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ABSTRACT
Loewy’s decomposition of a linear ordinary differential op-
erator as the product of largest completely reducible compo-
nents is generalized to partial differential operators of order
three in two variables. This is made possible by consider-
ing the problem in the ring of partial differential operators
where both left intersections and right divisors of left ideals
are not necessarily principal. Listings of possible decom-
position types are given. Many of them are illustraded by
worked out examples. Algorithmic questions and questions
of uniqueness are discussed in the Summary.

1. INTRODUCTION
About one hundred years ago Loewy proved the funda-

mental result that any ordinary differential operator may be
represented uniquely as the product of largest completely re-
ducible operators, i.e. operators that are the left intersection
of irreducible operators of lower order [10]; see also Chap-
ter 2 of the book [12]. This decomposition provides a de-
tailed understanding of the structure of the solution space of
the corresponding differential equation. Therefore it would
be highly desirable to generalize it to partial differential op-
erators as well. Amazingly this has never really been done
since Loewy’s original work. In this article Loewy decom-
positions of third-order operators in two variables are con-
sidered in detail; the possible limitations are also discussed.
In the subsequent section some basic notations from differ-
ential algebra are introduced; details may be found in the
book by Kolchin [9] or the articles by Buium and Cassidy [2]
or Quadrat [11]. The main part of the article is organized
according to leading derivatives of the respective operators.
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2.BASIC DIFFERENTIAL ALGEBRA
In this section some basic terminology from differential

algebra that is used throughout the article will be intro-
duced. Rings of differential operators D ≡ F [∂x, ∂y] or
D ≡ Q(x, y)[∂x, ∂y] are considered; F is a universal differ-
ential field. F or Q(x, y) are called the base field. Let the
left ideal I be generated by elements li ∈ D, i = 1, . . . , p.
Then one writes I = 〈l1, . . . , lp〉. Because right ideals are
not considered, sometimes I is simply called an ideal. As a
rule, the li are assumed to form a Janet basis in the term
order grlex with x > y. If z is some differential indetermi-
nate, liz = 0, i = 1, . . . , p, is the corresponding system of
pde’s. The following shorthand notation is frequently used.
If only the leading terms of the generators of an ideal are of
interest the non-leading terms are omitted; it is denoted by
〈...〉LT .

Let I ⊆ F [∂x, ∂y] be an ideal and HI its Hilbert-Kolchin
polynomial ([9], page 130; [2], page 602). The degree deg(HI)
of HI is called the differential type of I. Its leading coeffi-
cient lc(HI) is called the typical differential dimension of I.
The pair (deg(HI), lc(HI)) has been baptized the gauge of
the ideal I [7].

Let I and J be two ideals. Important constructions are
the greatest common right divisor Gcrd(I, J) or the sum
ideal; and the least common left multiple Lclm(I, J) or the
left intersection. In [7] it has been shown how they are com-
puted algorithmically. Finally the relative syzygy module
Syz(I, J) of I and J = 〈g1, . . . , gq〉 is generated by

{h ≡ (h1, . . . , hq) ∈ Dq|h1g1 + . . . + hqgq ∈ I}.

Define two ordinary differential operators by

Dxm ≡ dxm + a1dxm−1 + . . . + am−1dx + am,

Dyn ≡ dyn + b1dyn−1 + . . . + bn−1dy + bn;

m and n are natural numbers not less than 2. Several ideals
generated by an operator of order three and one of these
operators will occur later in this article. A special notation
is introduced for them as shown in the table below. These
ideals have an important meaning as divisors in the decom-
positions to be discussed in later chapters. Due to its close
relation to the iteration scheme introduced by Laplace, see
[6], vol. II, Chapter V, it is suggested to call them Laplace
divisors. The pair of upper indices of the ideals in Table 1



denotes the gauge of the respective ideal.

Notation Leading term ideal

J (1,1)
4 (m) 〈∂xyy, ∂xm〉LT

J (1,1)
5 (n) 〈∂xxy, ∂yn〉LT

J (1,2)
3 (m) 〈∂xxy, ∂xm〉LT

J (1,2)
4 (n) 〈∂xyy, ∂yn〉LT

J (1,2)
5 〈∂xxx, ∂xxy〉LT

J (1,2)
6 〈∂xxy, ∂xyy〉LT

Table 1. Some ideals of gauge (1, 1) and (1, 2) and order
of derivatives not higher than 3. The ideals involving the
parameter m or n will occur later on as Laplace divisors.

It turns out that the intersection ideals generated by two
first-order operators are of fundamental importance for un-
derstanding the different decomposition types discussed later
in this article. They are described in the following two the-
orems. The first theorem has been proved in [7].

Theorem 2.1. Let the ideals Ii = 〈∂x + ai∂y + bi〉 for
i = 1, 2 with I1 6= I2 be given. Both ideals have gauge (1, 1).
There are three different cases for their intersection I1 ∩ I2,
all are of gauge (1, 2).

i) Separable case a1 6= a2. If
“

b1 − b2
a1 − a2

”
x
=

“
a1b2 − a2b1

a1 − a2

”
y

there holds I1 ∩ I2 = 〈∂xx〉LT and

I1 + I2 =
D
∂x +

a1b2 − a2b1

a1 − a2
, ∂y +

b1 − b2

a1 − a2

E
.

ii) Double root a1 = a2 = a, b1 6= b2. There holds
I1 ∩ I2 = 〈∂xx〉LT and I1 + I2 =< 1〉.

iii) If the preceding two cases do not apply there holds
I1 ∩ I2 = 〈∂xxx, ∂xxy〉LT and I1 + I2 = 〈1〉.

If a decomposition comprises an operator with leading
derivative ∂y, the following result is required.

Theorem 2.2. Let the ideals I1 = 〈∂x + a1∂y + b1〉 and
I2 = 〈∂y + b2〉 be given. There are two different cases for
their intersection I1 ∩ I2.

i) If (b1−a1b2)y = b2,x there holds I1∩I2 = 〈∂xy〉LT and
I1 + I2 = 〈∂x + b1 − a1b2, ∂y + b2〉.

ii) If the preceding case does not apply there holds
I1 ∩ I2 = 〈∂xxy, ∂xyy〉LT and I1 + I2 = 〈1〉.

The proof involves a slight modification of the proof of Theo-
rem 2.1, it involves essentially Janet basis calculations. The
special case that n first-order equations originate from the
factorization of an operator of order n is treated next.

Lemma 2.3. Let L be a partial differential operator in x
and y with leading term ∂xn , and let li ≡ ∂x + ai∂y + bi,
i = 1, . . . , n, ai 6= aj for i 6= j, be n right divisors of L.
Then the intersection ideal generated by the li is principal
and is generated by L.

Just like factoring an ordinary differential operator in-
volves solving Riccati equations y′ + ay2 + by + c = 0, fac-
toring pde’s in the plane may require to solve equations of
the form

zx + azy + bz2 + cz + d = 0

where a, b, c, d are from the base field. For obvious reasons
they are called partial Riccati equations. They have been
discussed in detail in [7].

3. PDE’S WITH LEADING DERIVATIVE ∂xxx
This case is also interesting for historical reasons because

it was the first third order partial differential operator for
which factorizations were considered [1]. Especially the op-
erator discussed in Blumberg’s thesis, see Example 3.7 be-
low, attracted a lot of interest.

