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A predicate is constructed which is recognizable in real time by a Kolmogoroff 

algorithm but which is not recognizable in real time by a machine with polynomial 

accessibility. 

The purpose of this note is the construction of a predicate recognizable by some Kolmo- 

goroff algorithm (see [i]) in real time, but not recognizable in real time by a machine 

with polynomial accessibility (see [2], [3]) -- in particular by a multidimensional Turing 

machine. 

When added to the main result of !4] it follows that the set of predicates recognizable 

in real time on a multidimensional Turing machine is strictly contained in the set of pred- 

icates recognizable in real time by a Kolmogoroff algorithm. 

We will use without explanation the definitions and notation of [2], [3], and [5]. 

In Sec. 1 we introduce some preliminary material from graph theory. In Sec. 2, the 

locally complex functions are defined and it is proved that it is impossible to compute such 

functions in real time on a machine with polynomial accessibility. In Seco 3 the desired 

predicate P is constructed as a locally complex function, and a Kolmogoroff algorithm recog- 

nizing P is real time is given. 

i. Uniform Trees~ 

A binary tree will be called directed (see [5]) if there are either two edges or no 

edges coming from each vertex, and except for one vertex called the root, there is exactly 

one edge entering each vertex. 

We will also assume that each edge of a binary tree is labeled by 0 or 1 (we will call 

this a labeling of the edges) so that two edges leaving the same vertex are labeled dif- 

ferently. If moreover each vertex of such a binary tree, except the root, is labeled with 0 

or 1 (wee will call this a labeling of the vertices) then we will call the tree a labeled 

tree. 

To each directed branch (see [5]) of a labeled tree starting from the root corresponds 

a word on the binary alphabet as follows: we write the label of the edges occurring in 

the branch beginning with the edge leaving the root. The word corresponding to a given 

branch has length equal to the number of edges in the branch. Distinct branches correspond 

to distinct words, and thus one may construct an inverse mapping on some set of words on a 

binary alphabet taking a word A on the alphabet to a branch ~A of the labeled tree start- 

ing at the root. 
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Let r be a labeled tree and let ~ be a word on the binary alphabet. We denote by 

Dr(A~ the word whose k-th letter is the label of the vertex which is the end of the k-th 

edge of the branch &A Note that ID p(A)I=IAI, where ]XI denotes the length of the word 
A binary tree is called regular if all of the directed branches starting from the root 

and finishing at a leaf (see [5]) have the same length, called the depth of the tree. 

A regular labeled tree C of depth ~ will be called semiuniform if for any words 

~ , A~, ~ of length n on the binary alphabet such that ~AZ, the right halves of the 

words D?(A~) and Dr{#', ~) are distinct. 

A regular labeled tree ~ of depth ~g will be called uniform if the following condi- 

tion is satisfied for any natural numbers & and k such that (~.~)2k§ any regular subtree 
~K+4 

of ~ of depth ~+~ whose root ~ located at depth ~ is semiuniform. 

We will identify two labeled trees ~ and ~ if for each word A on the binary alphabet, 

the words D p(A] and DA(AI either are both undefined or are both defined and equal. 

Note that a labeled tree 

for Iil=~. 

We call the labeled tree 

root is the root of ~. 

LEMMA i. There is an infinite sequence of uniform trees ~(01,~(~I, 

respectively such that for K~ , ~(K~ is an initial subtree of depth 2 ~ 

of depth ~ is defined by the values of the function ~(A) 

an initial subtree of r if /k is a subtree of P whose 

of depths 2~ 

of r(~ �9 

Proof. We define 0e0:O,~@0={,0@I=~,~@~:O. Let A:~, ,~ , 5=~,,_,~ be twowords oflength 

5 on the alphabet {0,I}. Let B~A denote the word ~4@CLI ~@CL5 ~ Let ~ be a labeled tree 

of depth ~ and let A be a word of length 5 on {0,I} o We will define the tree T@A . In 

order to do this it is sufficient to define the word D poA(8 ] for all ~ of length 5 . For 

any word B on {0,I} of length 5 we define DpeA(~=(D~(~]~A. 

We will prove the following statement: 

(*) if ~l,Az~ are words of length ~h such that A~#A z and r is a uniform tree of 

depth .2 t', then' 

('2) A eB~A~B~ 

(*3) [~B is a uniform tree. 

