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The complexity lower bound Ω(logN) for randomized computation trees
is proved for recognizing an arrangement or a polyhedron with N faces.
This provides in particular, the randomized lower bound Ω(n log n) for the
DISTINCTNESS problem and generalizes [11] where the randomized lower
bound Ω(n2) was ascertained for the KNAPSACK problem. The core of the
method is an extension of the lower bound from [8] on the multiplicative
complexity of a polynomial.

Introduction.

The complexity lower bounds for deterministic algebraic computation trees
were obtained in [26], [2], [4], [30], [31], [22] where the topological meth-
ods were developed. In particular, these methods provide the lower bound
Ω(logN) for recognizing (a membership to) a union of planes (of different
dimensions) with N faces, under a face we mean any nonempty intersec-
tion of several among these planes. As consequences we obtain the lower
bound Ω(n log n) for the DISTINCTNESS problem

⋃

1≤i<j≤n

{Xi = Xj} ⊂ IRn,

EQUALITY SET problem {(x1, . . . , xn, y1, . . . , yn) : (x1, . . . , xn) is a permu-
tation of (y1, . . . , yn)} ⊂ IR2n and the lower bound Ω(n2) for the KNAP-
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SACK problem
⋃

I⊂{1,...,n}

{
∑

i∈I

xi = 1

}
⊂ IRn. In [14], [15] a differential-

geometric approach for recognizing polyhedra (to which the mentioned topo-
logical methods are not applicable) was proposed which gives the lower bound
Ω(logN/ log logN) where N is the number of faces of the polyhedron.

The first results on the randomized computation trees (RCT) appeared in
[24], [20], [9], [10] but for decade an open problem remained, to obtain non-
linear complexity lower bounds for recognizing natural problems by RCT. In
[13] for the first time the nonlinear lower bound was obtained for somewhat
weaker computational model of the randomized algebraic decision trees in
which the testing polynomials in the branching nodes are of a fixed degree,
rather than the computation trees in which the testing polynomials are com-
puted along the path of the computation, so they could have in principle an
exponential degree. The approach of [13] provides the lower bound Ω(logN)
for recognizing an arrangement, i.e. a union of hyperplanes, and for recog-
nizing a polyhedron, where N is again the number of faces. In particular,
this leads to the lower bound Ω(n log n) for the DISTINCTNESS problem
and Ω(n2) for the KNAPSACK problem. For the EQUALITY SET problem
a complexity lower bound on a randomized algebraic decision tree seems to
be an open question.

But the method of [13] does not provide a lower bound for more inter-
esting model of RCT. Only in [11] a method was developed which gives in
particular, a lower bound Ω(n2) for the KNAPSACK problem on RCT. This
method relies on the obtained in [11] lower bound on the multiplicative bor-
der complexity of polynomials. The lower bound Ω(logN) of [11] holds for
arrangements or polyhedra which satisfy some special conditions which fail,
for example, for the DISTINCTNESS problem.

In [8] the proposed lower bound Ω(logN) was proved for the randomized
algebraic computation trees over an arbitrary field of zero characteristic, here
the computation branches according to the signs {=, 6=} unlike the more cus-
tomary computation trees over the reals, studied in all previously mentioned
papers including the present one, which branch according to the signs {≤, >}.
The core of the method of [8] was the lower bound Ω(logN) on the multi-
plicative complexity of a polynomial (see e.g. [27]), where N is the number
of the faces of an arrangement on which the polynomial vanishes.

In the present paper the latter lower bound Ω(logN1) on the multiplica-
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tive complexity of a polynomial is extended (see the corollary in section 2) to
a modified invariant N1 of an arrangement, namely, the number of so-called
strongly singular faces (see section 1) of the arrangement (now the polynomial
does not necessary vanish on the arrangement). Relying on this lower bound
on the multiplicative complexity, the proof of the complexity lower bound
Ω(logN) for RCT recognizing an arrangement or a polyhedron with N faces
(see the theorem in section 3) becomes much simpler than the related ones
in [13], [11]. In particular, this gives the lower bound Ω(n log n) for RCT rec-
ognizing the DISTINCTNESS problem. The construction of RCT with the
linear complexity O(n) for the EQUALITY SET problem from [5] shows that
the condition imposed in the present paper (as well as in [8]) that the recog-
nized set is an arrangement, so a union of hyperplanes, rather than a union
of planes of greater than 1 codimensions as in the EQUALITY SET problem,
is essential. In the last section 4 we generalize the construction of [5] and
design a RCT for recognizing the following problem {(x1, . . . , xn, y1, . . . , ym)
: each of the both differences of the multisets {x1, . . . , xn} and {y1, . . . , ym}
contains at most k elements } ⊂ IRn+m which has a linear complexity when k
is a constant. For arbitrary n,m the randomized complexity of this problem
remains to be an open question.

Let us also mention the paper [12] where a complexity lower bound was
established for the randomized analytic decision trees (rather than for more
customary algebraic ones) and also the paper [7] where a lower bound was
ascertained for a randomized parallel computational model (rather than a
sequential model considered in the quoted papers including the present one).

1 Strongly singular faces of an arrangement

with respect to a polynomial.

By F we denote a field of zero characteristic. Let H1, . . . , Hm ⊂ F n be
hyperplanes and let Γ = Hi1 ∩ · · · ∩Hin−k

have the dimension dim Γ = k, so
Γ is k-face of the arrangement S = H1 ∪ · · · ∪Hm.

Fix arbitrary coordinates Z1, . . . , Zk in Γ. Then treating Hi1 , . . . , Hin−k

as the coordinate hyperplanes of the coordinates Y1, . . . , Yn−k, one gets the
coordinates Z1, . . . , Zk, Y1, . . . , Yn−k in F n. The next construction of the
leading terms of a polynomial is similar to [13], [11].
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For any polynomial f(Z1, . . . , Zk, Y1, . . . , Yn−k) ∈ F [Z1, . . . , Zk, Y1, . . . ,
Yn−k] following [13], [11] define its leading term