Proposition 3.1. Let the third order linear partial dif-
ferential operator

Dxxx ≡ ∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9

(1)
be given with Ak ∈ Q(x, y) for all k. Its first order right
factors ∂x + a∂y + b are essentially determined by the roots
a1, a2 and a3 of a3 − A1a

2 + A2a− A3 = 0. The following
alternatives may occur.

i) If a1, a2 and a3 are three pairwise different rational
solutions and the corresponding bi are determined by
(8), each pair ai, bi satisfying (9) and (10) yields a
factor li = ∂x + ai∂y + bi. If there are three factors,
the operator is completely reducible and there holds
Dxxx = Lclm(l1, l2, l3). If there are two factors, their
intersection may not be principal. If only a single pair
satisfies conditions (9) and (10), or there is only a sin-
gle rational solution which satisfies them, there is only
a single factor.

ii) If a1 = a2 is a twofold rational solution that does not
satisfy (8), and a3 6= a1 is a simple rational solution,
a single right factor ∂x + a3∂y + b3 exists if a3, and b3

as determined by (8) satisfy (9) and (10).

iii) If a1 = a2 is a twofold rational solution satisfying (8),
a3 6= a1 is a simple rational solution, and a3 and b3

as determined by (8) do not satisfy (9) and (10), the
following subcases may occur.

a) There is a right factor of the form l(Φ) ≡ ∂x +
a1∂y + R(x, y, Φ(φ)) whereas R(x, y, Φ(φ)) is the
general solution of (9) satisfying (10); φ(x, y) is

the first integral of
dy
dx

= a1(x, y), Φ is an un-

determined function; l(Φ) leads to a second order
right factor Lclm(l1(Φ1), l2(Φ2)) with Φ1 6= Φ2

specializations of Φ.

b) There are two right factors li ≡ ∂x + a1∂y +
ri(x, y), i = 1, 2, if (9) has rational solutions
ri(x, y) satisfying (10), or if it has a general ratio-
nal solution as in case a), but constraint (10) sin-
gles out the special solutions r1(x, y) and r2(x, y);
l1 and l2 generate a second order factor Lclm(l1, l2).

c) There is a single right factor l ≡ ∂x+a1∂y+r(x, y)
if (9) has the single rational solution r(x, y) satis-
fying (10), or if it has two rational solutions or a
general rational solution, but (10) singles out the
single solution r(x, y).

iv) If a1 = a2 is a twofold rational solution satisfying (8),
a3 6= a1 is a simple rational solution, and a3 and b3

as determined by (8) satisfy (9) and (10), the same
distinctions occur as in the preceding case iii), supple-
mented by an additional factor ∂x + a3∂y + b3.



v) If a1 = a2 = a3 = 1
3
A1 is a threefold rational solution,

there holds

A2
1A4 − 3A1A5 + 9A6 = 0. (2)

The following subcases may occur.

a) If the coefficient of b in

(A1,x + 1
3
A1A1,y + 2

3
A1A4 −A5)b =

1
3
A1,xx + 2

9
A1A1,xy + 2

27
A2

1A1,yy − 2
9
A1,xA1,y

+ 1
3
A4A1,x − 1

27
A1A

2
1,y − 1

9
A1A4A1,y

+ 1
3
A5A1,y + 1

3
A1A7 −A8 = 0

(3)
does not vanish, b may be determined uniquely
from it. A factor exists if the constraint

bxx + 2
3
A1bxy + 1

9
A2

1byy − 3bbx + A4bx −A1bby

−( 2
3
A1,x + 2

9
A1A1,y + 1

3
A1A4 −A5)by

+b3 −A4b
2 + A7b−A9 = 0.

(4)
is satisfied.

b) If the coefficient of b in (3) vanishes, there holds

A1,x + 1
3
A1A1,y + 2

3
A1A4 −A5 = 0,

A1,xx + 2
3
A1A1,xy + 2

9
A2

1A1,yy + A4A1,x + 1
3
A1,xA1,y

+ 2
9
A1A

2
1,y + 1

3
A1A4A1,y + 1

3
A1A7 − 3A8 = 0

(5)
and b is determined by

bxx + 2
3
A1bxy + 1

9
A2

1byy − 3bbx + A4bx −A1bby

+ 1
3
(A1,x + 1

3
A1A1,y + A1A4)by

+b3 −A4b
2 + A7b−A9 = 0.

(6)

Proof. Dividing the operator (1) by ∂x + a∂y + b, the
requirement that this division be exact leads to the following
set of equations between the coefficients.

a3 −A1a
2 + A2a−A3 = 0, (7)

(A1 − 3a)ax + (3a2 − 3A1a + 2A2)ay

−A4a
2 + A5a + (3a2 − 2A1a + A2)b = A6,

(8)

(A1 − 3a)bx + (3a2 − 3A1a + 2A2)by − (A1 − 3a)b2

+ (A5 − 2A4a− 2A1ay + 3aay − 3ax)b

+ axx + (A1 − a)axy + (a2 −A1a + A2)ayy

−2axay+A4ax−(A1−a)a2
y−(A4a−A5)ay+A7a−A8 = 0,

(9)

bxx + (A1 − a)bxy + (a2 −A1a + A2)byy

− (2ax + (A1 − a)ay + A4a−A5)by

+(A4−3b)bx+(3a−2A1)bby+b3−A4b
2+A7b−A9 = 0.

(10)

The algebraic equation (7) determines a. The following dis-
cussion is subdivided by the various cases.

Case i). Assume at first that it has three simple roots a1,
a2 and a3. None of them may be rational, there may be a
single rational solution, or all three roots are rational. For
any of these roots the coefficient of b in (8) does not vanish
because it is the derivative of (7) w.r.t. a. Therefore for each
ai, equation (8) determines the corresponding value bi. For
those values of ai and bi which satisfy the constraints (9)
and (10), a right factor li ≡ ∂x + ai∂y + bi exists. If there
are three right factors, by Lemma 2.3 Dxxx is completely
reducible and there holds Dxxx = Lclm(l1, l2, l3).

Case ii). Assume now there is a twofold rational solution
a1 = a2 6= a3 of equation (7). The double root a1 = 1

3
(A1−p

A2
1 − 3A2) is one of the roots of the equation p ≡ 3a2 −

2A1a + A2 = 0 of (7). The coefficient of b in (8) vanishes
for a = a1 because it is equal to p; (8) becomes a constraint
for a1. Assume that it is not obeyed. For the root a3, the
coefficient b3 follows from (8). The existence of a right factor
involving a3 and b3 depends on whether they satisfy (9) and
(10). If this is true there is a single right factor ∂x+a3∂y+b3.

Case iii). If the double root a1 does satisfy the constraint
following from (8), the corresponding value b = b1 has to
be determined from the partial Riccati equation (9) with
a = a1. Those values of a1 and b1 satisfying (10) have to
be singled out. If a3 and b3 do not satisfy (9) and (10), the
only possible factor is the one involving a1 and b1. A simple
calculation shows that the terms of (9) involving derivatives
of b simplify to bx+a1by. According to Lemma 5.3 of [7], the
general solution for b1 may contain an undetermined func-

tion Φ of φ(x, y), the first integral of
dy
dx

= a1(x, y). The

condition (10) may be satisfied without constraints for Φ, it
may restrict it to a certain form, or it may completely elim-
inate the corresponding solution. Similar arguments apply
if there is a single rational s! olution for b1, or if there are
two of them. Whenever two factors are obtained, by case
ii) of Theorem 2.1 they generate a principal ideal.