Since (*i) and (*2) are obvious, we will prove (*3). Consider arbitrary words C , E I , 

Ez, H on {o,I~ such that E~# Eg and such thatthe conditions hold for some [C[=~'~ K*4, [Eli= 
�9 ~ ~ I "I II I I 1 IE I=IHI=2 ~, (m+qZ ~§ g' Suppose D r| and Dre~(CE~H)-OEzH for some words C,E,,E~, 

H', H" such that IC'I=ICi,IH'I=IH"I=IHI , ~n order to show feb is uniform, we must show that 

H'~H" for such C,E~ Ez~H- 
We represent the word 5 in the following form: B=B, SzB~S ~ ,where IB, I=ICI ,I%l=IB~l=g k. 

Let n ~(CE, H)=XY, Z, and D r(CE~HI--XIZ~,, where IXI=ICI and IZJ=IIJ =IHI. Then D r| 
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=(XeB,)(YeB~ZeB~) and D ~e~(CE~H)=(XeB,~YzeB~ZpBs/ But 7~Z$ since C is uniform. Thus by ( '2) ,  

Z eB~ZeB~. On the other hand, H'=ZeB s and H"=ZeB~, so that H* ~m" and VeB is uniform. 

The statement (*) is proved. 

Now by induction on L we will prove the existence of the tree P(51 with the properties 

given in Lemma i. 

Basis Step. Suppose that }.=0 We let U(O~ be the labeled tree 

0 A 
0 

Induction Step. Suppose we have constructed the tree P(L-~I . Let A and 8 be words 

of length ~L-~ on {O,.I} . We define D p(,.1(ABl= D p(h.~)(A~ D p(L_j)eA(B) . It is not hard to see that 

~-~ is an initial subtree of ~IL), 

We will show P(5) is uniform. We will show that for any nonnegative integers R,K 

with (R+~)Z~§ ~'" a subtree A of depth ~+~ of ~(I.~ whose root is a vertex of P(~I at 

depth R" ~§ is semiuniform. 

We consider three cases: 

(i) K < g-1, ~ < 8 I~'~-("*~ 

( 2 )  K < L - ' I  , rt ~ ~(t,-~)-~§ 

(3) K=L-4 ,R:O. 

In case (I), A is a subtree of ~{L-{i and the semiuniformity of A follows from the uni- 

formity of PIL-0. In case (2), & is a subtree of the tree pi , of depth 2 L'~ , which 

is the subtree of P0'I whose root is the end of a branch og B for some word B of length 

2 L'~ . Thus P'=~IL-~B, and from (*3) if follows that P' is uniform. Hence • is semiuniform. 

Only case (3) is left. 

Thus suppose 01 , C~ , E are words of length ~L-I on {0,I} with C~C~. Suppose that 

D r(uIC~E]=Hd8~ and D r(u~(CzEl=HzS~ for some words ~, H~, B~ , ~z with IB~I--IBzl =~u'~. We will 

show B 4 ~ B~. According to the construction of p(LI, Dr{hi(C El= D piL.~}(O~)(D rIL.41(EI~Cdl and 

Hence B:DrIL_4~(EIeC ~ and B= Dr(u_~i(E ) �9 O=. By (*i) it follows 

that ~ ~ ~ The uniformity of p(~ and Lemma 1 are proved. 

2. Locally Complex Functions 

We will consider functions whose arguments are words in an alphabet Q and whose values 

are letters in some alphabet. 

A function ~ is called almost complex if there exist numbers ~o and @ (0.<~<~I 

such that for any natural numbers ~ , K and for any words A , C in the alphabet Q with 

IAI = ~ 8"+~ and ~o.< IG[ = ~K, there is no equivalence class of the relation ~ A,G contain- 

ing more than ~ O'z~ members, where g is the number of elements in Q . (The relation =A,C 

introduced in [2] is defined as follows: X I~A,CX$, if IX~I=IXzl=ICl and for all [ such that 

{-~ [-~ g~ the identity ~(AX~% ctl = ~(AXzc~ eg ~ holds, where C=G~...C2,.) 
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We call a function ~ locally complex if there is an almost complex function ~ and 

two sequences of natural numbers {~KIK:~ and {~K~:~ such that (i) ~K=~ (2) for all 

words A and B for which 

the equality f(AB] = ~(B] holds. 

K K-4 

Systems with polynomial accessible memory were introduced in [2]. 

LEMMA 2. No locally complex function y is recognizable in real time by a system with 

polynomial accessible memory. 

A proof of this lemma may be constructed following the proof of the main result of [3] 

for each set of words whose length is between the bounds 

We d e n o t e  t h i s  s e t  o f  w o r d s  b y  [~ . 

