
Algorithms For Sparse Rational Interpolation

Dims Yu. Grigoriev * Marek Karpinski t

Dept. of Computer Science Dept. of Computer Science

University of Bonn University of Bonn

5300 Bonn 1 5300 Bonn 1

and

International Computer Science Institute

Berkele~, California

Abstract

We present two algorithms for interpolating sparse ra-

tional functions. The first is the interpolation algorithm

in a sense of sparse partial fraction representation of ra-

tional functions. The second is the algorithm for com-

puting the entier and the remainder of a rational func-

tion. The first algorithm works without apriori known

bound on the degree of a rational function, the second

one is in the parallel class NC provided that the degree

is known. The presented algorithms complement the

sparse interpolation results of [GKS 90].
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1 Introduction

We address a question of computational complexity of

sparse rational interpolation and a connected question

of algebraic manipulation of sparse rational functions.

We study the most general method of representating

rational functions by black boxes (cf. [KT 88, GKS 90])

and restrict ourselves in this paper to the univariate case

only. For the technical developments which lead to this

paper see [GKS 91, GKS 90, DG 91]. For the hardness

results on sparse polynomial divisibility see also Plaisted

[P 77b].

We present two algorithms. For the first one we

consider the partial-fraction representation of a ratio-

nal function and the corresponding notion of sparsity

as the number of terms in this representation. An al-

gorithm is designed for finding partial-fraction repre-

sentation without knowing the degree. Of independent

interest could be also construction of a new code (see

Section 1), which is a generalization of Goppa and BCH

code (cf. [MS 8 l]). The second algorithm finds an en-

tier of a rational function, and a polynomial part of a

partial-fraction represent ation. We show that finding

an entier is in the parallel class NC (cf. [KR 90]) pro-

vided that the degree of a rational function is known.

Here we measure the complexity in the combined sizes
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of the input and output. As a subroutine we apply the

approximative analogue of a sparse polynomial interpo-

lation schemes ([GK 87, BT 88]),

2 Extending BCH and Goppa-

codes by involving nmltiple

roots

We shall refer to [MS 81] for the general terminology on

the coding theory. Assume that a polynomial ~ G Z3[Y]

is unknown and its degree deg f = d is also unknown.

In addition let (al, . . . . crd) be an unknown vector. De-

note f = H(Y – c~)fli = ~<~<d fiyi. Suppose also

that we can ~ompute the follo;i;g syndrome expression

(cf. [MS 81]) g~ = alc~ + cq~c:-l + a3k(k – l)c!-2 +

. ‘ “+@plk(k-l)(k–2) “ 00(k–pl+2)c~ ~-~ ’+l+a&+lc; +

k–1ap1+2kc2 + . . . fork = O,l)... where @i sum-

mands correspond to Ci. The computational problem

now is to recover f and the vector (al, . . . . crd).

For an arbitrary 1 ~ O consider (d+ 1) x (d+ 1) Toplitz

mat rix

[:: 1
91 91+1 “ “ “ 91+d

9/+1 9f+2
G’1= . .

‘ “ “ 91+d+l

gl+d gl+d+l “ “ “ gl+2d

and by GI denote its d x d submatrix obtained by delet-

ing the last row and the last column. Consider also d x d

matrix (being block-diagonal) A =

bx-----

and d x (d+ 1) matrix c1 =

4
1+1 l+d

c1 c1
*cl-l

1 (/+ I)c~ ... (/+d)c\+d-]

namely, the second row is the derivative of the first one,

the next is the derivative of the previous etc. 81 times,

thus ,& rows correspond to c1, then /32 rows correspond

to C2 etc. Denote by Cl d x d matrix obtained from Cl

by deleting the last column.

fo

\ fli

fo

1= O, since denote C( : =

fd

bl

\
then bl = c\ f(cl) = O, bz = &(c{f(cl)) =.>

Ibdl
/c\-lf(cl)+c\f’( cl) = O, . . .,bpl = ~(c~f(cl)) = O,

and so on, On the other hand d;t (Cl) # O, pro-

vided that c1 # O, C2 # O, . . .. Indeed, assume that

[1

ho

c1 ; = O, then denote h = ~ hiYi and

hd-1

O = h(cl) = h’(cl) = . . . = h@l-l)(cl), O = h(c2) =

. . . = h@’-1J(c2), . . . , contradiction. The latter argu-

ing is known in the numerical analysis by considering

Hermite’s interpolation.