Case iv). If again a1 satisfies the constraint following
from (8), and a3 and b3 satisfy (9) and (10) now, the same
alternatives as in case iii) occur with an additional factor
∂x + a3∂y + b3.

Case v). Finally assume there is a threefold solution
a1 = a2 = a3 = 1

3
A1. Then A2 = 1

3
A2

1 and A3 = 1
27

A3
1.

The coefficient of b in (8) vanishes again, it becomes the
constraint (2). The coefficients of bx, by and b2 in (9) van-
ish.

If A1,x + 1
3
A1,y + 2

3
A1A4 − A5 6= 0, b is determined by

(3). In order for a factor to exist, in addition (4) must be
satisfied. This is subcase a). In the exceptional case that
the coefficient of b in (3) vanishes, it becomes a constraint
and b has to be determined from (6). This is subcase b).

In order to obtain a complete answer comprising all pos-
sible factorizations of the operator (1), second order right
factors have to be taken into account as well. They are
considered next.

Proposition 3.2. Let the third order partial differential
operator (1) be given with Ak ∈ Q(x, y) for all k. Its second
order right factors

∂xx + a∂xy + b∂yy + c∂x + d∂y + f (11)

are determined by the roots a1, a2 and a3 of

a3 − 2A1a
2 + (A2

1 + A2)a−A1A2 + A3 = 0.



The following alternatives may occur.

i) If a1, a2 and a3 are three pairwise different rational
solutions, for each ai the corresponding values of b, c,
d and f follow from equations (20) ... (22). Those
values which satisfy constraints (23) yield a factor.

ii) If a1 = a2 6= a3 is a twofold solution and b1 = a2
1 −

A1a1 + A2, there must hold

(A1 − a1)[a1,x + (A1 − a1)a1,y + A1a1 −A5] =

b1,x + (A1 − a1)b1,y + A4b1 −A6.
(12)

The coefficient c has to be determined from the partial
Riccati equation

cx − (a−A1)cy − c2 + 3
3a− 2A1

[(a− 1
3
A1)x

−(a−A1)(a− 1
3
A1)y + 4

3
(a− 1

2
A1)A4 − 1

3
A5]c

+ 1
3a− 2A1

[axx − 2(a−A1)axy

+(a2 − 2A1a + A2
1)ayy − ay(a−A1)x

+(a−A1)(a
2
y −A1,yay − 2A4ay −A4,ya + A5,y + A7)

+A4,xa + 2A4ax −A5,x −A4A5 + A8 + A2
4a = 0.

(13)
If it has a rational solution, d and f follow from the
first equation of (21) and (22) respectively. The values
satisfying the constraint

cxx − 2(a−A1)cxy + (a−A1)
2cyy

+[(a−A1)x − 1
2
(a2 −A1a−A2

1)y + (a−A1)(2A4 − 3c)]cy

+[(a−A1)(3c−A4)y + A4,x + A2
4 + A7]c

+A7,x − (a−A1)A7,y + A4A7 −A9 = 0.
(14)

lead to a factor.

iii) If a1 = a2 = a3 = 2
3
A1 is a threefold solution and

b1 = 1
9
A2

1, c is uniquely determined by

(A1,x + 1
3
A1A1,y + 2

3
A1A4 −A5)c = 2

3
A1,xx + 4

9
A1A1,xy

+ 2
27

A2
1A1,yy + 2

9
A1,xA1,y + 4

3
A4A1,x + 2

27
A1A

2
1,y

+ 4
9
A1A4A1,y + 2

9
A2

1A4,y + 2
3
A1(A4,x + A2

4)

− 1
3
A1(A5,y + A7)−A4A5 −A5,x + A8

(15)
if its coefficient does not vanish. The remaining coef-
ficients follow from

d− 1
3
A1c + 2

3
A1,x + 2

9
A1A1,y + 2

3
A1A4 −A5 = 0,

f + cx + 1
3
A1cy − c2 + A4c−A7 = 0.

(16)
In addition the two constraints

A2
1A4 − 3A1A5 + 9A6 = 0, (17)

cxx + 2
3
A1cxy + 1

9
A2

1cyy + (2A4 − 3c)cx

+( 1
3
A1,x + 1

9
A1A1,y + 2

3
A1A4 −A1c)cy

+c3 − 2A4c
2 + ( 1

3
A1A4,y + A4,x + A2

4 + A7)c

− 1
3
A1A7,y −A4A7 −A7,x + A9 = 0

(18)
must be satisfied. If the coefficient of c in (15) van-
ishes, it becomes a coonstraint and c has to be deter-
mined from (18).

Proof. Dividing the operator (1) by (11), the require-
ment that this division be exact leads to the following set of
equations for the coefficients.

a3 − 2A1a
2 + (A2

1 + A2)a−A1A2 + A3 = 0, (19)

b− a2 + A1a−A2 = 0, (20)

(A1 − 2a)c + d + ax + (A1 − a)ay + A4a−A5 = 0,

(a2 −A1a + A2)c− (A1 − a)d− bx

−(A1 − a)by −A4b + A6 = 0,

(21)

f + cx + (A1 − a)cy − c2 + A4c−A7 = 0, (22)

(A1 − a)f − dx − (A1 − a)dy − (A4 − c)d + A8 = 0,

fx + (A1 − a)fy + (A4 − c)f −A9 = 0.
(23)

The algebraic equation (19) determines always a. The fol-
lowing discussion is subdivided by the various cases of the
above theorem.

Case i) Assume it has three simple roots a1 6= a2 6= a3.
The corresponding values bi may be determined from (20).
The coefficient determinant of c and d in (21) is a2− 4

3
A1a+

1
3
(A2

1 + A2), it is the derivative of (19) w.r.t. a that does
not vanish for simple roots. Therefore for any simple root
ai, the corresponding values ci and di may be determined
from (21). Finally fi follows from (22). These values have
to satisfy the constraints (23) in order to determine a factor.

Case ii) Assume now there is a twofold rational solu-
tion a1 = a2 6= a3 of (19). The double root a1 = 2

3
A1 +

1
3

p
A2

1 − 3A2 is one of the roots of the equation 3a2−4A1a+

A2
1 + A2 = 0 of (19). In order to exclude a triple root there

must hold A2
1 − 3A2 6= 0; b1 follows from (20). Because

the coefficient determinant of c and d in (21) vanishes for
a = a1, one has to proceed as follows. Eliminating d from
the first equation (21) and substiuting it into the second
one yields the constraint (12). Eliminating d from the first
equation (21), f from (22) and substituting them into the
first equation of (23), the partial Riccati equation (13) for
c is obtained. If it has a rational solution c1, the coefficient
d1 may be obtained from the first equation (21) and f1 from
(22). Substituting these values into the second equation of
(23), the constraint (14) follows. It may exclude a factor, or
it may constrain the undetermined elements in the solution
of (13).

Case iii) Finally assume there is a threefold solution a1 =
a1 = a3 = 2

3
A1 with the corresponding value b1 = 1

9
A2

1.