αZ
m′

1

1 · · ·Z
m′

k

k Y m1

1 · · ·Y
mn−k

n−k

0 6= α ∈ F with respect to the coordinate system Z1, . . . , Zk, Y1, . . . , Yn−k

as the minimal term in the lexicographical ordering Z1 > · · · > Zk > Y1 >
· · · > Yn−k, namely as follows. First take the minimal integer mn−k such that
Y

mn−k

n−k occurs in the terms of f = f (0). Consider the polynomial

0 6≡ f (1) =

(
f

Y
mn−k

n−k

)
(Z1, . . . , Zk, Y1, . . . , Yn−k−1, 0) ∈

F [Z1, . . . , Zk, Y1, . . . , Yn−k−1]

which could be viewed as a polynomial on the hyperplane Hin−k
. Observe

that mn−k depends only on Hin−k
and not on Z1, . . . , Zk, Y1, . . . , Yn−k−1, since

a linear transformation of the coordinates Z1, . . . , Zk, Y1, . . . , Yn−k−1 changes
the coefficients (being the polynomials from F [Z1, . . . , Zk, Y1, . . . , Yn−k−1]) of
the expansion of f in the variable Yn−k, and a coefficient vanishes identically
if and only if it vanishes identically after the transformation. Then f (1) is
the coefficient of the expansion of f at the power Y

mn−k

n−k .
Second, take the minimal integer mn−k−1 such that Y

mn−k−1

n−k−1 occurs in the
terms of f (1). In other words, Y

mn−k−1

n−k−1 is the minimal power of Yn−k−1 occur-
ring in the terms of f in which occurs the power Y

mn−k

n−k . Therefore, mn−k,
mn−k−1 depend only on the hyperplanes Hn−k, Hn−k−1 and not on Z1, . . . , Zk,
Y1, . . . , Yn−k−2, since (as above) a linear transformation of the coordinates
Z1, . . . , Zk, Y1, . . . , Yn−k−2 changes the coefficients (being the polynomials
from F [Z1, . . . , Zk, Y1, . . . , Yn−k−2]) of the expansion of f in the variables
Yn−k, Yn−k−1 and a coefficient vanishes identically if and only if it vanishes
identically after the transformation. Denote by 0 6≡ f (2) ∈ F [Z1, . . . , Zk,
Y1, . . . , Yn−k−2] the coefficient of the expansion of f at the monomial Y

mn−k−1

n−k−1

Y
mn−k

n−k . Obviously

f (2) =

(
f (1)

Y
mn−k−1

n−k−1

)
(Z1, . . . , Zk, Y1, . . . , Yn−k−2, 0)

One could view f (2) as a polynomial on the (n−2)-dimensional plane Hin−k
∩

Hin−k−1
.
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Continuing in the similar way, we obtain consecutively the (non-negative)
integers mn−k, mn−k−1, . . . , m1 and the polynomials

0 6≡ f (l) ∈ F [Z1, . . . , Zk, Y1, . . . , Yn−k−l]

1 ≤ l ≤ n − k, by induction on l. Herewith, Y
mn−k−l+1

n−k−l+1 is the minimal
power of Yn−k−l+1 occurring in the terms of f , in which occurs the monomial
Y

mn−k−1+2

n−k−l+2 · · ·Y
mn−k

n−k for each 1 ≤ l ≤ n − k. Notice that mn−k, . . . , mn−k−l

depend only on the hyperplanes Hin−k
, . . . , Hin−k−l

and not on Z1, . . . , Zk,
Y1, . . . , Yn−k−l−1. Then f (l) is the coefficient of the expansion of f at the
monomial Y

mn−k−l+1

n−k−l+1 · · ·Y
mn−k

n−k and

f (l+1) =

(
f (l)

Y
mn−k−l

n−k−l

)
(Z1, . . . , Zk, Y1, . . . , Yn−k−l−1, 0)

Thus, f (l) depends only on Hin−k
, . . . , Hin−k−l

and not on Z1, . . . , Zk, Y1, . . . ,
Yn−k−l−1. One could view f (l) as a polynomial on the (n − l) dimensional
plane Hin−k

∩· · ·∩Hin−k−l+1
. Continuing, we define also m′

k, . . . , m
′
1. Observe

that the leading term lm(f (l)) = αZ
m′

1

1 · · ·Z
m′

k

k Y m1

1 · · ·Y
mn−k−l

n−k−l , we refer to
this equality as the maintenance property (see also [13], [11]).

From now on the construction and the definitions differ from the ones in
[13], [11].

For any polynomial g ∈ F [X1, . . . , Xn] one can rewrite it in the coor-
dinates g(Z1, . . . , Zk, Y1, . . . , Yn−k) and expand g = gs + gs+1 + · · · + gs1

,
where gj ∈ F [Z1, . . . , Zk, Y1, . . . , Yn−k], s ≤ j ≤ s1 is homogeneous with
respect to the variables Y1, . . . , Yn−k of degree j and gs = g(0)

s 6≡ 0. Con-

sider the leading term lm(gs) = αZ
m′

1

1 · · ·Z
m′

k

k Y m1

1 · · ·Y
mn−k

n−k and denote

by Var (Hi1
,...,Hin−k

)(g) the number of positive (in other words, nonzero) in-
tegers among mn−k, . . . , m1, note that s = m1 + · · · + mn−k. Although
Var (Hi1

,...,Hin−k
)(g) depends on the order of the hyperplanes Hi1 , . . . , Hin−k

,

we will denote it sometimes by Var (Γ)(g) for brevity when no ambiguity could
happen. As we have shown above Var (Hi1

,...,Hin−k
)(g) is independent from the

coordinates Z1, . . . , Zk of Γ. Obviously, Var (Hi1
,...,Hin−k

)(g) coincides with the
number of 1 ≤ l ≤ n− k such that Yn−k−l|g

(l)
s , the latter condition is equiva-

lent to that the variety {g(l)
s = 0}∩Hin−k

∩ · · · ∩Hin−k−l+1
contains the plane

Hin−k
∩· · ·∩Hin−k−l+1

∩Hin−k−l
(being a hyperplane in Hin−k

∩· · ·∩Hin−k−l+1
).

It is convenient (see also [13], [11]) to reformulate the introduced concepts
by means of infinitesimals in case of a real closed field F (see e.g. [19]). We
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say that an element ε transcendental over F is an infinitesimal (relative to
F ) if 0 < ε < a for any element 0 < a ∈ F . This uniquely induces the order

on the field F (ε) of rational functions and further on the real closure F̃ (ε)
(see [19]).

One could make the order in F̃ (ε) clearer by embedding it in the larger
real closed field F ((ε1/∞)) of Puiseux series (cf. e.g. [16]). A nonzero Puiseux
series has the form b =

∑
i≥i0 βiε

i/δ, where −∞ < i0 < ∞ is an integer,
βi ∈ F for every integer i; βi0 6= 0 and the denominator of the rational
exponents δ ≥ 1 is an integer. The order on F ((ε1/∞)) is defined as follows:
sgn(b) = sgn(βi0). When i0 ≥ 1, then b is called an infinitesimal, when
i0 ≤ −1, then b is called infinitely large. For any not infinitely large b we
define its standard part st(b) = stε(b) ∈ F as follows: when i0 = 0, then
st(b) = βi0 , when i0 ≥ 1, then st(b) = 0. In the natural way we extend the
standard part to the vectors from (F ((ε1/∞)))n and further to subsets in this
space.