Then Gil +1, = (~/A C,,, G,,+(. = (C/,)~ A C,,.

Hence if CYpl # O and all other coefficients ap which

correspond to the highest derivatives, are distinct from

zero, then det(A) # O and therefore det(Gl) # O, Be-

cause of that rg(Gr) = d and the linear system GIZ = O

[1

fo

has a unique solution Z = ~ . Thus, one can

fd

recover ~ by solving a linear system GOZ = O, hence

cl, ..., Pi,..., by polynomial factoring [CG 82], repre-
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senting cl, ..., as the roots of the irreducible over ~

polynomials.

Finally, one can find ~~,...,~d by solving a linear

system

(01,..., ~d)co = (oo, . . ..g1)l).

Remark that for pairwise distinct c1, . . . . cd the de-

scribed code converts into Goppa code [MS 81].

Note: If we take a Toplitz matrix

for dl > d then its rank = d.

3 Part ial-fract ion sparsit y of ra-

tional functions and finding

highest terms

Let fl /f2 E ~ [X] be a rational function given by a

black-box. We assume that the black-box at every point

(including co) gives a value of ~1/~2 at this point (in-

cluding oo). And the same concerns any rational func-

tion which will appear at the intermediate calculations.

We suppose also that together with the black-box for

.fl /f2 we are supplied with a black-box for the deriva-

tive (fl /~2)’. If ,fl/~2 is given by a short straight-line

program, then ($1 /~2)’ can be represented also by a

short straight-line program e.g. by virtue of [BS 83]. If

(~1 /f2) is given by a certain physical process, then also

one can get (~1 /~z)’.

With the help of (.fl /~2)’ one can recover the highest

term of ~1/f2 at cm. Namely, if ~1/~2 = az~+O(z~-l),

where m E Z?, a # O, then Z(~l/~2)’/(~1/~2) = m +

O(x - 1,, so we recover m and then calculate in NC N

and since (~1/~2)/zm = a + O(x-l), we recover a.

A rational function fl / f2 is uniquely represented as

a sum of its partial fractions fl / fz = P + ~ * +

~&?J5 +..., where P G Q [X] is a polynomial,

c~, CYi,j C ~ . We call P = [fl/f2] an entier of ~1/f2 (see

the last section). We call fl / f2 t-sparse if the number of

nonzero terms in this representation is at most t.We’ll

assume in the sequel that fl / f2 is t-sparse. The problem

we deal with is to find partial-fraction representation.

Firstly we find P term by term starting with the high-

est one. Thus, we can suppose that fl / fz = ~ ~ +

. . .. Then resm( fl/f2) = ~ ~i,l, and if it does not
i

vanish then
()

~~i,~ X-l is the highest term. Thus,

we can find res~ ( fl / f2). Later on we’ll calculate gk =

res~ Zk (~1 / fz) for different k, we call them successive

residues. Remark that gk = ~i cx~,lc~ + ci~,2kc~-1 +. ~.,

thus it coincides with the formula for gk in the extended

Goppa code (see the previous section).

Observe that if ( fl / f2)- 1 is also sparse then one

can recover both fl / f2 and f2/ fl by applying ex-

tended Goppa code (or even the usual Goppa code) to

(fl/f2)’/(fl/f2) = z ~ (being sparse by the same

token) where mi is the multiplicity of the pole c~ (when

mi < O) or of the root Ci (when m~ > O) of fl/f2.

Thus, one can find ci, mi and considering expansions in

the neighborhood of ci, to find (involving the proce-

dure for recovering highest terms) the terms of the form

*“

4 A bound on the least nonzero

successive residue

If fl/f2 = z * + “ ‘ “ then we call k an order

of fl/ f2, Evidently gj = O for j < k. Let us es-

timate the least j. s.t. gjO # O. Denote ~~-~+1 =

gm/~ Then ik--k+l plays the role of gm-~+1 for
—

the function ~ ~ + ~ ~ + “ . . = (fl/f2) =



ponents in the denominators of partial fractions are di-

minished by (k – 1). Assume that j. = . . . = j~-l = O

for some N. Consider any N1 ~ N. For any i denote

by di(N1) the maximal j < N1 s.t. di,j # O, and by

d(N1) = ~di(N1).