Then A2 = 1
3
A2

1 and A3 = 1
27

A3
1. The coefficient determi-

nant for c and d in (21) vanishes. By elimination equation
(15) is obtained for c if A1,x + 1

3
A1A1,y + 2

3
A1A4 −A5 6= 0,

and (16) for the remaining coefficients d and e. In order for
a factor to exist, the two constraints (17) and (18) must be
satisfied. In the exceptional case that the coefficient of c in
(15) vanishes, it becomes a constraint; c has to be deter-
mined from (18).

The next corollary summarizes to what extent the factors
of Propositions 3.1 and 3.2 may be obtained algorithmically.

Corollary 3.3. Any first-order factor of (1) correspond-
ing to a simple root of (7), or any second-order factor cor-



responding to a simple root of (19), may be determined al-
gorithmically. In order to determine any such factor cor-
responding to a twofold root of (7) or (19) requires to find
rational solutions of a partial Riccati equation. Finally, a
factor corresponding to a threefold root may be determined
algorithmically if A1,x + 1

3
A1A1,y + 2

3
A1A4 6= A5, otherwise

a quasilinear second-oder pde has to be solved for which a
solution algorithm is not known.

Proof. Testing the conditions of case i) of both Propo-
sition 3.1 and Proposition 3.2 requires only differentiations
and arithmetic in the base field. Case ii), iii) and iv) of
Proposition 3.1 dealing with a twofold root of (7) require to
determine rational solutions of the partial Riccati equation
(8) for the coefficient a. To this end a general first-order ode
must be solved as discussed in Appendix B of [7]. The same
argument applies to case ii) of Proposition 3.2. In case v)
of Propopsition 3.1, b follows from the linear algebraic equa-
tion (3) if its coefficient does not vanish; this leads to the
above condition. If it does vanish, b has to be determined
from equation (6). Similar arguments apply for case iii) of
Proposition 3.2) and equation (18) for the coefficient c.

After the possible factorizations of an operator (1) have
been determined, a listing of its completely reducible com-
ponents may be set up as follows.

Theorem 3.4. Any differential operator

L ≡ ∂xxx + A1∂xxy + A2∂xyy + A3∂yyy

+A4∂xx + A5∂xy + A6∂yy + A7∂x + A8∂y + A9

(24)

decomposes into completely reducible components correspond-

ing to one of the types L(k)
xxx, k = 1, . . . , 5, defined as follows;

Lxxx, Lxx and Lx are completely reducible operators with

leading derivatives ∂xxx, ∂xx or ∂x respectively; J (1,2)
5 is the

ideal 〈∂xxx, ∂xxy〉LT defined in Table 1. Upper indices dis-
tinguish different copies within a type definition.

L(1)
xxx : Lxxx, L(2)

xxx : LxxLx, L(3)
xxx : LxLxx, L(4)

xxx : L(1)
x L(2)

x L(3)
x ,

L(5)
xxx : Syz

`
〈L〉,J (1,2)

5

´
J (1,2)

5 .

The decomposition L(1)
xxx is completely reducible.

Proof. It is based on Propositions 3.1 and 3.2. In the
separable case i) of Proposition 3.1 there may be three fac-

tors with a principal intersection, this yields type L(1)
xxx.

There may be two factors which do not have a principal
intersection. If they are divided out and the decompositions
of the respective second-order factor are taken into account

(see Section 4 of [7]), type L(5)
xxx is obtained. If case i) allows

only a single factor, or if case ii), or subcase c) of case iii),
or case v) applies, and again the decompositions of the cor-
responding second order left factor are taken into account,

decomposition types L(2)
xxx or L(4)

xxx follow. For case iii), the
principality of the intersection of the right factors leads to

type L(3)
xxx. In case iv) the decompositions of case iii) are

extended by an additional first order factor. According to
Lemma 2.3, combined with the factors already obtained they

generate a principal intersection covered by L(1)
xxx. By def-

inition, an irreducible operator (24) corresponds to a type

L(1)
xxx decomposition.

Corollary 3.5. Let lx, lxx and lxxx denote irreducible
operators with leading term ∂x, ∂xx or ∂xxx. An additional
upper index distinguishes different copies of the respective
operator. Φ is an undetermined function of a single argu-

ment. The types L(i,j)
xx defined in Table 2 are refinements of

the types L(i)
xxx, i = 1, . . . , 5 defined in Theorem 3.4.

This is an immediate consequence of the proof given for the
preceding theorem if the various factorization alternatives
of Proposition 3.1 and Proposition 3.2 are not merged into
completely reducible components.

Example 3.6. Consider the operator

L ≡ ∂xxx +
`
y + 2

´
∂xxy + (y + 1)∂xyy

+
`
1− 1

y
´
∂xx +

`
y + 2− 1

y
´
∂xy + (y + 1)∂yy − 1

y ∂x − 1
y ∂y.

Equation (7) reads a3 − (y + 2)a2 + (y + 1)a = 0 with the
three roots a1 = 0, a2 = 1 and a3 = y + 1, i. e. case i)
of Proposition 3.1. The corresponding values of b are b1 =
1, b2 = b3 = 0. It turns out that all pairs ai, bi satisfy
conditions (9) and (10). Consequently there are three right
factors l1 = ∂x + 1, l2 = ∂x + ∂y and l3 = ∂x + (y + 1)∂y.
There holds L = Lclm(l1, l2, l3), i. e. the decomposition

type is L(1,2)
xxx . The general solution of Lz = 0 is

z = F (y)e−x + G(x− y) + H[(y + 1)e−x]

where F , G and H are undetermined functions.

Example 3.7. (Blumberg 1912) In his dissertation Blum-
berg [1] considered the third order operator

L ≡ ∂xxx +x∂xxy +2∂xx +2(x+1)∂xy +∂x +(x+2)∂y (25)

generating a principal ideal of gauge (1, 3). He gave its fac-
torizations

L =

( `
∂xx + x∂xy + ∂x + (x + 2)∂y

´
(∂x + 1)

(∂xx + 2∂x + 1)(∂x + x∂y).
(26)

with two completely reducible second order left factors.
This result may be obtained by Proposition 3.1 as follows.

Equation (7) is a3 − xa2 = a2(a − x) = 0 with the double
root a1 = 0, and the simple root a2 = x. The latter yields
b2 = 0. Because these values satisfy (9) and (10), the factor
l2 = ∂x + x∂y is obtained, i. e. case iv) of Theorem 3.1
applies. For the double root a1 = 0, from (9) the Riccati
equation

bx − b2 +
“
2 +

2

x

”
b− 1− 2

x
= 0

is obtained with the general solution b = 1 + 1
x −

1
x + Φ(y)

.

Substitution into (10) yields Φ = 0, i.e. b = 1 and the factor
l1 = ∂x + 1.

The second order left factor in the first line at the right
hand side of (26) is absolutely irreducible, whereas the sec-
ond order factor in the second line is the left intersection of
two first order factors, i. e. (26) may be further decomposed
into irreducibles as

L =

( `
∂xx + x∂xy + ∂x + (x + 2)∂y

´
(∂x + 1)

Lclm(∂x + 1, ∂x + 1− 1
x )(∂x + x∂y).

(27)



L(1)
xxx L(1,1)

xxx : lxxx, L(1,2)
xxx : Lclm(l

(1)
x , l

(2)
x , l

(3)
x ), L(1,3)

xxx : Lclm(lxx, lx).

