβj

which were computed above.

Turning to the general case where we are only told that f is (t1, t2)-sparse, we proceed

as follows: We consider all pairs (t′1, t
′
2) with 1 ≤ t′1 ≤ t1, 1 ≤ t′2 ≤ t2 and use the above

algorithm for these pairs. The first time that the above algorithm yields a non-empty

set of solutions, we are guaranteed that, for this (t′1, t
′
2), f has a minimal (t′1, t

′
2)-sparse

representation and that the algorithm has yielded the exponents and the coefficients.

4 Multivariate Interpolations

Let f(X1, . . . , Xn) ∈ Q (X1, · · · , Xn) be a minimally (t1, t2)-sparse rational function given

by a black box. We shall show in this section how the problem of finding the exponent

vectors of f can be reduced to the univariate case. In particular, we shall show that the

set of vectors ν = (ν1, . . . , νn) ∈ C n such that fν(X) = f(Xν1 , . . . , Xνn) is not minimally

(t1, t2)-sparse is a small set V . We will then show that if we find the exponents of fν for

sufficiently many ν 6∈ V , then we can recover the exponents appearing in f .

Lemma 10. Let f(X1, . . . , Xn) be a minimally (t1, t2)-sparse rational function and let

ν1, . . . , νn ∈ C be linearly independent over ZZ. Then f(Xν1 , . . . , Xνn) is minimally (t1, t2)-

sparse.

Proof. Let p̃(X)/q̃(X) be a minimally (t̃1, t̃2)-sparse representation of f(Xν1 , . . . , Xνn)

with t̃1 ≤ t1, t̃2 ≤ t2. By Lemma 3 a), we may assume that p̃, q̃ ∈ C [Xν1 , . . . , Xνn ].

Since the map sending Xνi to Xi induces an isomorphism of C (Xν1 , . . . , Xνn) onto

C (X1, . . . , Xn), we get a (t̃1, t̃2)-sparse representation of f(X1, . . . , Xn). Therefore, t̃1 =

t1, t̃2 = t2.
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Lemma 11. Let f be a minimally (t1, t2)-sparse rational function with integer coefficients.

The set V of vectors ν ∈ C n such that fν is not minimally (t1, t2)-sparse lies in the union of

at most (t1+ t2)
0((t1+t2)n) hyperplanes determined by linear forms with integer coefficients.

Proof. We will first show that V is defined by a set of polynomial equalities and in-

equalities with coefficients in Q (i.e. V is a Q -constructible set). Let V1, . . . , Vn be vari-

ables. We shall write down conditions on V1, . . . , Vn so that f(XV1 , . . . , XVn) is (t1 − 1, t2)-

sparse, let these conditions determine a set W
(1) (similar conditions can be derived for

f(XV1 , . . . , XVn) to be (t1, t2 − 1)-sparse, let these conditions determine a set W
(2)). Thus

W = W
(1) ∪W

(2). Lemma 9 implies that f(XV1 , . . . , XVn) is (t1 − 1, t2)-sparse if and only if

there exist α1, . . . , αt1−1, β1, . . . βt2 ∈ C such that αi 6= αj, βi 6= βj for i 6= j and

SD
(

α1, . . . , αt1−1, β1, . . . , βt2 , f(X
V1 , . . . , XVn), . . . ,Dt1+t2−2f(XV1 , . . . , XVn)

)

=
WD(Xα1 , . . . , Xαt1−1 , Xβ1f(XV1 , . . . , XVn), . . . , Xβt2f(XV1 , . . . , XVn))

Xα1 · . . . ·Xαt1−1 ·Xβ1 · . . . ·Xβt2

= 0 (4)

When we clear the denominator of (4) we will get a linear function in expressions of the

form XΣaiVi with coefficients Ca, where a = (a1, · · · , an) ∈ ZZn, that are polynomials in

α1, . . . , αt1−1, β1, . . . , βt2 , V1, . . . , Vn with integer coefficients. Observe that there are at

most (t1 + t2)
0(t1+t2) distinct powers XΣaiVi that can appear

For any pair ΣaiVi, ΣbiVi of distinct exponents, let La,b = Σ(ai− bi)Vi. Lemma 9 states

that for any choice (ν1, . . . , νn) ∈ C n such that La,b(ν1, . . . , νn) 6= 0, f is (t1− 1, t2)-sparse

if and only if there exist α1, . . . , αt1−1, β1, . . . , βt2 ∈ C such that all the Ca considered

above vanish. Let Φ be the formula, from the language of algebraically closed fields, with

bound variables α1, . . . , αt1−1, β1, . . . , βt2 and free variables V1, . . . , Vn that expresses this

latter statement. This formula contains at most (t1+ t2)
0(t1+t2) polynomials, each of degree

at most (t1 + t2)
2

Applying the results of [6] (see also [4]), we can eliminate quantifiers and get a quanti-

fier free formula Ψ in variables V1, . . . , Vn equivalent to Φ. Furthermore, the polynomials

occurring in Ψ have degrees at most (t1+t2)
0((t1+t2)n) and there are at most (t1+t2)