We clai~ that d(Nl) > N1 . Indeed

(’)
i70

= 6(N1) .

jN, -1

where the matrix

1

c1 1 C2 1

c: 2CI
d(Nl) =

ql

&,d@vl)

(52,1

~2,dz(Nz)

1

[
. .. .. .

c: 2C2 ““.“.

. .. .. .

is similar to the matrix C( (see the previous section),

it has dl (Nl ) columns which correspond to c1, d2(N1 )

columns which correspond to C2, etc. If d(N1 ) ~ N1,

then the columns of the matrix ~(N1 ) cannot be lin-

early dependent (see the previous section); that proves

the claim.

Recall that the sequence d~,j is t-sparse and let

us find out how large is No = max{j : d(N1) >

~ for any N1 5 j},2 being a stronger property than

is necessary in our case, but we will need it later in this

stronger version. Let us prove that NO ~ 3$ by induc-

tion on t.

Assume the contrary. Then by inductive hypothesis in

the segment [0, 3t– 1] there are t – 1 indices j such that

di,j # O for a suitable i and in the segment (3t - 1, 3t]

there are no such indices. Again by inductive hypothe-

sis for these indices jl ~ j2 < . . . < jt-l holds jl ~ 3Z-1.

Therefore d(3t) < ~ that leads to the contradiction.

Thus, the order of fl / fz is at least N – 3t where N

is the least index for which gN # O, and wedenote later

~s-N+3+ = gs/~*, also ~i,j = ~i,j+N-3t.

5 Finding swarms of terms

We say that an integer Nz creates a swarm of terms of

the rational function fl / f2 if O < ~(N2) < ~, where

~(N2) = ~ ~j(N2) = ~(d~(N2) – N + 3~). In this case

the rank ~f the matrix’

( jO “ “ “ jN,f2 \

equals to ~(N2) (see the section about codes).

A swarm means that in the segment [1, N2] there is some

gap, in which there are no indices j such that ~i,j # O

for some i.

The Algorithm calculates

rk(~o), rk(~l), ..., rk(G3h), ..., rk(6’3,zl~~. ,). There

exists a sequence t < i, i+ 1, . . .,1+ 2tlog3t ~ 2t2 log~t

such that in the segment (3~, 3~+2t 10gs’) there are no j

such that tii,j # O for some i. Since ~(3i) < t31, then

r’k(G3/ + log3t) = . . . = ?’k(d3/ + 2t log3t) = J(3~).

Conversely if rk(&J + log3 t) = . . . = rlc(GJ +

2t log3 t) for a certain 1, then in the segment

(!Jl+Iog3 *, y+ztbg, t ) there are no j such that &i,j # O

for some i. Indeed in the opposite case there would exist
l+% log *

jo < 3+ h this segment such that in the segment

(jo, t2 jo) there are no j such that &i,j # O for some i.

Then

rk(G3,+2tk,63,) ~ rk((jtjo) > rk((231+Ig3t) ,

because 2t j. creates a swarm. Thus, we have proved

that

such

in the segment (3~+% ~, 3~+z~1% ~) there are no j

that &i,j # O for some i. Hence 3~+4 logs t creates
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a swarm and the algorithm recovers it by means of the

extension of Goppa code.

Actually, there could be different swarms and the al-

gorithm will recover a swarm, after which there is a large

gap, much larger than it is required by the definition of

the swarm.

After finding a swarm of terms, we subtract it from

the function ~1/.f2 and so reduce a number of terms

(sparsity) and continue until exhausting.

6 Analysis of the algorithm

Let us assume that we are supplied also with a black-

box for computing a factorial (as a preconditioning).

Then the number of arithmetic operation necessary to

fulfill is at most 3°t~210gtJ, and the number of parallel

steps is 0(t5 logz t) by Mulmuley [M 86].