L(2)
xxx L(2,1)

xxx : lxxlx, L(2,2)
xxx : Lclm(l

(1)
x , l

(2)
x )l

(3)
x , L(2,3)

xxx : Lclm(l
(1)
x (Φ))l

(2)
x .

L(3)
xxx L(3,1)

xxx : lxlxx, L(3,2)
xxx : l

(1)
x Lclm(l

(2)
x , l

(3)
x ), L(3,3)

xxx : l
(1)
x Lclm(l

(2)
x (Φ)).

L(4)
xxx L(4,1)

xxx : l
(1)
x l

(2)
x l

(3)
x .

L(5)
xxx L(5)

xxx : Syz
`
〈L〉,J (1,2)

5

´
Lclm

`
〈(∂xx + . . .)(∂x + . . .)〉, 〈(∂xy + . . .)(∂x + . . .)〉

´
.

Table 2. The decomposition types of Corollary 3.5

The intersection ideal of l1 and l2 is not principal, by
Theorem 2.1 it is

Lclm(l1, l2) = 〈L1 ≡ ∂xxx − x2∂xyy

+3∂xx + (2x + 3)∂xy − x2∂yy + 2∂x + (2x + 3)∂y,

L2 ≡ ∂xxy + x∂xyy − 1
x∂xx − 1

x∂xy + x∂yy

− 1
x∂x −

`
1 + 1

x
´
∂y〉

(28)
with gauge (1, 2), therefore the decomposition (26) is of type

L(5)
xxx. Both generators L1 and L2 have the divisors l1 and

l2. There holds L ∈ Lclm(l1, l2), explicitly L = L1 + xL2.
As a consequence the system of equations L1z = 0 and

L2z = 0 has the two solutions F (y− 1
2
x2) and G(y)e−x; they

correspond to l2z = 0 and l1z = 0 respectively.
In order to obtain the remaining part of the solution of

Blumberg’s equation Lz = 0 of gauge (1, 1) the relative syzy-
gies module

Syz(〈L〉, 〈L1, L2〉)

= 〈(1, x),
`
− ∂y + 1

x , ∂x − x∂y + 2 + 1
x

´
〉

= 〈(1, x),
`
0, ∂x + 1 + 1

x
´
〉

is constructed. Introducing the new differential indetermi-
nates z1 and z2, the equations z1 + xz2 = 0 and z2,x + (1 +
1
x )z2 = 0 are obtained with the solution z1 = −H(y)e−x

and z2 = H(y) 1
xe−x, H an undetermined function of y. The

desired solution is a special solution of the inhomogeneous

system L1z = −H(y)e−x, L2z = H(y) 1
xe−x. The solution

of the corresponding homogeneous system is already known,
therefore the general solution of Lz = 0 may be written in
terms of integrations as

z = F (y− 1

2
x2) + G(y)e−x +

Z
H

`
ȳ +

1

2
x2´

e−xdx
˛̨̨
ȳ=y− 1

2 x2

(29)
where ȳ = y − 1

2
x2.

Example 3.8. Consider the operator

L ≡ ∂xxx + (x + y− 1)∂xxy − (x + y)∂xyy − (x− y− 1)∂xx

− (x− y− 1)∂xx − (x2 + xy− x + 1)∂xy − (x + y)∂yy

− (xy + x− y + 1)∂x − (x2 + xy + y)∂y − xy − 1.

Equation (7) reads a3 − (x + y + 1)a2 − (x + y)a = 0 with
roots a1 = 0, a2 = −1 and a3 = x+y, i. e. case i) of Propo-
sition 3.1 applies. Equation (8) yields the corresponding
values

b1 = 1, b2 = −x and b3 = −2x2 + xy − x− y2 − y + 2

4x + 5y − 3
.

Only a1 and b1 satisfy the constraints (2) and (4). Con-
sequently there is a single first order factor l1 ≡ ∂x + 1.
Pursuant to case i) of Proposition 3.2 a second order factor
does not exist. Dividing L by l1 yields the operator

∂xx + (x + 1)∂xy + x∂yy + (y + 1)∂x + (xy + 1)∂y + x + y

= (∂x + x∂y + 1)(∂x + ∂y + y)

Consequently the operator L has a type L(4,1)
xxx decomposition

L = (∂x + x∂y + 1)(∂x + ∂y + y)(∂x + 1).

Example 3.9. Consider the operator

L ≡ ∂xxx+(y+1)∂xxy+(x+y+1)∂xx+(xy+x+y2+2y+1)∂xy

+ (x + y)∂x + (xy + x + y2 + y)∂y.

Equation (7) reads a2(a− y− 1) = 0 with double root a1 =
a2 = 0 and single root a3 = y + 1. It turns out that case
iv) applies with a1 = 0, b1 = 1 and a3 = y + 1, b3 = 0.
The corresponding first order factors yield the divisor as the
principal intersection

Lclm(∂x+1, ∂x+(y+1)∂y) = ∂xx+(y+1)∂xy+∂x+(y+1)∂y.

Consequently L has the decomposition`
∂x + x + y

´
Lclm

`
∂x + 1, ∂x + (y + 1)∂y

´
of type L(3,2)

xxx .

4. PDE’S WITH LEADING DERIVATIVE ∂xxy
If an equation does not contain a derivative ∂xxx but only

∂yyy, permuting x and y leads to an equation of the form
(1) such that the above theorem may be applied. If there is
neither a term ∂xxx or ∂yyy, the general third order operator

Dxxy ≡ ∂xxy + A1∂xyy + A2∂xx + A3∂xy + A4∂yy

+A5∂x + A6∂y + A7

(30)
is obtained. Its possible decompositions are described in this
subsection. Like in the previous case, first- and second-order
factors are considered separately.

Proposition 4.1. Let the third order partial differential
operator (30) be given with Ak ∈ Q(x, y) for all k. The
following first order right factors may occur.

i) If A1 6= 0, a1 = 0, a2 = A1, and b is determined from

ax − (3a− 2A1)ay −A2a
2 + A3a− (2a−A1)b = A4,

a first order right factor ∂x + ai∂y + bi exists if ai and
bi satisfy the constraints

bx−(3a−2A1)by−b2−(2ay+2A2a−A3)b+axy−(a−A1)ayy

+ A2ax − a2
y − (A2a−A3)ay + A5a = A6,



bxy + (A1 − a)byy + A2bx − (2b + ay + A2a−A3)by

−A2b
2 + A5b = A7.

ii) If a = A1 = A4 = 0, the factor ∂x + b exists with

b =
A6,y + A2A6 −A7

A3,y + A2A3 −A5
if A3,y + A2A3 − A5 6= 0 and

bx − b2 + A3b = A6.

iii) If a = A1 = A4 = 0 and the two constraints

A6,y + A2A6 −A7 = 0, A3,y + A2A3 −A5 = 0

are satisfied, the following two subcases may occur.

a) There is a right factor of the form ∂x+R(x, y, Φ(y)),
where R is the general rational solution of

bx − b2 + A3b−A6 = 0 (31)

involving an undetermined function Φ(y).

b) There is a single factor, or there are two factors
∂x +ri(x, y) where ri(x, y) are special rational so-
lutions of (31).

iv) A factor ∂y +A2 exists if the following two constraints
are satisfied.

A5 = A2A3 + 2A2,x + A2,yA1 −A2
2A1,

A7 = A2A6 + A2,yA4 −A4A
2
2 + A3A2,x

+A2,xx + A2,xyA1 − 2A2,xA2A1.