Now let ε1 > ε2 · · · > εn+1 > 0 be infinitesimals, where ε1 is an infinitesi-
mal relative to IR; in general εi+1 is an infinitesimal relative to IR(ε1, . . . , εi)

for all 0 ≤ i ≤ n. Denote the real closed field IRi = IR ˜(ε1, . . . , εi), in particu-
lar, IR0 = IR. For an element b ∈ IRn+1 for brevity denote the standard part
sti(b) = stεi+1

(stεi+2
· · · (stεn+1

(b) · · ·)) ∈ IRi (provided that it is definable).
Also we will use the Tarski’s transfer principle [29]. Namely, for two real

closed fields F1 ⊂ F2 a closed (so, without free variables) formula in the
language of the first-order theory of F1 is true over F1 if and only if this
formula is true over F2.

An application of Tarski’s transfer principle is the concept of the comple-
tion. Let F1 ⊂ F2 be real closed fields and Ψ be a formula (with quantifiers
and, perhaps, with n free variables) of the language of the first-order theory
of the field F1. Then Ψ determines a semialgebraic set V ⊂ F n

1 . The com-
pletion V (F2) ⊂ F n

2 is a semialgebraic set determined by the same formula Ψ
(obviously, V ⊂ V (F2)).

One could easily see that for any point (z1, . . . , zk) ∈ IRk
k and a polynomial

g ∈ IR[X1, . . . , Xn] such that g(n−k)
s (z1, . . . , zk) 6= 0 (we utilize the introduced

above notations) the following equality for the signs
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σm1

1 . . . σ
mn−k

n−k sgn(g(n−k)
s (z1, . . . , zk)) =

sgn(g(z1, . . . , zk, σ1εk+1εn+1, . . . , σn−kεnεn+1)) (1)

holds for any σ1, . . . , σn−k ∈ {−1, 1}. For any 1 ≤ i ≤ n − k such that
mi = 0 (1) holds also for σi = 0, agreeing that 00 = 1. Moreover, the
following polynomial identity holds:

g(n−k)
s (Z1, . . . , Zk) = stk

(
g(Z1, . . . , Zk, εk+1εn+1, . . . , εnεn+1)

εm1

k+1 · · · ε
mn−k
n εs

n+1

)

Now let F be an algebraically closed field of zero characteristic. Take a
certain 0 < η ≤ 1 (it will be specified later). We call k-face Γ = Hi1 ∩ · · · ∩
Hin−k

of the arrangement S strongly singular (with respect to a polynomial

g ∈ F [X1, . . . , Xn]) if Var (Hi1
,...,Hin−k

)(g) ≥ η(n − k). Denote by N the
number of strongly singular k-faces of S with respect to g (since g will be
fixed for the time being, in the sequel we omit mentioning of g in this context).

2 Multiplicative complexity and strongly sin-

gular faces.

Consider the graph (cf. [27], [18]) of the gradient map G = {(x, gradg(x)) :

x ∈ F n} ⊂ F 2n = {(x1, . . . , xn, v1, . . . , vn)}, so vi = ∂g
∂Xi

(x), 1 ≤ i ≤ n. The
notion of the degree deg was extended in [17] to constructible sets in an affine
space from the usual case of closed projective sets ([25], [23]). We are now
able to formulate the main technical tool of this section (cf. theorem 1 [8]).

Lemma 1 For any 0 ≤ k ≤ n, 0 < η ≤ 1 and an arrangement S = H1 ∪
· · · ∪ Hm having N strongly singular k-faces with respect to a polynomial
g ∈ F [X1, . . . , Xn] over an algebraically closed zero-characteristics field F ,
the following bound holds: degG ≥ Ω(N/(m(1−η)(n−k)24n))

Proof. w.l.o.g. we assume that N ≥ 1, otherwise the lemma is trivial. We in-
troduce a linear projection ϕ : F 2n → F n where ϕ(X1, . . . , Xn, V1, . . . , Vn) =

(X1, . . . , Xn). Also we introduce a rational map ψ : F 2n → IPn2+n−1 where
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IPn2+n−1 is the projective space with the coordinates {Wi`}1≤i,`≤n : {W`}1≤`≤n,
herewith ψ is given by the formulae Wi` = XiV`,W` = V`, 1 ≤ i, ` ≤ n.
Thus, ψ is defined for any point (x, v) ∈ F 2n such that v 6= 0. In fact, ψ
could be viewed as the composition of the following natural rational maps
F 2n → F n × (F n − 0) → F n × IPn−1 ↪→ IPn × IPn−1 ↪→ IPn2+n−1, where
the latter one is the Segre embedding ([25], [23]). Finally, we denote by

σ : IPn2+n−1 → IPn−1 the linear projection, where σ({Wi`} : {W`}) = {W`}.
The role of σ is to distinguish the coordinates of the gradient.

For the time being fix a strongly singular k-face Γ = Hi1 ∩· · ·∩Hin−k
of g.

We recall that for any point ν from Γ the chosen coordinates Y1, . . . , Yn−k van-
ish at ν, herewith Hi1 , . . . , Hin−k

are the coordinate hyperplanes for Y1, . . . ,
Yn−k. We have an expansion g = gs + gs+1 + · · · + gs1

, where the polyno-
mial gj ∈ F [Z1, . . . , Zk, Y1, . . . , Yn−k], s ≤ j ≤ s1 is homogeneous of degree
j with respect to the variables Y1, . . . , Yn−k, and gs 6≡ 0. Let Y`1, . . . , Y`p

,

p ≥ η(n − k) occur in lm(gs) = αZ
m′

1

1 · · ·Z
m′

k

k Y m1

1 · · ·Y
mn−k

n−k . We remind
that m1, . . . , mn−k do not depend on the coordinates Z1, . . . , Zk, thereby on
a particular point ν from Γ; also g(n−k)

s ∈ F [Z1, . . . , Zk] is the coefficient at

Y m1

1 · · ·Y
mn−k

n−k of the expansion of gs, herewith lm(g(n−k)
s ) = αZ

m′

1

1 · · ·Z
m′

k

k .
For the sake of simplifying the notations, we make a linear transforma-

tion of the coordinates X1, . . . , Xn into Z1, . . . , Zk, Y1, . . . , Yn−k and the same
linear transformation we apply also to the coordinates V1, . . . , Vn (keeping
for them the same notation). Then in the new coordinates G = {(z1, . . . , zk,
y1, . . . , yn−k, v1, . . . , vn) : vi = ∂g

∂Zi
(z1, . . . , zk, y1, . . . , yn−k), 1 ≤ i ≤ k; vj+k =

∂g
∂Yj

(z1, . . . , zk, y1, . . . , yn−k), 1 ≤ j ≤ n − k} and ψ is given by the same

formulae Wi` = ZiV`, Wj+k,` = YjV`, W` = V` as above.
For a fixed point ν = (z1, . . . , zk, 0, . . . , 0) ∈ Γ consider (n−1)-dimensional

plane P = Pν = ψ(ϕ−1(ν)) ⊂ IPn2+n−1. The following lemma is similar to
lemma 1 [8].

