
Constructing double-exponential number ofvectors of multipilicities of solutions ofpolynomial systemsDima Grigoriev�AbstractIn [GV] it was proved an upper bound dO((n+dn )) on the numberof vectors of multiplicities of the solutions of systems of the formg1 = � � � = gn = 0 (provided, it has a �nite number of solutions) ofpolynomials g1; : : : ; gn 2 F [X1; : : : ; Xn] with the degrees deg(gi) � d.In the present paper we show that this bound is close in order of growthto the exact one. In particular, in case d = n the construction providesa double-exponential (in n) number of vectors of multiplicities.IntroductionWe consider systems g1 = � � � = gn = 0; gi 2 F [X1; : : : ;Xn] where deg(gi) �d; 1 � i � n and F is an algebraically closed �eld. To each 0-dimensionalcomponent a = (a1; : : : ; an) 2 F n of the variety of solutions V = fg1 = � � � =gn = 0g � F n one attaches its (�nite) multiplicityma = dimF (F [X1; : : : ;Xn]=(g1; : : : ; gn))(X1�a1 ;:::;Xn�an) [S].One attributes to the system g1 = � � � = gn = 0 the (ordered) vectorfmaga over all 0-dimensional components a of the variety V . Denote byMn;d the number of all possible vectors of the form fmaga.It was proved in [GV] that for �elds F of zero characteristics in case whendim(V ) = 0, we have an upper bound Mn;d � dO((n+dn )) (majoratingMn;d was�IRMAR, Universit�e de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France1



motivated by the complexity issues, see [GV]). We mention that makinguse of the machinery of algorithmic perturbations of systems of polynomialequations developped in [CG], one could establish a similar upper bound onMn;d getting rid of the restriction dim(V ) = 0. We note that the exponent�n+dn � in the bound is the number of the coe�cients of polynomials of degreed, in other words, the number of parameters of systems under considerations.One could compare the upper bound from [GV] with the obvious upper bound2O(dn), taking into account that fmaga is in fact, a partition of an integer lessor equal to dn due to the Bezout inequality [S]. For d < n the bound from[GV] is better than this obvious upper bound.In the present paper we study a question, how sharp is the upper bound onMn;d from [GV]? We prove the following theorem, from which particularly,in case d = n one gets a doubly-exponential (in n) lower bound Mn;n �nn
(n1=(3+")) for any " > 0 (we remind that an asymptotical lower boundf1 � 
(f2) means that f1 � cf2 for a suitable constant c > 0).Theorem 1 a) Mn;d � dd
(minfd1=(3+");ng) for any " > 0;b) Mn;d � d
(n).The bound from a) is stronger than the one from b) when d > �
� lognlog logn��3+".When d > 
(n3+") for a certain " > 0 then the lower bound in a) dd
(n) growswith a similar order as the upper bound 2O(dn) (cf. above).Consider in the Zariski open set of all the systems f1 = � � � = fn = 0 witha �nite number of solutions the (discriminantal) subvariety of systems withat least one multiple solution. The question is whether on every stratum ofa Whitney strati�cation of the discriminantal variety the vector of multiplic-ities is constant? If this would be true the above theorem would provide alower bound on the number of strata. We mention that this is a challeng-ing problem to clarify whether the number of strata (say, of a hypersurface)could be double-exponential or just a single-exponential?Constructing vectors of multiplicitiesNow we proceed to the proof of a).Fix some pairwise distinct points y1; : : : ; yk 2 F and integersm1; : : : ;mk >0. Denote L = m1 + � � � +mk and consider L � L matrix H of the Hermite2



interpolation as follows. The entry of H in a row (i; j) where 1 � i � k; 0 �j < mi and a column l; 0 � l < L, equals to �lj�yl�ji being the coe�cient ofthe expansion ofX l in the powers f(X�yi)sgs at the power (X�yi)j. It is wellknown that H is non-singular, moreover det(H) = Q1�p<q�k(yp�yq)mpmq . Inother words, one can assign in an arbitrary way the values of the expansionsof a (unique) polynomial of the degree L at the points yi; 1 � i � k up tothe powers mi � 1, respectively.For the sake of simplicity of notations we set m1 = : : :mk = m anddenote mk �mk matrix Hm;k = H. Denote by H(n) the matrix of the size(mk)n�(mk)n being the n-th tensor power ofHm;k. ThenH(n) is non-singularand its entries correspond to the coe�cients in the expansion of a polynomialof a degree at most mk� 1 with respect to each of n variables X1; : : : ;Xn atkn points of the form (x1; : : : ; xn) from the grid R = fy1; : : : ; ykgn � F n upto the powers m�1 with respect to each of n variables X1�x1; : : : ;Xn�xn.Thus, after assigning in an arbitrary way these coe�cients one could �nd aunique polynomial in n variables X1; : : : ;Xn of the degrees at most mk � 1with respect to each of the variables X1; : : : ;Xn just with these assignedcoe�cients in the expansions.Choose for each point x = (x1; : : : ; xn) from the grid R n integers 1 �l1; : : : ; ln � m � 1 and take the (unique) family of polynomials f1; : : : ; fn 2F [X1; : : : ;Xn] of the degrees at most mk � 1 with respect to each of thevariables X1; : : : ;Xn such that the polynomial fj ; 1 � j � n in the expansionat the point x has the unique non-zero term among all the terms of the degreesat most m � 1 with respect to each of the variables X1 � x1; : : : ;Xn � xn,namely, equal to (Xj � xj)lj .The following lemma belongs to the folklore, but we still give its prooffor the sake of self-containdness.Lemma 1 The multiplicity of (the 0-dimensional component) x of the vari-ety of solutions of the system f1 = : : : = fn = 0 equals to l1 � � � ln.Proof. Consider the local algebraA = (F [X1; : : : ;Xn]=(f1; : : : ; fn))(X1�x1 ;:::;Xn�xn).Clearly, the monomials (X1�x1)l01 � � � (Xn�xn)l0n for 0 � l01 < l1; : : : ; 0 �l0n < ln are linearly independent in A. Therefore, it su�ces to show thatthese monomials constitute a basis in A.3