0((t1+t2)n)

13



of these. This formula determines a constructible set W0 ⊂ C n. As it was shown above the

symmetric difference (W(1) \W0) ∪ (W0 \W
(1)) lies in a union of all (t1 + t2)

O(t1+t2) hyper-

planes of the kind La,b for considered above integer vectors a, b. ¿From Lemma 10, we know

that for each point (ν1, . . . , νn) ∈ W there exists a relation
n
∑

i=1

γiνi = 0 for suitable integers

γ1, . . . , γn not all zero. ¿From Lemma 12 of the appendix we know that each irreducible

component of W0 (and also of W) lies in a hyperplane. Therefore W lies in the union of at

most (t1 + t2)
0((t1+t2)n) hyperplanes determined by linear forms with integer coefficients.

We now proceed to describe an algorithm to find p-powers of the exponents of a mini-

mally (t1, t2)-sparse normalized rational function f .

For any c > 0 using the construction from ([11] or [12], Lemma), one can explicitly

produce, for suitable c1 > 0, c2 > 0, N = (t1 + t2)
c1(t1+t2)n vectors ν

(i) = (ν
(i)
1 , . . . , ν(i)n ),

1 ≤ i ≤ N where the integers 1 ≤ ν
(i)
j ≤ (t1 + t2)

c2(t1+t2)n such that for any family of

(t1 + t2)
c(t1+t2)n hyperplanes (containing the origin) at least n of these vectors lie in none

of these hyperplanes and any n of these vectors are linearly independent. We take c > 0

such that the number of hyperplanes in lemma 11 is at most (t1 + t2)
c(t1+t2)n (so for the

algorithm we have only to estimate explicitely constant c once and forever) and apply to

this c the construction mentioned above. For each of the vectors ν
(i) produced in this

way, use the algorithm from Section 3 to find t
(i)
1 ≤ t1, t

(i)
2 ≤ t2 such that the rational

function f ν(i) ∈ Q (X) has a minimal (t
(i)
1 , t

(i)
2 )-sparse representation. By Lemma 11 and

the construction of the ν
(i), there exist at least n vectors among the ν

(i) (without loss of

generality we let them be ν
(1), . . . ,ν(n)) such that fν(i) is minimally (t1, t2)-sparse for all

1 ≤ i ≤ n. Using the algorithm from section 3 we find p-powers of the exponents of all

normalized (t1, t2)-sparse representations of fν(i) for each 1 ≤ i ≤ n (recall that there are at

most (t1 + t2)
0(t1+t2) of these). For each fν(i) , 1 ≤ i ≤ n, pick out one set of such p-powers

of the exponents pα
(i)
1 , . . . , pα

(i)
t1 , pβ

(i)
1 , . . . , pβ

(i)
t2 . For each i, 1 ≤ i ≤ n, we also pick out two

permutations π(i) ∈ St1 and σ(i) ∈ St2 , where Sm is the permutation group on m elements.

For every j1, 1 ≤ j1 ≤ t1, the algorithm solves the p-power form of a linear system

p
∑n

k=1
ν
(i)
k

Y
(j1)

k = p
α
(i)

π(i)(j1) (5)

1 ≤ i ≤ n

14



and for every j2, 1 ≤ j2 ≤ t2 a system

p
∑n

k=1
ν
(i)
k

Z
(j2)

k = p
β
(i)

σ(i)(j2) (6)

1 ≤ i ≤ n

Using [22] the algorithm produces the inverse matrix (µ
(i)
k /µ) where µ

(i)
k , µ ∈ ZZ to

n × n matrix (ν
(i)
k ), which is invertible because of the construction of the vectors ν(i).