Lemma 2 It holds dim(σ(ψ(G) ∩ P)) ≥ η(n− k) − 1. Moreover, the linear
(coordinate) functions W`1 , . . . ,W`p

are algebraically independent on ψ(G)∩
P.

Proof. Take a point (z1, . . . , zk, y1, . . . , yn−k) ∈ F n and consider a line {tλ =
(z1, . . . , zk, λy1, . . . , λyn−k)}λ∈F ⊂ F n. Then ∂g

∂Y`
(tλ) =(

∂gs

∂Y`
+ ∂gs+1

∂Y`
+ · · ·+

∂gs1

∂Y`

)
(tλ) = λs−1( ∂gs

∂Y`
(z1, . . . , zk, y1, . . . , yn−k)+λg̃

(`)), where
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g̃(`) ∈ F [λ, z1, . . . , zk, y1, . . . , yn−k], 1 ≤ ` ≤ n − k. Similar, ∂g
∂Zi

(tλ) = λsĝ(i),

where ĝ(i) ∈ F [λ, z1, . . . , zk, y1, . . . , yn−k]. Denote grad = ( ∂g
∂Z1

, . . . , ∂g
∂Zk

, ∂g
∂Y1

,

. . . , ∂g
∂Yn−k

).

Hence the point

ψ(tλ, grad(tλ)) = λs−1(· · · :
∂gs

∂Y`
(z1, . . . , zk, y1, . . . , yn−k) + λg̃(`) : · · ·)

∈ ψ(G) ∩ Ptλ

(provided that the point of the projective space is defined, i.e. grad(tλ) 6= 0).
Divide all the coordinates of this point over their common factor λs−1 and af-
ter that plug λ = 0. Then the resulting point (· · · : ∂gs

∂Y`
(z1, . . . , zk, y1, . . . , yn−k) :

· · ·) ∈ ψ(G) ∩ Pν (provided that not all ∂gs

∂Y`
(z1, . . . , zk, y1, . . . , yn−k) vanish).

For each 1 ≤ j ≤ ρ the leading term of the polynomial ∂gs

∂Y`j

(z1, . . . , zk, Y1, . . .

, Yn−k) equals to g(n−k)
s (z1, . . . , zk)m`j

Y m1

1 · · ·Y
m`j−1

`j−1 Y
m`j

−1

`j
Y

m`j+1

`j+1 · · ·Y
mn−k

n−k ,

provided that g(n−k)
s (z1, . . . , zk) 6= 0 (recall that m`j

≥ 1).
First we establish lemma 2 in case ρ = 1, then it suffices to verify that

ψ(G) ∩ Pν 6= ∅ because ρ ≥ η(n − k). Moreover, we prove that for any
point w0 ∈ F n we have ψ(G) ∩ Pw0

6= ∅. Indeed, take any point w1 ∈ F n

for which the gradient grad(w1) 6= 0. Then grad does not vanish almost
everywhere on the line {wλ = w0 + λ(w1 − w0)}λ∈F . Since (cf. above)
the point ψ(wλ, grad(wλ)) ∈ ψ(G) ∩ Pwλ

, provided that grad(wλ) 6= 0, we
conclude that the limit of these points when λ → 0, belongs to ψ(G) ∩ Pw0

,
which is thereby, nonempty.

Now let ρ ≥ 2. If the statement of the lemma were wrong, there would
exist a homogeneous polynomial h =

∑
K hKW

K1

`1
· · ·W

Kρ

`ρ
∈ F [W`1, . . . ,W`ρ

]

vanishing on ψ(G)∩Pν (or by the same token on σ(ψ(G)∩Pν)). Therefore,
h( ∂gs

∂Y`1

(z1, . . . , zk, Y1, . . . , Yn−k), . . . ,
∂gs

∂Y`ρ
(z1, . . . , zk, Y1, . . . , Yn−k)) = 0. De-

note Y M = Y m1

1 · · ·Y
mn−k

n−k . The leading monomial of the product ( ∂gs

∂Y`1

(z1, . . . ,

zk, Y1, . . . , Yn−k))
K1 · · · ( ∂gs

∂Y`ρ
(z1, . . . , zk, Y1, . . . , Yn−k))

Kρ equals to
(

Y M

Y`1

)K1

· · ·
(

Y M

Y`ρ

)Kρ

.

For any two distinct integer multiindices (K1, . . . , Kρ) 6= (Q1, . . . , Qρ)

we have
(

Y M

Y`1

)K1

· · ·
(

Y M

Y`ρ

)Kρ

6=
(

Y M

Y`1

)Q1

· · ·
(

Y M

Y`ρ

)Qρ

. Indeed, otherwise
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(
Y M

Y`1

)K1−Q1

· · ·
(

Y M

Y`ρ

)Kρ−Qρ

= 1, i.e. Y M(K1−Q1+···+Kρ−Qρ) = Y K1−Q1

`1
· · ·

Y
Kρ−Qρ

`ρ
, therefore the multiindices (K1−Q1, . . . , Kρ−Qρ) = (K1−Q1+· · ·+

Kρ −Qρ)(m`1, . . . , m`ρ
) coincide, in particular, K1 −Q1 + · · ·+Kρ −Qρ 6= 0,

but the sums of the coordinates in both multiindices differ by the factor of
m`1 + · · ·+m`ρ

≥ ρ ≥ 2.
The obtained contradiction proves lemma 2 for the points ν = (z1, . . . , zk,

0, . . . , 0) such that g(n−k)
s (z1, . . . , zk) 6= 0. Now observe that for any point

u ∈ IPn2+n−1 the set ϕ(ψ−1(u)) consists of a single point when u ∈ ψ(F 2n) or
else is empty. Thus, ϕψ−1 : ψ(F 2n) → F n is a rational surjective map [25].
Finally, applying the theorem on dimension of fibers [25] to the restriction
of the rational map ϕψ−1 : ψ(G) ∩ (ϕψ−1)−1Γ → Γ being surjective as was
shown above, we complete the proof of lemma 2. 2

Now we come back to the proof of lemma 1. Observe that ψ(G) ∩ P ⊂

IPn2+n−1 (where P = Pν for an arbitrary point ν ∈ Γ, see above) is a closed
projective variety and the projection σ is defined everywhere on this variety,
so being a regular map, hence σ(ψ(G) ∩ P) ⊂ IPn−1 is a closed projective
variety (see [25], [23]).