Proposition 4.2. Let the third order partial differential
operator (30) be given with Ak ∈ Q(x, y) for all k. The
following second order right factors may occur.

i) A factor with leading derivative ∂xx does not contain a
derivative ∂yy. A factor ∂xx +a1∂xy +a2∂x +a3∂y +a4

exists if the two constraints

A1,yy + 2A1,yA2 + A2,yA1 −A3,y

+A2
2A1 −A2A3 + A5 = 0,

A4,yy + 2A4,yA2 + A4A2,y −A6,y

+A2
2A4 −A2A6 + A7 = 0

are satisfied. Then a1−A1 = 0, a2 = A3−A1A2−A1,y,
a3 = A4 and a4 = A6 −A5,y −A2A4.

ii) A factor ∂xy + a1∂yy + a2∂x + a3∂y + a4 may exists if
one of the four alternatives applies.

a) If the conditions A1 = A4 = 0, A2,x + 1
2
A2A3 −

1
2
A5 = 0 and A2,xx +A2,xA3 + 1

2
A2A6− 1

2
A7 = 0

are satisfied, the coefficients of the factor may be
determined from a1 = 0, a2 = A2,

a3,x−a2
3 +A3a3−A6 = 0 and a4 = A2a3 +2A2,x.

b) If the conditions A1 = A4 = 0 and A2,x+ 1
2
A2A3−

1
2
A5 6= 0 are satisfied, define P ≡ A2,x + A2A3 −

A5 and Q ≡ 2A2,x + A2A3 − A5. Then a1 = 0,

a2 = A2, a3 = 1
Q (Px + A3P − A2A6 + A7) and

a4 = A2(a3 − A3) − A2,x + A5. The following
condition must hold. a3,x − a2

3 + A3a3 −A6 = 0.

c) If A1 6= 0 there is a factor with coefficients
a1 = A1, a2 = A2,

a3 = A3+
A1,x

A1
−A4

A1
, a4 =

“A1,x

A1
−A4

A1

”
A2−A2,x+A5

if the following constraints are satisfied.

a3,x−a2
3+A3a3−A6 = 0, a4,x−a3a4+A3a4−A7 = 0.

d) If A1 6= 0 there is a factor with coefficients a1 = 0,

a2 = A2, a3 = A4
A1

and

a4 = A2A4
A1

−A2,x−A2,yA1 +A2
2A1−A2A3 +A5

if the following conditions are satisfied

a3,x + a3,yA1 −A1A2a3 + A3a3 + A1a4 −A6 = 0,

a4,x + a4,yA1 −A1A2a4 + (A3 − a3)a4 −A7 = 0.

The proof of the two preceding propositions are similar to
those in the previous section and are therefore omitted.

In order to solve concrete problems it is important to
know to what extent the factorizations described in this sec-
tion may be determined algorithmically. The answer to this
question is given in the following corollary.

Corollary 4.3. Any principal divisor of an operator (30)
may be determined algorithmically. The same is true for a
possible Laplace divisor of a given order.

Proof. Testing the conditions (34) of case i) of Proposi-
tion 5.1 requires only differentiations and arithmetic in the
base field. The same is true for case ii), subcase b). In
subcase a) of case ii) the rational solutions of an ordinary
Riccati equation have to be determined which is algorithmi-
cally possible. In [8] the algorithmic construction of Laplace
divisors for fixed values of m or n has been shown.

Theorem 4.4. Any differential operator

Dxxy ≡ ∂xxy + A1∂xyy

+A2∂xx + A3∂xy + A4∂yy + A5∂x + A6∂y + A7.
(32)

decomposes uniquely into largest completely reducible compo-

nents corresponding to one of the types L(k)
xxy, k = 1, . . . , 11,

defined as follows; Lxxy, Lxy, Lxx, Lx and Ly are completely
reducible operators with leading terms ∂xxy, ∂xy, ∂xx, ∂x or
∂y respectively.

L(1)
xxy : Lxxy, L(2)

xxy : LxyLx, L(3)
xxy : LxxLy,

L(4)
xxy : LxLxy, L(5)

xxy : LyLxx,

L(6)
xxy : L

(1)
x L

(2)
x Ly, L(7)

xxy : L
(1)
x LyL

(2)
x , L(8)

xxy : LyL
(1)
x L

(2)
x ,

L(9)
xxy : Syz

`
〈∂xxy〉,J (1,1)

4 (m)
´
J (1,1)

4 (m),

L(10)
xxy : Syz(〈L〉,J (1,2)

4 (n))J (1,2)
4 (n),

L(11)
xxy : Syz

`
〈L〉,J (1,2)

6

´
J (1,2)

6 .

If the completely reducible components are split into irre-
ducible ones, the following refined decomposition scheme is
obtained.

Corollary 4.5. Let lx, ly, lxx, lxy and lxyy denote ir-
reducible operators with leading derivatives as determined
by the respective subindex. An additional upper index dis-
tinguishes different copies of the respective operator; Φ is
an undetermined function of a single argument. The types

L(i,j)
xyy defined in Table 3 are refinements of the types L(i)

xyy,
i = 1, . . . , 10 of Theorem 5.4.

This is an immediate consequence of the proof given for the
preceding theorem if the various factorization alternatives
of Proposition 3.1 and Proposition 3.2 are not merged into
completely reducible components.



L(1)
xxy L(1,1)

xxy : lxyy, L(1,2)
xxy : Lclm(lx, l

(1)
y , l

(2)
y ), L(1,3)

xxy : Lclm(lyy, lx),

L(1,4)
xxy : Lclm(lxy, ly), L(1,5)

xxy : Lclm(J (1,1)
4 (m),J (1,2)

4 (n)).

L(2)
xxy L(2,1)

xxy : lyylx, L(2,2)
xxy : Lclm(l

(1)
y , l

(2)
y )lx, L(2,3)

xxy : Lclm(ly(Φ))lx.

L(3)
xxy L(3,1)

xxy : lxyly, L(3,2)
xxy : Lclm(lx, l

(1)
y )l

(2)
y , L(3,3)

xxy : Lclm(J (1,1)
2 (m),J (1,1)

3 (n))ly.

L(4)
xxy L(4,1)

xxy : lxlyy, L(4,2)
xxy : lxLclm(l

(1)
y , l

(2)
y ), L(4,3)

xxy : lxLclm
`
ly(Φ)

´
.

L(5)
xxy L(5,1)

xxy : lylxy, L(5,2)
xxy : l

(1)
y Lclm(lx, l

(1)
y ).

L(6,7,8)
xxy L(6,1)

xxy : lxl
(1)
y l

(2)
y . L(7,1)

xxy : l
(1)
y l

(2)
y lx. L(8,1)

xxy : l
(1)
y lxl

(2)
y .

L(9)
xxy L(9,1)

xxy : Syz(〈Dxyy〉, 〈Dxyy, Dxm〉)〈Dxyy, (∂xm−1 + . . .)(∂x + A2)〉,

L(10)
xxy L(10,1)

xxy : Syz(〈Dxyy〉, 〈Dxyy, Dyn〉)〈Dxyy, (∂yn−1 + . . .)(∂y + A2)〉.

