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Abstract

n+d

In [GV] it was proved an upper bound 225D on the number
of vectors of multiplicities of the solutions of systems of the form
g1 = -+ = ¢, = 0 (provided, it has a finite number of solutions) of
polynomials ¢1,...,9, € F[Xq,...,X,] with the degrees deg(g;) < d.
In the present paper we show that this bound is close in order of growth
to the exact one. In particular, in case d = n the construction provides
a double-exponential (in n) number of vectors of multiplicities.

Introduction

We consider systems ¢y = --- =g, = 0,¢; € F[Xy,...,X,] where deg(g;) <
d,1 <1 < nand F is an algebraically closed field. To each 0-dimensional
component a = (dy,...,a,) € F" of the variety of solutions V ={¢g; = --- =
gn =0} C F" one attaches its (finite) multiplicity

me = dimp(F[X4, ..., Xa]/ (g1, 7gn))(X1—a1,...,Xn—an) [S].

One attributes to the system ¢; = --- = g, = 0 the (ordered) vector
{ma}. over all 0-dimensional components a of the variety V. Denote by
M,, 4 the number of all possible vectors of the form {m, },.

It was proved in [GV] that for fields F of zero characteristics in case when

ntd

dim(V') = 0, we have an upper bound M, 4 < 200D (majorating M, 4 was
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motivated by the complexity issues, see [GV]). We mention that making
use of the machinery of algorithmic perturbations of systems of polynomial
equations developped in [CG], one could establish a similar upper bound on
M, 4 getting rid of the restriction dim(V) = 0. We note that the exponent

(n:d) in the bound is the number of the coefficients of polynomials of degree
d, in other words, the number of parameters of systems under considerations.
One could compare the upper bound from [GV] with the obvious upper bound
200" taking into account that {m,}, is in fact, a partition of an integer less
or equal to d" due to the Bezout inequality [S]. For d < n the bound from
[GV] is better than this obvious upper bound.

In the present paper we study a question, how sharp is the upper bound on
M, 4 from [GV]? We prove the following theorem, from which particularly,

in case d = n one gets a doubly-exponential (in n) lower bound M, , >
a1/ (3+e) . .
! " for any ¢ > 0 (we remind that an asymptotical lower bound

f1 > Q(f2) means that f; > cfs for a suitable constant ¢ > 0).

min{dl/(3+5) n}

Theorem 1 a) M, 4 > d?™ ) for any e > 0;

b) M, 4> d*,

The bound from a) is stronger than the one from b) when d > (Q (lolﬁog_n))&"s‘

When d > Q(n>*9) for a certain ¢ > 0 then the lower bound in a) 4" grows
with a similar order as the upper bound 20" (cf. above).

Consider in the Zariski open set of all the systems f; = --- = f, = 0 with
a finite number of solutions the (discriminantal) subvariety of systems with
at least one multiple solution. The question is whether on every stratum of
a Whitney stratification of the discriminantal variety the vector of multiplic-
ities is constant? If this would be true the above theorem would provide a
lower bound on the number of strata. We mention that this is a challeng-
ing problem to clarify whether the number of strata (say, of a hypersurface)
could be double-exponential or just a single-exponential?

Constructing vectors of multiplicities

Now we proceed to the proof of a).
Fix some pairwise distinct points yq, ..., yx € F and integers myq, ..., my >
0. Denote L = m; + --- 4+ my, and consider L x I, matrix H of the Hermite



interpolation as follows. The entry of H in a row (7,j) where 1 <¢ <k, 0 <
J < m; and a column [, 0 <[ < L, equals to (]l) yf_j being the coefficient of
the expansion of X' in the powers {(X —y;)*}, at the power (X —y;)’. It is well
known that H is non-singular, moreover det(H) = [Ti<pc <k (Yp—yq)™*™. In
other words, one can assign in an arbitrary way the values of the expansions
of a (unique) polynomial of the degree L at the points y;,1 < ¢ < k up to
the powers m; — 1, respectively.

For the sake of simplicity of notations we set m; = ...m; = m and
denote mk x mk matrix H,, ; = H. Denote by H™ the matrix of the size
(mk)" x (mk)" being the n-th tensor power of H,, ;. Then H™ is non-singular
and its entries correspond to the coefficients in the expansion of a polynomial

of a degree at most mk — 1 with respect to each of n variables Xi,..., X, at
k™ points of the form (x1,...,2,) from the grid R = {y1,...,yx}" C F" up
to the powers m — 1 with respect to each of n variables X1 —xq,..., X, — x,.

Thus, after assigning in an arbitrary way these coefficients one could find a
unique polynomial in n variables Xi,..., X,, of the degrees at most mk — 1
with respect to each of the variables Xj,..., X, just with these assigned
coefficients in the expansions.

Choose for each point @ = (x1,...,2,) from the grid R n integers 1 <
li,...,l, < m —1 and take the (unique) family of polynomials fi,..., f, €
F[Xi,...,X,] of the degrees at most mk — 1 with respect to each of the
variables Xy, ..., X, such that the polynomial f;,1 < j < n in the expansion
at the point = has the unique non-zero term among all the terms of the degrees
at most m — 1 with respect to each of the variables X; — xq,..., X, — x,,
namely, equal to (X; — z;)b.