There exists a subspace B ⊂ IPn−1 with the dimension dimB = bn−η(n−
k)c such that dim(ψ(G) ∩ σ−1(B)) ≤ n− η(n− k) + 1 (actually, almost any
subspace satisfies this property). This follows from the theorem of dimension

of fibres [23] applying it to the rational dominating map σ : ψ(G) → σ(ψ(G))
and taking into account that dimψ(G) = dimG = n.

Since the intersection of two closed projective varieties of the complement
dimensions (see lemma 2) B∩σ(ψ(G)∩P) is not empty [25], [23], we conclude
that σ−1(B) ∩ ψ(G) ∩ P 6= ∅, for any point ν from any strongly singular k-
face Γ. Varying P = Pν for different points ν from Γ, the latter implies in
particular, that dim(σ−1(B) ∩ ψ(G)) ≥ k.

Therefore, the constructible set U = ϕ(ψ−1(σ−1(B) ∩ ψ(G))) ⊂ F n con-
tains all strongly singular k-faces Γ. Observe that dimU ≤ dim(σ−1(B) ∩
ψ(G)) ≤ n− η(n− k) + 1 since ϕψ−1 is a rational map (cf. above).

For each strongly singular k-face Γ = Hi1 ∩· · ·∩Hin−k
successively choose

j1, j2, . . . ∈ {i1, . . . , in−k}, such that for every ` ≥ 0 we have dim(U∩Hj1∩· · ·∩
Hj`

∩Hj`+1
) ≤ dim(U ∩Hj1 ∩ · · · ∩Hj`

) − 1 while dim(U ∩Hj1 · · · ∩Hj`
) >

k. After at most q ≤ n − η(n − k) + 1 − k steps we reach j1, . . . , jq for
which dim(U ∩ Hj1 ∩ · · · ∩ Hjq

) = k, thus Γ is an irreducible component of
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U ∩Hj1 ∩· · ·∩Hjq
. Take also a (n−k)-dimensional plane Q ⊂ F n transversal

to all k1-faces of S for all 0 ≤ k1 ≤ n and to all irreducible components of
U∩Hj1∩. . .∩Hjq

for all j1, . . . , jq. Then the point Q∩Γ, being an irreducible
component of 0-dimensional variety U ∩Hj1 ∩ · · · ∩Hjq

∩Q, does not belong
to other k-faces except Γ.

Consider constructible sets Hi = ψ(ϕ−1(Hi)), Q = ψ(ϕ−1(Q)) ⊂ IPn2+n−1,
1 ≤ i ≤ m. Consider also

U = Uj1,...jq
= σ−1(B) ∩ ψ(G) ∩ Hj1 ∩ · · · ∩ Hjq

∩ Q. (2)

Then ϕ(ψ−1(U)) = U ∩ Hj1 ∩ · · · ∩ Hjq
∩ Q = {u1, . . . , uκ} ⊂ F n is a finite

collection of points. Therefore, every irreducible component of U is contained
in one of the pairwise disjoint (n − 1)-dimensional planes ψ(ϕ−1(u1)), . . . ,

ψ(ϕ−1(uκ)) ⊂ IPn2+n−1, since the image of this irreducible component under
the rational map ϕψ−1 : ψ(F 2n) → F n, being a subset of {u1, . . . , uκ}, should
be a point; moreover each of these planes contains a certain component of U .

Thus, deg (U) = deg (Uj1,...,jq
) ≥ κ; we define the degree of a constructible

set as the degree of its projective closure U [23], [25], i.e. the sum of the
degrees of irreducible components of U .

Taking the sum of the latter inequalities over all 1 ≤ j1, . . . , jq ≤ m,
q ≤ (n − k)(1 − η) + 1 and observing that each strongly singular k-face
Γ gives a contribution into the right side of one of these inequalities, we
conclude that

∑

1≤j1,...,jq≤m;q≤(n−k)(1−η)+1

deg (Uj1,...,jq
) ≥ N (3)

Another method for bounding from below the degree of a variety passing
through a given set of points one can find in [28], but this method is not
applicable here. To bound deg (Uj1,...,jq

) from above, we rely on the following
lemma.

Lemma 3 Let an affine Zariski closed set V ⊂ F 2n. Then deg (ψ(V)) ≤
22ndeg (V).

Proof. (cf. the proof of theorem 1 [8]). First, one can reduce lemma to
the case of an irreducible V. Since dim(ψ(V) − ψ(V)) < dim(ψ(V)), there

is a subspace R ⊂ IPn2+n−1 with dimR = n2 + n − 1 − dimψ(V) for which
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R∩ψ(V) consists of degψ(V) = degψ(V) points (in fact, almost any subspace
has degψ(V) common points with ψ(V), and almost any subspace has an
empty intersection with ψ(V)− ψ(V)). Because ψ(ψ−1(R)∩ V) = R ∩ ψ(V),
the degree degψ(V) does not exceed the number of irreducible components of
the variety ψ−1(R)∩V, which in its turn is less or equal to deg (ψ−1(R)∩V).
Then we apply the Bezout inequality deg (ψ−1(R)∩V) ≤ deg (ψ−1(R))·degV
which was proved for locally closed sets in [17], rather than for the usual case
of projective closed varieties with the complete intersection [23], [25]. The
local closedness of ψ−1(R) follows from the next paragraph.

It remains to bound deg (ψ−1(R)). If R is determined by several linear
equations of the form

∑
1≤i,`≤n αi`Wi` +

∑
1≤`≤n β`W` = 0, then ψ−1(R) is

determined by the quadratic equations
∑

1≤i,`≤n αi`XiV` +
∑

1≤`≤n β`V` = 0
out of the plane L = {V1 = · · · = Vn = 0} on which ψ is not defined. One
can choose 2n suitable linear combination of these equations ζ1, . . . , ζ2n ∈
F [X1, . . . , Xn, V1, . . . , Vn] such that the irreducible components of the locally
closed set {ζ1 = · · · = ζ2n = 0} − L ⊂ F 2n contain all the irreducible
components of ψ−1(R) and in addition, perhaps, few points, being its 0-
dimensional components (cf. also [6]). Hence deg (ψ−1(R)) ≤ 22n again due
to the Bezout inequality. This completes the proof of lemma 3.

Coming back to bounding deg (Uj1,...,jq
) from above, we note that Hj1 ∩

· · · ∩ Hjq
∩ Q = ψ(ϕ−1(Hj1 ∩ · · · ∩ Hjq

∩ Q)) (cf. (2)) and H = ϕ−1(Hj1 ∩
· · · ∩ Hjq

∩ Q) ⊂ F 2n being a plane, so of degree 1. Applying lemma 3 we
obtain the bound

deg (ψ(H)) ≤ 22n. (4)

For every 1 ≤ i ≤ n consider a principle affine Zariski open chart A` =
{W` 6= 0} ⊂ IPn2+n−1 and denote A = ∪1≤`≤nA`. Observe that σ−1(B) ⊂ A
is closed in A.