Then pµY
(j1)

k = p

∑

1≤i≤n

µ
(i)
k

α
(i)

π(i)(j1) and the algorithm computes the right side of this equal-

ity. The algorithm also computes pµZ
(j2)

k . Similar computations can be made for dif-

ferent primes p. The vectors Y
(1) = (Y

(1)
1 , · · · , Y (1)

n ), · · · ,Y (t1) = (Y
(t1)
1 , · · · , Y (t1)

n ) and

Z
(1) = (Z

(1)
1 , · · · , Z(1)

n ), · · · ,Z(t2) = (Z
(t2)
1 , · · · , Z(t2)

n ) are considered as candidates for be-

ing exponents vectors in the numerator and denominator of a (t1, t2)-sparse representation

of f . The algorithm represents them by pµY
(j1)

k , pµZ
(j2)

k . The algorithm tests, whether

Y
(j) 6= Y

(l), Z(j) 6= Z
(l) for j 6= l.

The then algorithm tests whether these candidates fit. For this aim consider a linear

system

∑

1≤i≤t1

φip
µY

(i)
1 l

1 · · · pµY
(i)
n l

n =
∑

1≤i≤t2

ψip
µZ

(i)
1 l

1 · · · pµZ
(i)
n l

n f(pµl1 , · · · , p
µl
n ), 1 ≤ l ≤ 2(t1 + t2)

2 (7)

in the unknown coefficients φi, ψi of the (t1, t2)-sparse representation of f currently being

tested. (In (7) we skip the equations for which f(pµl1 , . . . , p
µl
n ) = ∞). Lemma 1 implies

that (7) is solvable if and only if exponent vectors Y (j), Z(j) fit (we apply here lemma 1

probably not to rational functions, since the exponents Y
(i)
k , Z

(i)
k could be rational, but it

is still valid by making a replacement of the variables Xi → Xi
µl
, 1 ≤ i ≤ n). If (7) is

solvable then Y
(i)
k , Z

(i)
k are integers because of lemma 3a), moreover it has a unique solution

by lemma 3b). This completes the description of the algorithm for f being minimally

(t1, t2)-sparse. To treat the case when we are only told that f is (t1, t2)-sparse, we proceed

as in Section 3.

Now we proceed to the complexity bounds. Let us assume we are given the black box for

a (t1, t2)-sparse rational function. The algorithm produces (t1+ t2)
0((t1+t2)n) integer vectors

ν
(i) and, for each of these, applies the algorithm from Section 3 to the univariate rational
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function fν(i) . This part of the algorithm requires
(

(t1 + t2)
(t1+t2)n log d

)O(1)
arithmetic

operations with depth ((t1+t2)n log d)
0(1). The algorithm then selects, for each i, 1 ≤ i ≤ n,

some (t1, t2)-sparse representation of fν(i) and also two permutations π(i), σ(i). This is again

within the same bounds. The algorithm then solves (t1+t2)
0((t1+t2)n) p-power forms of linear

systems of type (5), (6). To invert n× n matrix (ν
(i)
k ), n0(1) arithmetic operations are used

with depth log 0(1)n. Since µ
(i)
k , µ ≤ (t1 + t2)

O((t1+t2)n2) computation of pµ, pµY
(j1)

k , pµZ
(j2)

k

can be done within the same complexity bounds. The same applies to solving system (7).

If we are only told that f is (t1, t2)-sparse, the additional search required by the algorithm

does not change the complexity.

We are also able to give some bounds on the degree d of a sparse representation. Assume

that A is a bound for all the exponents α
(i)
j , β

(i)
j found for the univariate rational functions

fν(i) (such a bound can be found using the techniques of Section 3). We can then bound d

by looking at p-power forms of the linear systems (5) and (6); in fact d ≤ A(t1+t2)
0((t1+t2)n2).

Thus, we can formulate the main result of the paper:

Theorem. 1) One can construct some (t1, t2)-sparse repre-

sentation
∑

1≤i≤t1

aiX
j
(i)
1

1 · · ·Xj
(i)
n

n /
∑

1≤i≤t2

biX
k
(i)
1

1 · · ·Xk
(i)
n

n of (t1, t2)-sparse rational function f

in
(

(t1 + t2)
(t1+t2)n log d

)O(1)
arithmetic operations with the depth ((t1 + t2)n log d)

O(1).

2) the exponents j
(i)
l , k

(i)
l do not exceed d ≤M(t1 + t2)

O(t1+t2)n2) where M is the bound

on bitsizes of all the outputs of applications of a black box during the computation.

Appendix. For the convenience of the reader, we give a short proof of the result about

complex varieties that was needed in the proof of Lemma 11. This result is true for varieties

over any algebraically closed field of characteristic 0, but the proof is more complex and

depends on the Hilbert Irreducibility Theorem instead of elementary topological notions.