L(11)
xxy L(11,1)

xxy : Syz
`
〈∂xyy〉,J (1,2)

6

´
Lclm((∂xy + . . .)(∂x + . . .), (∂xy + . . .)(∂y + . . .)).

Table 3. The decomposition types of Corollary 4.5

Example 4.6. Consider the operator

L ≡ ∂xxy + ∂xyy + y∂xx + (x− y − 1)∂xy

−∂yy + (xy + x + 1)∂x − (x− y)∂y + xy + 1.

By case i) of Proposition 4.1 the two factors l1 ≡ ∂x−1 and
l2 ≡ ∂x +∂y−y exist. They have a principal left intersection
∂xx + ∂xy − (y + 1)− ∂y + y; consequently by Theorem 4.4,

L has the type L(5)
xxy decomposition

L = (∂y + x)Lclm(∂x − 1, ∂x + ∂y − y).

The two first-order right factors contribute F (y) exp (−x)

and G(x− y) exp (1
2x2 − xy) to the solution.

5. PDE’S WITH LEADING DERIVATIVE ∂xyy
If an equation contains a single mixed derivative of order

three it may be assumed to be ∂xyy. The corresponding
operator is

Dxyy ≡ ∂xyy +A1∂xx +A2∂xy +A3∂yy +A4∂x +A5∂y +A6.
(33)

Its possible decompositions are discussed in this subsection.
First- and second-order factors are considered one after an-
other. Proofs are again omitted.

Proposition 5.1. Let the third order partial differential
operator (33) be given with Ak ∈ Q(x, y) for all k. The
following first order right factors may occur.

i) A factor with leading derivative ∂x exists if the two
constraints

A5 = 2A3,y + A2A3,

A6 = A3,yy + A3,yA2 + A3,xA1 + A3(A4 −A1A3)
(34)

are satisfied; then the factor is ∂x + A3.

ii) For a factor ∂y + c to exist there must hold A1 = 0.
Define

P ≡ A4,x + A3A4 −A6 and Q = A2,x + A2A3 −A5.
(35)

The following two subcases may occur.

a) If P = 0 and Q = 0, a factor ∂y + c exists if c is
a solution of cy − c2 + A2c−A4 = 0.

b) If Q 6= 0 and PyQ−P (Qy+P )+A2PQ−A4Q
2 = 0

there is the factor ∂y +
A4,x + A3A4 −A6

A2,x + A2A3 −A5
.

A complete listing of all possible Loewy decompositions
has to include the divisors of order 2; they are considered
next.

Proposition 5.2. Let the third order partial differential
operator (33) be given with Ak ∈ Q(x, y) for all k. The
following second order right factors may occur.

i) A factor ∂yy + a1∂x + a2∂y + a3 exists if there holds
A5 = A2,x + A2A3,

A6 = A4,x −A3,xA1 − 2A3A1,x −A1,xx + A3(A4 −A1A3).

Then a1 = A1, a2 = A2 and a3 = A4 −A1A3 −A1,x.

ii) A factor with leading derivative ∂xy does not contain a
term with ∂yy. A factor ∂xy + a1∂x + a2∂y + a3 exists
if one of the following two subcases applies.

a) There holds A1 = 0, A5 − 2A3,y − A2A3 = 0 and
A6 + A3,yy + A2,yA3 − A5,y − A3A4 = 0. The
coefficient a1 may be determined from the Riccati
equation

a1,y − a2
1 + A2a1 −A4 = 0. (36)

The remaining coefficients are a2 = A3 and a3 =
A3a1 + A3,y.

b) There holds A1 = 0 and A5 6= 2A3,y + A2A3.
Then a2 = A3, a3 = A3a1 −A3,y −A2A3 + A5,

a1 = A2 +
A3,yy + A2,yA3 −A5,y + A6 −A3A4

2A3,y + A2A3 −A5
.

Substituting a1 into a1,y − a2
1 + A2a1 − A4 = 0

yields a constraint for the coefficients A1, . . . , A5.

Similar as for operators (30), the decompositions of (33)
may be determined algorithmically to a large extent as is
shown next.

Corollary 5.3. Any principal divisor of an operator (33)
may be determined algorithmically. The same is true for a
possible Laplace divisor of a given order.



L(1)
xyy L(1,1)

xyy : lxyy, L(1,2)
xyy : Lclm(lx, l

(1)
y , l

(2)
y ), L(1,3)

xyy : Lclm(lyy, lx),

L(1,4)
xyy : Lclm(lxy, ly), L(1,5)

xyy : Lclm(J (1,1)
4 (m),J (1,2)

4 (n)).

L(2)
xyy L(2,1)

xyy : lyylx, L(2,2)
xyy : Lclm(l

(1)
y , l

(2)
y )lx, L(2,3)

xyy : Lclm(ly(Φ))lx.

L(3)
xyy L(3,1)

xyy : lxyly, L(3,2)
xyy : Lclm(lx, l

(1)
y )l

(2)
y , L(3,3)

xyy : Lclm(J (1,1)
2 (m),J (1,1)

3 (n))ly.

L(4)
xyy L(4,1)

xyy : lxlyy, L(4,2)
xyy : lxLclm(l

(1)
y , l

(2)
y ), L(4,3)

xyy : lxLclm
`
ly(Φ)

´
.

L(5)
xyy L(5,1)

xyy : lylxy, L(5,2)
xyy : l

(1)
y Lclm(lx, l

(1)
y ).

L(6,7,8)
xyy L(6,1)

xyy : lxl
(1)
y l

(2)
y . L(7,1)

xyy : l
(1)
y l

(2)
y lx. L(8,1)

xyy : l
(1)
y lxl

(2)
y .

L(9)
xyy L(9,1)

xyy : Syz(〈Dxyy〉, 〈Dxyy, Dxm〉)〈Dxyy, (∂xm−1 + . . .)(∂x + A2)〉,

L(10)
xyy L(10,1)

xyy : Syz(〈Dxyy〉, 〈Dxyy, Dyn〉)〈Dxyy, (∂yn−1 + . . .)(∂y + A2)〉.

L(11)
xyy L(11,1)

xyy : Syz
`
〈∂xyy〉,J (1,2)

6

´
Lclm((∂xy + . . .)(∂x + . . .), (∂xy + . . .)(∂y + . . .)).

Table 4. The decomposition types of Corollary 5.5

The proof is almost identical to that of Corollary 4.3 and is
therefore omitted.

A full listing of maximal completely reducible components
may be obtained from the preceding results. Any operator
(33) decomposes uniquely according to one of the following
decomposition schemes.

Theorem 5.4. Any differential operator

L ≡ ∂xyy + A1∂xx + A2∂xy + A3∂yy + A4∂x + A5 (37)

decomposes uniquely into largest completely reducible compo-

nents corresponding to one of the types L(k)
xyy, k = 1, . . . , 11,

defined as follows; Lxyy, Lxy, Lxx, Lx and Ly are completely
reducible operators with leading derivatives ∂xyy, ∂xy, ∂xx,
∂x or ∂y respectively.

L(1)
xyy : Lxyy, L(2)

xyy : LyyLx, L(3)
xyy : LxyLy,

L(4)
xyy : LxLyy, L(5)

xyy : LyLxy,

L(6)
xyy : LxL

(1)
y L

(2)
y , L(7)

xyy : L
(1)
y LxL

(2)
y , L(8)

xyy : L
(1)
y L

(2)
y Lx,

L(9)
xyy : Syz

`
〈∂xyy〉,J (1,1)

4 (m)
´
J (1,1)

4 (m)

L(10)
xyy : Syz

`
〈L〉,J (1,2)

4 (n)
´
J (1,2)

4 (n).