Let us also show that Hj1 ∩ · · · ∩ Hjq
∩ Q = ψ(H) ⊂ ψ(F 2n) ⊂ A

is closed in A. Indeed, H is given by a system of linear equations {ht =∑
1≤i≤n γtiXi + γt0 = 0}t which depend only on X1, . . . , Xn. We claim that

ψ(H) =

A ∩




∑

1≤i≤n

γtiWi` + γt0W` = 0





t,1≤`≤n

∩ {Wi`1W`2 = Wi`2W`1}1≤i,`1,`2≤n

The inclusion ⊂ is obvious. To prove the inverse inclusion take a point
{wi`}i,` : {w`}` from the set at the right side. Then w`0 6= 0 for a cer-
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tain 1 ≤ `0 ≤ n. From the equalities wi`1w`2 = wi`2w`1 we get that

{wi`}i,` : {w`}` = ψ
(

w1`0

w`0

, · · · ,
wn`0

w`0

, w1, . . . , wn

)
. Finally, the equalities

{∑
1≤i≤n γtiwi`0 + γt0w`0 = 0

}
t

entail that
(

w1`0

w`0

, · · · ,
wn`0

w`0

, w1, . . . , wn

)
∈ H,

which proves the inverse inclusion of the claim and thereby the closedness of
ψ(H) in A.

Let U = σ−1(B)∩ψ(G)∩ψ(H) = ∪jUj ⊂ A (cf. (2)) be the decomposition
of U , being the intersection of three Zariski closed in A subsets as was just
proved, into its irreducible components Uj. For every 1 ≤ i ≤ n we have the
induced decomposition of the intersection

(σ−1(B) ∩ Ai) ∩ (ψ(G) ∩ Ai) ∩ (ψ(H) ∩ Ai) = ∪j(Uj ∩ Ai)

of three Zariski closed affine sets (in Ai) into its irreducible components
Uj ∩ Ai, provided that Uj ∩ Ai 6= ∅. Moreover, in the latter case the closure

Uj ∩ Ai = Uj ⊂ IPn2+n−1 because Ai is open in IPn2+n−1, in particular
deg (Uj ∩ Ai) = degUj. Applying the affine version of the Bezout inequality
[17], we obtain

∑

j

degUj ≤ deg (σ−1(B) ∩ Ai)deg (ψ(G) ∩ Ai).

deg (ψ(H) ∩ Ai) ≤ degψ(G) · degψ(H)

where the summation ranges over j for which Uj ∩ Ai 6= ∅. Summing up
these inequalities for all 1 ≤ i ≤ n, we conclude

degU =
∑

j

degUj ≤ n · degψ(G) · degψ(H)

which together with the bounds (3), (4) gives the inequality

N ≤

(
m

b(n− k)(1 − η)c + 1

)
· (n− k)(1 − η)n · degψ(G) · 22n,

hence taking into account the inequality degψ(G) ≤ 22ndegG following from
lemma 3, we finally get

degG ≥ Ω
(

N

m(n−k)(1−η)24n

)
,
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that completes the proof of lemma 1.
Corollary. (cf. corollary 1 [8]). Let a polynomial g ∈ F [X1, . . . , Xn] have

N strongly singular k-faces in an arrangement H1 ∪ · · · ∪ Hm ⊂ F n. Then
the multiplicative complexity C(g) ≥ 1/3(logN − (n− k)(1− η) logm− 4n−
const).

The results from [27], [1] imply that degG ≤ 23C(g), then make use of
lemma 1.

3 Lower bound for randomized computation

trees

Recall (see e.g. [2]) that in the computation tree (CT) testing polynomials
are computed along paths using the elementary arithmetic operations. In
particular, for a testing polynomial fi ∈ IR[X1, . . . , Xn] at the level i (as-
suming that the root has the zero level) we have the obvious bound on its
complexity, a fortiori multiplicative complexity C(fi) ≤ i. Under RCT (cf.
[24], [20]) we mean a collection of CT T = {Tα} and a probabilistic vector
pα ≥ 0,

∑
α pα = 1 such that CT Tα is chosen with the probability pα. The

depth of an RCT (treated as its complexity) is defined as the maximum of
the depths of all Tα’s (actually the equivalent complexity classes one gets if
to define the depth of RCT as the expectation of the depths of Tα’s, [24]).
The main requirement is that for any input RCT gives a correct output with
the probability 1 − γ > 1

2
(γ is called the error probability of RCT).

For a hyperplane H ⊂ IRn by H+ ⊂ IRn denote the closed halfspace
{LH ≥ 0}, where LH is a certain linear function with the zero set H. For a
family of hyperplanes H1, . . . , Hm the intersection S+ = ∩1≤i≤mH

+
i is called

a polyhedron. An intersection Γ = Hi1 ∩ · · · ∩Hin−k
is called k-face of S+ if

for each 1 ≤ l ≤ n− k + 1 we have dim(Hil ∩ · · · ∩Hin−k
) = dim(Hil ∩ · · · ∩

Hin−k
∩S+) = k+ l−1 (then clearly Hil ∩· · ·∩Hin−k

is (k+ l−1)-face of S+).
Recall (see section 1) that Γ is k-face of the arrangement S = ∪1≤i≤mHi if
dim Γ = k.

Now we are able to formulate the main result of this paper.
Theorem. For any positive constants c, c1, c2 there exists c0 > 0 satis-

fying the following. Let for some k ≤ (1 − c1)n an arrangement S = S =
∪1≤i≤mHi or a polyhedron S = S+ = ∩1≤i≤mH

+
i have at least c2(m

c(n−k)) k-
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faces. Then for any RCT recognizing S, its depth is greater than c0(n logm).
For a family of polynomials f1, . . . , ft ∈ IR[X1, . . . , Xn] we define

Var (Γ)(f1, . . . , ft) to be the number of the variables among Y1, . . . , Yn−k (we
utilize the notations introduced in section 1) which occur in at least one of the
leading terms lm(f1,s1

), . . . , lm(ft,st
), where Hi1 , . . . , Hin−k

are the coordinate
hyperplanes of the coordinates Y1, . . . , Yn−k, respectively; f j(Z1, . . . , Zk, Y1,

. . . , Yn−k) = fj(X1, . . . , Xn) and f j = fj,sj
+ fj,sj+1 + · · ·, herewith fj,l

is homogeneous with respect to the variables Y1, . . . , Yn−k of degree l and
fj,sj

6≡ 0, 1 ≤ j ≤ t. Because the expansion into the homogeneous com-

ponents f1 · · · f t = (f1,s1
· · · ft,st

) + · · · starts with f1,s1
· · · ft,st

, we have

lm(f1,s1
· · · ft,st

) = lm(f1,s1
) · · · lm(ft,st

) and hence Var (Hi1
,...,Hin−k

)(f1 · · · ft) =
Var (Γ)(f1 · · · ft) = Var (Γ)(f1, · · · , ft).