Take any monomial G = (X1�x1)s1 � � � (Xn�xn)sn out of this set. Thensj � lj for a certain 1 � j � n. In the algebra A the elementG = G� fj G(Xj � xj)lj 2 (X1 � x1; : : : ;Xn � xn)m (1)After that take any monomial G0 = (X1� x1)s01 � � � (Xn � xn)s0n occurringin the latter element of A, then s0j0 � m for a suitable 1 � j 0 � n. Sincem > lj0 we have in the algebra AG0 = G0 � fj0 G0(Xj0 � xj0 )lj0 2 (X1 � x1; : : : ;Xn � xn)m+1Acting in a similar way with each monomial occurring in (1), we ob-tain as a result that G equals to a sum of monomials from the ideal A \(X1 � x1; : : : ;Xn � xn)m+1, moreover for any of these monomials (X1 �x1)s001 � � � (Xn�xn)s00n from the sum there exists 1 � j 00 � n such that s00j00 � m.Continuing further we conclude that G 2 \1�s<1(X1�x1; : : : ;Xn�xn)s,hence G = 0 due to Nakayama's lemma (see e.g. [S]). This completes theproof of lemma. 2Thus, for every family of kn integers of the form l1 � � � ln where 1 �l1; : : : ; ln � m � 1, one can construct a system of polynomials f1; : : : ; fn 2F [X1; : : : ;Xn] with the multiplicities of the system f1 = : : : = fn = 0 atkn points of the grid R being equal to l1 � � � ln, respectively. Let us boundfrom below, how many diverse vectors of multiplicities we have constructedtotally.Because deg(fj) � (km � 1)n the sum of the multiplicities of the 0-dimensional solutions of the system f1 = : : : = fn = 0 is less than (kmn)ndue to the Bezout inequality. As the integers l1; : : : ; ln we choose the pairwisedistinct prime numbers between m=2 and m� 1, so l1 � � � ln � (m=2)n. Sincethere are 
(m= logm) such prime numbers (according to the law of distribu-tion of prime numbers) we conclude that the number of diverse products ofthe form l1 � � � ln is greater than P = �
(m= logm)n �, and the number of the con-structed systems is at least � Pkn�. Among the multiplicities of 0-dimensionalsolutions of a system f1 = : : : = fn = 0 there are at most (kmn)n(m=2)n multiplicitieswhich are greater or equal to (m=2)n. Therefore, at most �(2kn)nkn � of the vec-4



tors of multiplicities of the constructed systems of the form f1 = : : : = fn = 0could coincide with a given one.Thus, under the condition P � (2kn)n(1+"1) for a certain "1 > 0, the num-ber of diverse vectors of multiplicities of the constructed systems is greaterthan �P
(1)kn �. The latter condition would be ful�lled when m > n2+" for a cer-tain " > 0 and if one takes k = d( mlogm)3=(3+") 1n2 e then the number of diversevectors of multiplicities would be greater than �P
(1)kn � > mm
(n). The degreesof the constructed polynomials deg(fi) � kmn. This proves the theorem a)when d > 
(n3+"2) for an appropriate "2 > 0.To complete the proof of the theorem a) when d < O(n3+") for any" > 0 we �rst apply the above construction for the number of variablesn0 = dd1=(3+"0)e for an arbitrary "0 > 0, that provides the number of diversevectors of multiplicities greater than dd
(d1=(3+"0)), and the remaining n � n0variables we take as dum and imposing them to vanish. 2Now we proceed to the proof of the theorem b). Fix some constantsc1; c2 > 0, set s = dc1ne and consider univariate polynomials of the formf = (X � 1)m1 � � � (X � s)ms with the condition m1 � � �ms � dc2n. One canrealize f as a \modi�ed straight-line program" with three types of elementaryoperations: addition, multiplication and taking d1-power with d1 � d. Torealize f at most N = O(logdm1+ � � �+ logdms+ s) operations of describedtypes are su�cient. One can introduce N new variables Z1; : : : ; ZN , we alsoagree that Z0 = X and represent such a \modi�ed straight-line program" asa sequence of N equations of the form eitherZj = Zj1 + Zj2 ; either Zj = Zj1Zj2 ; either Zj = cZj1 or Zj = Zd1j1 (2)where 1 � j � N; j1; j2 < j; c 2 F; d1 � d. Then ZN \calculates" f .Adjoining to (2) an equation ZN = 0 we obtain as a result a systemin FN+1 having s solutions with the multiplicities m1; : : : ;ms, respectively.Note that N � O(n). We get greater or equal to dc2n distinct vectors ofmultiplicities m1; : : : ;ms because to every value of the product m1 � � �mscorresponds at least one vector m1; : : : ;ms. This completes the proof of thetheorem. 2Acknowledgement. The author would like to thank Vitya Vassiliev foruseful discussions. 5
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