L(11)
xyy : Syz

`
〈∂xyy〉,J (1,2)

6

´
J (1,2)

6 .

The decomposition into irreducible components leads to
the following refined decomposition scheme.

Corollary 5.5. Let lx, ly, lxx, lxy and lxyy denote ir-
reducible operators with leading derivatives as determined
by the respective subindex. An additional upper index dis-
tinguishes different copies of the respective operator; Φ is
an undetermined function of a single argument. The types

L(i,j)
xyy defined in Table 4 are refinements of the types L(i)

xyy,
i = 1, . . . , 10 defined in Theorem 5.4.

This is an immediate consequence of the proof given for the
preceding theorem if the various factorization alternatives
of Proposition 3.1 and Proposition 3.2 are not merged into
completely reducible components.

Example 5.6. Consider the operator

L ≡ ∂xyy + 2
`
x + 1

y
´
∂xy + y∂yy

+x
`
x + 2

y
´
∂x + 2(xy + 2)∂y + x2 + 4x + 2

y .

Its coefficients satisfy conditions (34) of Proposition 5.1;
consequently there is a factor ∂y + x. Furthermore there
holds P = 0 and Q = 0 for P and Q defined by (35). The
Riccati equation for c is

cy − c2 + 2
`
x + 1

y
´
c− x

`
x + 2

y
´

= 0

with the rational solutions c = x and c = x + 1
y ; they

yield the factors ∂y + x and ∂y + x + 1
y with the type L(1,2)

xyy

decomposition L = Lclm(∂x + y, ∂y + x, ∂y + x + 1
y ). The

general solution of Lz = 0 is obtained by three integrations
as

z =
ˆ
F (x) + G(x)

1

y
+ H(y)

˜
exp (−xy).

F , G and H are undetermined functions.

Example 5.7. Consider the operator

L ≡ ∂xyy+
“ 1

x
−2

”
∂xy−∂yy−

1

x
∂x−

“ 1

x2 +
1

x
−2

”
∂y+

2

x2 +
2

x
.

There holds A1 = 0 and P = Q = 0, i. e. case ii), subcase
a) of Proposition 5.1 applies. The equation

cy − c2 +
“

1
x − 2

”
c + 1

x = 0

has the general solution c =
y exp (

1

2
y2 + y)− C

exp
`1

2
y2 + y) + C

where C

is a constant. For C = 0 and C → ∞ the two rational
solutions c = y and c = −1 are obtained. They yield the

factors ∂y + y and ∂y − 1 and the type L(4,2)
xyy decomposition

L = (∂x − x)Lclm(∂y + y, ∂y + 1) =

(∂x − x)
“
∂yy +

y2 − 2
y + 1 ∂y − y2 + y − 1

y + 1

”
.

The general solution of Lz = 0 is

z = F (x) exp
`
− 1

2
y2

´
+ G(x) exp (−y) + exp

`
1
2
x2 − y

´
×

Z
H(y)ey dy

y + 1
− exp

`1

2
x2 − 1

2
y2´ Z

H(y) exp
`1

2
y2´ dy

y + 1

F , G and H are undetermined functions.



Example 5.8. Consider the operator

L ≡ ∂xyy +
`
x + 1 + 1

y
´
∂xy + y∂yy

+
`
x + 1

y −
1
y2

´
∂x + (xy + y + 3)∂y + xy + x + 2.

By case i) and case ii), subcase b) of Proposition 5.1 the

type L(5,2)
xyy decomposition

L = (∂y + 1)Lclm
`
∂x + y, ∂y + x + 1

y
´

= (∂y + 1)
`
∂xy + (x + 1

y )∂x + y∂y + xy + 2
´

is obtained. The two arguments of the Lclm yield the so-

lutions z1 = F (y) exp (−xy) and z2 = G(x) 1
y exp (−xy); F

and G are undetermined functions. L may be factorized

as L = (∂y + 1)(∂y + x + 1
y )(∂x + y) from which the third

solution

z3 = exp
`
− (x + 1)y

´1

y

Z
H(x)

xy − y − 1

(x− 1)2
exp (xy)dx

follows; H is again an undetermined function. Finally the
general solution of Lz = 0 is z = z1 + z2 + z3.

Example 5.9. Consider the operator

L ≡ ∂xyy − 2x∂xy + y∂yy + x2∂x − 2(xy − 1)∂y + x(xy − 2).

By case i) and case ii), subcase b) of Proposition 5.1 the
factorizations

L =

( `
∂yy − 2x∂y + x2)(l1 ≡ ∂x + y)

(∂xy − x∂x + y∂y − xy + 3)(l2 ≡ ∂y − x).

are obtained. The intersection of l1 and l2 is

Lclm(l1, l2) =

〈∂xyy − 2x∂xy + y∂yy + x2∂x − 2(xy − 1)∂y + x(xy − 2),

∂xxy − x∂xx + 2y∂xy − 2(xy + 1)∂x + y2∂y − y(xy + 2)〉.

It is not principal, i.e. L has decomposition type L(11)
xyy . The

two equations l1z = 0 and l2z = 0 yield the solutions z1 =
F (y) exp (−xy) and z2 = G(x) exp (xy). A third solution
may be obtained from the factorization ∂yy − 2x∂y + x2 =
(∂y − x)(∂y − x). It yields

z3 = y exp (−xy)

Z
xH(x) exp (2xy)dx.

The general solution of Lz = 0 is z = z1 + z2 + z3.

6. SUMMARY AND CONCLUSION
In this article for the first time Loewy decompositions for

a full class of partial differential equations of differential type
different from zero are considered. It became clear that The-
orems 2.1 and 2.2 are fundamental for a full understanding
of how the various decompositions arise. Furthermore it has
been shown by numerous examples that obtaining such a
decomposition is essentially synonymous with finding its so-
lutions in closed form. However, two basic questions remain
to be discussed.

In the first place this is the uniqueness of a decomposi-
tion as it is the case for ordinary operators. To this end,
one probably has to make the problem more specific by
the requirement that the admitted divisors have differential
type 1, as it is true for the given operators.

Secondly there is the question to what extent these de-
compositions may be obtained algorithmically. For ordinary
operators it is sufficient to determine rational solutions of or-
dinary Riccati equations. It has been shown that for decom-
posing linear pde’s of the plane in general rational solutions
of partial Riccati equations are required. This problem boils
down to finding rational first integrals of a general quasilin-
ear first-order ode; for this problem see [4] and [3]. Up to
this point the discussion concerns principal divisors. Decid-
ing the non-existence of a Laplace divisor requires an upper
bound for its order. It may not be possible to find such
a bound, i.e. this problem may not be decidable. Finally
there remain the exceptional cases mentioned at the end of
Corollary 3.3.

Obviously there are many possible extensions of the re-
sults presented in this article. To mention just a few, there
should be a close connection between the type of solution
and the decomposition type as it is true for ordinary differ-
ential equation, Section 2.1 of [12]. For applications decom-
positions in more than two independent variables would by
highly desirable. Dealing with more than a single dependent
variables would involve modules over the respective rings of
differential operators.
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