For any CT T1 we denote by Var (Γ)(T1) = Var (Hi1
,...,Hin−k

)(T1) the max-
imum of the Var (Γ)(f1 · · · ft) taken over all the paths of T1, whose f1, . . . , ft

are testing polynomials along the path.
The following lemma is similar to lemma 1 [13], [11], but differs from it

due to the different definition of the leading term lm.

Lemma 4 Let T = {Tα} be an RCT recognizing
a) an arrangement S = ∪1≤i≤mHi such that Γ = Hi1∩· · ·∩Hin−k

is k-face
of S, or

b) a polyhedron S+ = ∩1≤i≤mH
+
i such that Γ = ∩1≤j≤n−kHij is k-face of

S+ (so, see above, for each 1 ≤ l ≤ n − k + 1 we have dim(∩l≤j≤n−kHij) =
dim(∩l≤j≤n−kHij ∩ S

+) = k + l − 1)

with error probability γ < 1
2
. Then Var (Hi1

,...,Hin−k
)(Tα) ≥ (1−2γ)2(n−k)

for a fraction of 1−2γ
2−2γ

of all Tα’s.

Proof of Lemma 4: Choose the coordinates Z1, . . . , Zk, Y1, . . . , Yn−k

such that Z1, . . . , Zk are the coordinates in Γ and Hi1 , . . . , Hin−k
are the

coordinate hyperplanes of Y1, . . . , Yn−k, respectively (cf. section 1), which
satisfy the following properties. The origin (0, . . . , 0)︸ ︷︷ ︸

n

of this coordinates

system Z1, . . . , Zk, Y1, . . . , Yn−k does not lie in any l-face with l < k and
besides, in the case b) (0, . . . , 0) belongs to the polyhedron S+. Also we
require that for any testing polynomial f from any CT Tα the inequal-
ity f (n−k)

s (0, . . . , 0)︸ ︷︷ ︸
k

6= 0 holds (recall that f (n−k)
s 6≡ 0 depends only on
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Hi1 , . . . , Hin−k
and f = fs + fs+1 + · · · where fj is homogeneous with re-

spect to the variables Y1, . . . , Yn−k of degree j, see section 1).
Observe that RCT T treated over the field IRn+1 recognizes the comple-

tion S(IRn+1) ⊂ (IRn+1)
n (respectively, S+(IRn+1)) due to the Tarski transfer

principle (see section 1). For the sake of simplicity of the notations we keep
the notations S (respectively, S+) for the completions.

a) Consider the point E = (0, . . . , 0︸ ︷︷ ︸
k

, εk+1εn+1, . . . , εnεn+1) and the points

E
(0)
i = (0, . . . , 0︸ ︷︷ ︸

k

, εk+1εn+1, . . . , εk+i−1εn+1, 0, εk+i+1εn+1, . . . , εnεn+1), 1 ≤ i ≤

n − k. Then the point E /∈ S (because of the choice of the origin of the

coordinates system Z1, . . . , Zk, Y1, . . . , Yn−k) and E
(0)
i ∈ S, 1 ≤ i ≤ n− k.

We show that there is a fraction of 1−2γ
2(1−γ)

of all Tα’s that give the correct

outputs for E and for at least (1 − 2γ)2(n − k) many among E
(0)
i , 1 ≤ i ≤

n−k. Indeed, assuming the contrary we partition all Tα’s into three (disjoint)
pieces. In the first one the output for E is incorrect (its fraction is at most
γ). In the second one (which is desirable for our goal) the fraction of correct

outputs for E
(0)
i , 1 ≤ i ≤ n − k is at least (1 − 2γ)2 (its fraction is at most

1−2γ
2(1−γ)

by the assumption). The rest of Tα’s comprise the third piece. Thus,

the total fraction of correct outputs for all E
(0)
i , 1 ≤ i ≤ n− k together does

not exceed (γ+ 1−2γ
2(1−γ)

)+(1−2γ)2(1−γ− 1−2γ
2(1−γ)

) = 1−2γ+4γ2−4γ3 < 1−γ,
that contradicts to the requirement on the error probability γ.

Take such Tα0
and some 1 ≤ i0 ≤ n − k for which Tα0

gives the correct
output. Denote by f1, . . . , ft the testing polynomials along the path in Tα0

followed by the input E. We claim that Yi0 occurs in one of the leading terms
lm(f1,s1

), . . . , lm(ft,st
) (thereby, Yi0 occurs in lm(f1,s1

. . . ft,st
) = lm(f1,s1

) . . .
lm(ft,st

), see above).

Suppose the contrary. Let lm(fl,sl
) = βZ

m′

1

1 · · ·Z
m′

k

k Y m1

1 · · ·Y
mn−k

n−k , then
mi0 = 0 for each 1 ≤ l ≤ t by the supposition. Then (1) from section 1

implies that sgn(fl(E
(0)
i0 )) = sgn(f

(n−k)
l,sl

(0, . . . , 0)︸ ︷︷ ︸
k

) 6= 0 because of the choice

of the origin of the coordinates system Z1, . . . , Zk, Y1, . . . , Yn−k. By the same

token sgn(fl(E)) = sgn(f
(n−k)
l,sl

(0, . . . , 0)︸ ︷︷ ︸
k

). Therefore, E
(0)
i0 satisfies all the

tests along the path under consideration in Tα0
followed by the input E,
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hence the output of Tα0
for the input E

(0)
i0 is the same as for the input E, so

incorrect, that contradicts the choice of i0.
b) First we show that E ∈ S+. Take any hyperplane Hl = {κ1Z1 + . . .+

κkZk + β1Y1 + . . .+ βn−kYn−k + β0 = 0}, 1 ≤ l ≤ m given by linear function
LHl

with the coefficients κi, βj ∈ IR. We need to show that LHl
(E) ≥ 0.