The following lemma belongs to the folklore, but we still give its proof
for the sake of self-containdness.

Lemma 1 The multiplicity of (the 0-dimensional component) x of the vari-
ety of solutions of the system f1 = ... = f, =0 equals to l---1,.

Proof. Consider the local algebra
A= (F[Xy,.... X0/ (i o)) (K=ot Xn—m) -

Clearly, the monomials (X7 — :1;1)1/1 (X — :z:n)l:l for 0 < lll <lj,...,0<
[, < [, are linearly independent in A. Therefore, it suffices to show that

these monomials constitute a basis in A.
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Take any monomial GG = (X7 —ay)* -+ - (X, — 2,,)° out of this set. Then
s; > 1; for a certain 1 < j < n. In the algebra A the element

G

RS

Xl—l’l,...,Xn—l’n)m (1)

After that take any monomial ' = (X1 — :1;1)5/1 (X — l’n)s; occurring
in the latter element of A, then 5;, > m for a suitable 1 < j/ < n. Since
m > [ we have in the algebra A

G =0 - f,Ll, € (X1 — e, Xy —2)"
(X i j') !

Acting in a similar way with each monomial occurring in (1), we ob-
tain as a result that G equals to a sum of monomials from the ideal AN
(X1 — 21,..., X, — 2,)™ !, moreover for any of these monomials (X; —
:1;1)5/1/ (X, —xn)sx from the sum there exists 1 < j” < n such that s%, > m.

Continuing further we conclude that G € Mi<occa (X1 —21,..., Xy —2,)7,
hence ¢ = 0 due to Nakayama’s lemma (see e.g. [S]). This completes the
proof of lemma. O

Thus, for every family of k™ integers of the form [;---[, where 1 <
l1,...,l, < m —1, one can construct a system of polynomials fi,..., f, €
F[Xy,...,X,] with the multiplicities of the system f; = ... = f, = 0 at
k™ points of the grid R being equal to [y ---1,, respectively. Let us bound
from below, how many diverse vectors of multiplicities we have constructed
totally.

Because deg(f;) < (km — 1)n the sum of the multiplicities of the 0-
dimensional solutions of the system f; = ... = f, = 0 is less than (kmn)"
due to the Bezout inequality. As the integers(y,...,[, we choose the pairwise
distinct prime numbers between m/2 and m — 1,80 [y ---1, > (m/2)". Since
there are Q(m/log m) such prime numbers (according to the law of distribu-
tion of prime numbers) we conclude that the number of diverse products of

the form [ - - - [,, is greater than P = (Q(m/iogm)), and the number of the con-

structed systems is at least (;) Among the multiplicities of 0-dimensional
solutions of a system f; = ... = f, = 0 there are at most ((]::;Z;: multiplicities

which are greater or equal to (m/2)". Therefore, at most ((ziﬁ)n) of the vec-



tors of multiplicities of the constructed systems of the form f; = ... = f, =0
could coincide with a given one.

Thus, under the condition P > (2kn)"*#1) for a certain £; > 0, the num-
ber of diverse vectors of multiplicities of the constructed systems is greater

than (PZ:)). The latter condition would be fulfilled when m > n?** for a cer-

tain € > 0 and if one takes & = [(L)S/(S—I_E)LW then the number of diverse

Tog m n?
vectors of multiplicities would be greater than (PZ,(:)) > m™"" . The degrees
of the constructed polynomials deg(f;) < kmn. This proves the theorem a)
when d > Q(n**%2) for an appropriate ;3 > 0.
To complete the proof of the theorem a) when d < O(n*t®) for any
¢ > 0 we first apply the above construction for the number of variables

no = [d"/B+2)] for an arbitrary o > 0, that provides the number of diverse
1/(3+20)
vectors of multiplicities greater than 44 ’ ), and the remaining n — ng

variables we take as dum and imposing them to vanish. O

Now we proceed to the proof of the theorem b). Fix some constants
c1,e2 > 0, set s = [ern| and consider univariate polynomials of the form
f=(X=1m™...(X — s)" with the condition my---m, < d®?". One can
realize f as a “modified straight-line program” with three types of elementary
operations: addition, multiplication and taking d;-power with d; < d. To
realize f at most N = O(log, m1 + - - - +log, ms + s) operations of described
types are sufficient. One can introduce N new variables 7, ..., Zy, we also
agree that Zy = X and represent such a “modified straight-line program” as
a sequence of NV equations of the form either

Zj = Zj + Zj,, either Z; = Z; 7, either Z; = cZ; ov Z; = Z (2)

29
where 1 < 7 < N,j1,72 < j,¢ € F,dy <d. Then Zy “calculates” f.
Adjoining to (2) an equation Zy = 0 we obtain as a result a system

in F'N*! having s solutions with the multiplicities my, ..., m,, respectively.

Note that N < O(n). We get greater or equal to d®" distinct vectors of

multiplicities myq,...,m, because to every value of the product mq---m;,

corresponds at least one vector my,...,ms. This completes the proof of the

theorem. O
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