Lemma 12. Let W be an irreducible constructible set in C n (i.e. a constructible set

whose Zariski closure is irreducible). Assume that for each ν = (ν1, . . . , νn) ∈ W there exist

γ1, . . . , γn ∈ ZZ, not all zero, such that
∑n

i=1 γiνi = 0. Then there exist γ̃1, . . . , γ̃n ∈ ZZ, not

all zero, such that
∑n

i=1 γ̃iνi = 0 for all (ν1, . . . , νn) ∈ W.
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Proof. If W has dimension 0, then it is a point and we are done. Therefore assume

dim W > 0. By definition, W is open in its Zariski closure W. Therefore there exists

a point ν ∈ W that is non-singular in W. We select a sufficiently small ǫ such that

Wǫ = W ∩ {x | ‖x − ν‖ ≤ ǫ} will be closed in the usual topology and contain an open

subset of W. For each (γ1, . . . , γn) ∈ ZZn, not all γi zero, let Hγ1,...,γn = {(ν1, . . . , νn) ∈

W|
∑n

i=1 γiνi = 0}. Since Wǫ is closed, the Baire Category Theorem ([24], p. 139) implies

that for some (γ̃1, . . . , γ̃n), Hγ̃1,...,γ̃n contains an open subset of Wǫ (and so, of W). Therefore

dim(Hγ̃1,...,γ̃n ∩W) = dim W. Since W is irreducible, we must have (Hγ̃1,...,γ̃n ∩W) = W (c.f.

[26], p. 54) so W ⊆ Hγ̃1,...,γ̃n

Acknowledgement. We are indebted to Volker Strassen for motivating the problem and

a number of simulating discussions.

References

[1] Ben-Or, M. and Tiwari, P.A., A Deterministic Algorithm for Sparse Multivariate Poly-

nomial Interpolation, Proc. 20th STOC ACM (1989), pp.301–309.

[2] Borodin, A. and Tiwari, P.A., On the Decidability of Sparse Univariate Polynomial

Interpolation, Research Report RC 14923, IBM T. J. Watson Research Center, New

York, 1989.

[3] Chistov, A.L., An Algorithm of Polynomial Complexity for Factoring Polynomials and

Finding the Components of a Variety in Subexponential Time, J. Sov. Math., 34, No.

4 (1986).

[4] Chistov, A. L., Grigoriev, D. Yu., Complexity of quantifier elimination in the first-

order theory of algebraically closed fields, Lecture Notes Computer Science (1984),

vol. 176, pp. 17–31.

[5] Evans, R.J. and Isaacs, I.M., Generalized Vandermonde Determinants and Roots of

Unity of Prime Order, Proc. of the AMS (1976), 58.

17



[6] Fitchas, N., Galligo, A., Morgenstern, J., Sequential and parallel complexity bounds for

the quantifier elimination of algebraically closed fields, Journal of Pure and Applied

Algebra, (1990), 67, pp. 1–14.

[7] Grigoriev, D. Yu., Factoring Polynomials over a Finite Field and Solving Systems of

Algebraic Equations, J. Sov. Math., 34, No. 4 (1986), pp. 1762–1803.

[8] Grigoriev, D. Yu., Complexity of deciding Tarski algebra, Journal of Symbolic Com-

putation (1988), 5, pp. 65–108.

[9] Grigoriev, D.Yu., and Karpinski, M., The Matching Problem for Bipartite Graphs

with Polynomially Bounded Permanents is in NC, Proc. 28th IEEE FOCS (1987), pp.

166–172.

[10] Grigoriev, D.Yu., Karpinski, M., Singer, M., Interpolation of Sparse Rational Func-

tions without Knowing Bounds on Exponents, Proc. 31st IEEE FOCS (1990), pp. 840–

847.

[11] Grigoriev, D.Yu., Karpinski, M., Singer, M., Fast Parallel Algorithms for Sparse Multi-

variate Polynomial Interpolation over Finite Fields, SIAM J. Comp., 19, No. 6, (1990),

pp. 1059–1063.

[12] Grigoriev, D. Yu., Karpinski, M., Singer, M., The interpolation problem for k-sparse

sums of eigenfunctions of operators, Advances in Applied Mathematics, (1991), 12,

pp. 76–81.

[13] Grigoriev, D.Yu., and Vorobjov, N.N., Solving Systems of Polynomial Inequalities in

Subexponential Time, Journal of Symbolic Computation (1988), 5, pp. 37–64.

[14] Heintz, J., Roy, M.-F., Solerno, P., Complexité du principe de Tarski-Seidenberg,
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