So, it is independent from the total degree d of the ra-

tional function. If we count bit complexity, then the

time would be bounded by (dM)OflJ, where d is the

degree and M is the bit-size of the coefficients, and the

parallel time < logOI1)(dM) (again by [M 86]).

Remark about using [CG 82] for finding roots of de-

nominator (see Section 2).

~= ~ (Y-c;)”’ ,deg~~3’.
I<i<t

The number of ci is at most t because of t-sparsity of

fl/f2 .

(~/GC~(~, ~’)= H(Y - ci) - apply to it [CG 82], find

ci + find pi in parallel time O(t) --+ ~i )

7 Finding an entier of a sparse

rational function is in NC

Let a rational function q E @ (~) be given by a black-box

and we assume that q can be represented in a form q =

f/g, where polynomials f, g E Z[X] are both t-sparse

and form a minimal t-sparse representation of q (in the

sense of a degree of denominator g) and the leading

coefficient lc(g) = 1. We analyse the complexity in

terms of arithmetic operations (cf. [BT 88], [GKS 91]).

Unlike the previous sections we suppose that we know

a bound d on the degrees deg(~), deg(g) < d. Under

this supposition we’ll show that the problem of finding

the entier [f/g] = h E Z?[X] is in the parallel class NC

(cf. [C 85, KR 90, K 89]) in the sizes of the inputs and

outputs.

Denote dl = deg(~), do = deg(g), M is a maximal of

bit-sizes of the coefficients off, g (they are not supposed

to be given). Represent q = f/g = [f/g] + A.

We call a rational number O < c c Q big enough if

-(c) < ~. Our next purpose is to construct

explicitly a big enough number.

Take succesive primes PI, . . . . p~ and for each p among

them calculate (by black-box) q(p), q(pz), . . . . q(p2~2+1 ).

For at least one p all these values are defined (let us fix

it).

Lemma At least one of q(p), q(p2), . . . . q(p2~’+1)

has an absolute value greater than 2~/2t/t4dt2.

PROOF Denote N = max{lq(p)l,..., lq(p2’2+1)1}. -

Denote f = ~ cIixjI, g = ~ ~ixki. The homoge-
I<i<t I<i<t

neous linear system in the indeterminates ai, pi

has a unique solution, since the polynomials f, g provide

a minimal t-sparse represnt ation of q, hence these equal-

ities imply that (~ ~i~~’) / (~ @iZk I) = q(x). There-

fore, each ~i, pi equals to an appropriate (2t – 1) x (2t –

1) minor of this system. Then 2M ~ max{lcul, l@il} <

(~P2t’d2i)2t < (Ntddt’)at. Lemma is proved.

Then one can produce in NC ([BC 86]) an integer

t4dt2and multiply it on N, so we get a rational number

greater than 2“i2t. Then again involving [BC 86], one
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can construct a rational number No >36. 23M . d5 .

Calculate q(No). W.1.o.g. assume that ic(~) > 0.

Then $( No) > N;’ – dN#’-12M > ~N#’, g(No) <

do–lzM ~ ;N~.N$’ + dNo Thus, q(No) > :N:’-dO.

On the other hand f(No) < 2“dN$, g(No) > N$’ –

dN$’ - 12~, therefore q(No) <3. 2~dN#’ ‘do. Thus if

q(No) < ~ then dl – do <0 and h = [f/g] = O, if dl –

do z O and q(No) < *No then dl –do = O. Assume now

that dl – do >0. Notice that the absolute value of each

coefficient of rem(~, g) is at most (2”td’-d0+2J) (dl –

do + 2)d’-dO+2 (see [L 82]). Calculate then NI =

q(q(No)) > 3d0-d’-1N~d’–d0)’. We claim that N1 is

big enough. Indeed, g(N1) > NY – 2“doN~-1 >

~N~O, Irem($, g)(Nl)l < (2”fd1-dO+2)) (dl – dO +

2)d’-d0+2doN~-l < ~N~. Take an integer N =

[N,] + 1, which is also a big enough number.