Let 0 ≤ j0 ≤ n − k be the uniquely defined index such that β0 = . . . =
βj0−1 = 0, βj0 6= 0 (if all β0 = . . . = βn−k = 0 then LHl

(E) = 0). We prove
that βj0 > 0, this would entail that sgn(LHl

(E)) = sgn(βj0) > 0. Because
dim(Hin−k

∩ · · ·∩Hij0+1
∩S+) = k+ j0 and dim(Hin−k

∩ · · ·∩Hij0+1
∩Hij0

) =
k + j0 − 1 (see the beginning of this section), there exists a point vn−j0 ∈
(Hin−k

∩· · ·∩Hij0+1
∩S+)−Hij0

, notice that in the chosen coordinate system

vn−j0 = (0, . . . , 0︸ ︷︷ ︸
k

, y
(n−j0)
1 , . . . , y

(n−j0)
j0 , 0, . . . , 0). Then y

(n−j0)
j0 6= 0, therefore

y
(n−j0)
j0 > 0 since vn−j0 ∈ S+. Hence 0 < sgnLHl

(vn−j0) = sgn(βj0 · y
(n−j0)
j0 ),

this implies that sgn(βj0) > 0. Thus E ∈ S+.

Notice that the points E
(+)
i = (0, . . . , 0︸ ︷︷ ︸

k

, εk+1εn+1, . . . , εk+i−1εn+1,

−εk+iεn+1, εk+i+1εn+1, . . . , εnεn+1) /∈ S+, 1 ≤ i ≤ n− k.
The rest of the proof is similar as in a), with replacing the role of the

points E
(0)
i by E

(+)
i . In a similar way if mi0 = 0 then sgn(fl(E

(+)
i0 )) =

sgn(f
(n−k)
l,sl

(0, . . . , 0︸ ︷︷ ︸
k

)) = sgn(fl(E)) 6= 0 again because of (1) from section 1.

Lemma 4 is proved.
An analogue of lemma 2 from [13], [11] is the following lemma.

Lemma 5 For any positive constants c, c1, c2, c3 there exists c4 > 0 satisfying
the following. Let S = S or S = S+ fulfill the conditions of the theorem.
Assume that CT T ′ for some constant η > 1 − c, satisfies the inequality
Var (Γ)(T ′) ≥ η(n− k) for at least M ≥ c3(m

c(n−k)) of k-faces Γ of S. Then
the depth t of T ′ is greater than c4(n logm).

The proof of lemma 5 differs from the proof of the analogous lemma 2
from [13] proved for d-decision trees, in which the degrees of the testing
polynomials do not exceed d, rather than computation trees (considered in
the present paper), in which the degrees of the testing polynomials could be
exponential in the depth t of CT. Also it differs from the proof of lemma 2 [11]
where the main tool was the lower bound on the border complexity. Here the
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proof of lemma 5 is much easier than in [13], [11] and relies on the corollary
(see section 2) in which the multiplicative complexity of a polynomial is
bounded from below in terms of the number of strongly singular faces of an
arrangement.

Before proving lemma 5 we show how to deduce the theorem from lemmas
4 and 5. Consider RCT {Tα} recognizing S with error probability γ < 1

2
.

Lemma 4 and counting imply the existence of Tα0
such that the inequality

Var (Γ)(Tα0
) ≥ (1 − 2γ)2(n − k) is true for M = 1−2γ

2(1−γ)
Ω(mc(n−k)) of k-faces

Γ of S. Apply lemma 5 to CT T ′ = Tα0
with η = (1 − 2γ)2. Since the error

probability γ could be made a positive constant as close to zero as desired at
the expense of increasing by a constant factor the depth of RCT [20], take γ
such that η > 1− c. Then lemma 5 entails that t ≥ Ω(n logm), which proves
the theorem. Thus, it remains to prove lemma 5.

Proof of lemma 5: To each k-face Γ of S satisfying the inequality
Var (Γ)(T ′) ≥ η(n − k), we correspond a path in T ′ with the testing poly-
nomials f1, . . . , ft0 ∈ IR[X1, . . . , Xn], t0 ≤ t such that Var (Γ)(f1 · · · ft0) =
Var (Γ)(T ′) (in other words, Γ is strongly singular k-face for f1 · · · ft0 , see
section 1). Denote f = f1 · · ·ft0

Assume that 3t ≤ O(m(η−1+c)(n−k)/2), otherwise we are done. Then there
exists a path of T ′ (let us keep the notation f1, . . . , ft0 for the testing polyno-
mials along this path) which corresponds to at least N = Ω(m(c−η+1)(n−k)/2)
of strongly singular k-faces Γ for f (because there are most 3t paths in T ′).
Corollary from section 2 implies that the multiplicative complexity C(f) ≥
1
3
((η−1+ c)(n−k) logm−4n− const). Obviously C(f) ≤ t+ t0−1 ≤ 2t−1

(cf. the proof of theorem 2 [8]). Hence t ≥ Ω(n logm) that proves lemma 5.

4 Applications and open problems

As a consequence of the theorem from the previous section we deduce the
complexity lower bound Ω(n log n) for any RCT, recognizing the DISTINCT-
NESS problem ∪1≤i<j≤n{Xi = Xj} ⊂ IRn (for the necessary in the theorem

estimation of the number of
[

n
2

]
-faces see [13]).

Also we get the lower bound Ω(n2) for the KNAPSACK problem
∪I⊂{1,...,n}{

∑
i∈I xi = 1}, this result was already obtained in [11]. It would

be interesting to extend the obtained bound to other types of sets, rather
than considered in the theorem polyhedra and the unions of hyperplanes.
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The linear O(n) complexity RCT from [5] for the SET EQUALITY problem
{(x1, . . . , xn, y1, . . . , yn) : {x1, . . . , xn} is a permutation of {y1, . . . , yn}} ⊂
IR2n provides an evidence that the lower bound from the theorem could not
be directly extended even to such quite natural sets like the unions of planes.

Generalizing the construction of [5] we design RCT for recognizing the
following set: ∆(k)

n,m = {(x1, . . . , xn, y1, . . . , ym) : each of the both differ-
ences of the multisets {x1, . . . , xn} and {y1, . . . , ym} contains at most k
elements} ⊂ IRn+m. Evidently, k ≥ |n − m|. Denote the polynomials
f(X) = (X − x1) · · · (X − xn), g(X) = (X − y1) · · · (X − ym). First compute
(deterministically) f(zi), g(zi) at 2k + 1 random points, 0 ≤ i ≤ 2k with the
complexity O(k(n + m)). Then (deterministically) interpolate the rational
function h = f/g, being (presumably) a quotient of two monic polynomials
both of degrees at most k by means of its values (f/g)(zi), 1 ≤ i ≤ 2k with
the complexity O(k log2 k) [3]. Finally, (deterministically) check whether the
value of the obtained rational function h(z0) coincides with f(z0)/g(z0). The
complexity O(k(n+m)) of the designed RCT is better than the complexity
O((n+m) log(n+m)) of an obvious CT based on a sorting algorithm when
k is small enough.

Acknowledgement. I would like to thank Marek Karpinski for useful
discussions.
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