Having a big enough integer N, we’ll find the

entier [~/g] = h by a method similar to [BT 88]

(see also [GK 87]), which one can call an ap-

proximative polynomial interpolation. We compute

q(N), q(N2) , . . . . q(N2t) and take the nearest integers

to them, respectively, Al, . . . . A2~. Then A~ = h(Ni),

1 ~ i ~ 2t, since N is big enough, and one can apply

BCH-codes (as in [BT 88]) to recover the powers of X

occurring in h, and also the coefficients.

Arithmetic complexity of the whole procedure for

finding entier h is (t log d)O(l) and the parallel time

O(logt log log d).

Acknowledgment: We thank Mike Singer for the

number of interesting discussions.

References

[BS 83] Baur, W., Strassen, V., The Complexity of

Pavtial Derivatives, Theor. Comput. Sci.,

1983, 22, pp. 317-330.

[BC 86]

[BT 88]

[CG 82]

[C 85]

[DG 91]

[GK 87]

[GKS 90]

[GKS 91]

[KT 88]

Beame, P. W., Cook, S. A., Hoover, H. J.,

Log Depth Circuits for Division and Related

Problems, SIAM J. Comput., 1986, 15, PP.

994-1003.

Ben-Or, M., Tiwari, P., A Deterministic AL

gorithm For Sparse Multivarite Polynomial

Interpolation, Proc. STOC ACM, 1988, pp.

301-309.

Chistov, A. L., Grigoriev,

D. Yu., Polynomial-Time Factoring Multi-

variable Polynomials Over a Global Field,

Preprint LOMI, E-5-82, Leningrad, 1982.

Cook, S. A., A Taxonomy of Problems with

Fast Parallel Algorithms, Information and

Control 64 (1985), pp. 2-22.

Dress, A., Grabmeier, J., The Interpolation

Problem for k-sparse Polynomials and Char-

acter Sums, in Adv. App. Math. 12 (1991),

pp. 57-75.

Grigoriev, D. Yu., Karpinski, M., The

Matching Problem for Bipartite Graphs with

Polynomially Bounded Permanents is in NC,

Proc. 28th IEEE FOCS (1987), pp. 166-172.

Grigoriev, D. Yu., Karpinski, M., Singer,

M., Interpolation of Sparse Rational Func-

tions Without Knowing Bounds on Expo-

nents, Proc. 31St IEEE FOCS 1990, pp. 840–

846.

Grigoriev, D. Yu., Karpinski, M., Singer,

M., The Interpolation Problem for k-Sparse

Sums of Eigenfunctions of Operators, in

Adv. Appl. Math. 12 (1991), pp. 76-81.

Kaltofen E., Trager,

Polynomials Given by

B., Computing with

Black Boxes for Their

12



Evaluations: Greatest Common Divisors,

Factorization, Separation of Numerators and

Denominators, Proc. 29th IEEE FOCS 1988,

pp. 296-305.

[KR 90] Karp, R. M. and Ramachandran, V. L., A

Survey of Parallel Algorithms for Shared-

Memory Machines, Research Report No.

UCB/CSD 88/407, University of California,

Berkeley; in Handbook of Theoretical Com-

puter Science, MIT Press (1990), pp. 870-

941.

[K 89] Karpinski, M., Boolean Circuit Complexity

of Algebraic Interpolation Problems, Techni-

cal Report TR-89-027, International Com-

puter Science Institute, Berkeley (1989);

in Proc. CSL ’88, Lecture Notes in Com-

puter Science 385 (1989), Springer-Verlag,

pp. 138-147.

[L 82] Loos, R.., Generalized Polynomial Remain-

der Sequences, in: “Computer Algebra”,

Springer, 1982, pp. 115-137.

[MS 81] Mac Williams, F. J., Sloan, N. J. A., The

Theory of Error Correcting Codes, North-

Holland, 1981.

[M 86] Mulmuley, K., A Fast Parallel Algorithm to

Compute the Rank of a Matrix Over an Ar-

bitrary Field, Proc STOC ACM, 1986.

[P 77a] Plaisted, D., Sparse Complex Polynomials

and Polynomial Reducibility y, J. Comput.

System Sci. 14 (1977), pp. 210-221

[P 77b] Plaisted, D., New NP-Hard and NP-

C’omplete Polynomial and Integer Divisibil-

ity Problems, Proc. 18th IEEE FOCS (1977),

pp. 241-253.

13