We will point out only the the changes which one must make in Lemma 3 of [3]. For the 

restriction of ~ to ~K this lemma will be true for M and R such that 

~ : ~ +  i= ~ + ~ L  ~R = 

(see [3]), while in part (a) of Lemma 3 [3] in place of the value ~ one may take the time 

of processing words of length ~K in [K" 

The rest of the proof proceeds without any essential change. As a result one obtains 

the fact that for sufficiently large K , the processing of some words of length gK in [K 

takes a time greater than gK (one uses the fact that the set of gK is unbounded), which 

contradicts the assumption that the recognizing system acts in real time. 

Note that for the case of uniform machines (see [2]) this proof of Lemma 2 is not valid, 

since in part (a) of Lemma3 of[3] forthe uniform case, the time of processing all input 

words exceeds ~ b:4 GL ' and this bound may be very large. Hence there is no way to obtain a 

sufficient time bound on the processing of words of length ~n in IK" 

3. Construction of the Desired Predicate 

We will construct a locally complex function P whose arguments are words on the 

alphabet {0,II, whosevalues areelements of thissame alphabet,and whichis computableby some 

Kolmogoroff algorithm in real time. 

Suppose that it takes a fixed Kolmogoroff algorithm T~ the time K' to construct the 

tree P(~] (see Sec. i), and suppose that the sequence {Tbl~_0 is monotone increasing in L . 

We will define F(A) for any word A in the binary alphabet. We set P(AI=~ if 

~:o ~+2 IAI< ~=oT~ § 

for some ~ ; if 

gL-~ J-1 TL + gL 
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for some I, then P(A~ is the last letter in the word D p(bl(Bl where 

A = C B I Cl = T., s b-t-~l 

for some word 6 on {0, i}. 

The desired predicate P is given as follows: P(AI(---->P(AI=O, where A is a word on 

{0~ 
It is not hard to construct a Kolmogoroff algorithm K recognizing P in real time. 

, ~ ; t  T '* ~ b For each I, from the moment of time ~=0 ~ ~ until the moment ~ =0]~L + 2~L'-~ with the 

help of the algorithm K' the algorithm K constructs the tree T{L] . Then if the input 

supplies a word B of length ~, thealgorithm K~ avoidsthe constructionof the tree P(L! 

along the branch &8 and yields the word D p(Ll(B) . In the time interval ~'~=0 ~ + ~ to 

~' ]~t+~L-~ the output of K is i. t=0 

LEMMA 3, The function ~ is locally complex. 

Proof. In the definition of locally complex function, we take ~K as SK and TK 

as ~K (see Sec. 2). 

We take as the function ~ (see Sec. 2) the function whose value on the word A is 

the last letter of the word Dp0~(A 1 , where I, is a number such that IAl. ~ Z, L . (This definition 

does not depend on L, since each tree P(K] is an initial subtree of P(RI for g >. ~ and 

thus for any word A on {0, i} with JAI-~ g~ , D pIKI(A]=DpIn)(A] . ) We will show that this func- 

tion is almost complex (see Sec. 2). 

Let A and 6 be words on {0, i} such that 16I:~ K and IAI:R~ ~*~. Take ~ with 

~h>~ (~+~K+~ As @ and [o (in the definition of almost complex function in Sec. 2) 

we may take 0 and 1 respectively, i.e., as we will prove below, any :---A,G equivalence 

class does not contain more than one element~ Suppose otherwise~ 

Let X~ and X z be words such that ~ =--ACX~ and X~ ~ X z . This means that if DrILI(AX6)= 
XIC and D pigl(~XgCl= A%zC for some words A' , X,, Xt, such that IAI = IAI and Icl 

=IC'l=g% then r =C'. But this contradicts the semiuniformity of the subtree of depth 

gK+~ whose root is the root of the branch &A" The semiuniformity of this subtree follows 

from the uniformity of the tree p(l,~ ~ 

Hence we have proved that the function serving as the function ~ in the definition of 

locally complex function is almost complex. Thus it follows that P is locally complex~ 

Lemma 3 is proved. 

THEOREM. There is a predicate not recognizable in real time by any system with poly- 

nomial accessible memory but recognizable in real time by some Kolmogoroff algorithm. 

For the proof we take the predicate P and use Lemmas 2 and 3 and also use the Kolmo- 

goroff algorithm K constructed in this section. 

An analogous assertion may be proved for thepredicate ~ in [6] by using an extension 

of the same method. 

The author does not know whether one can construct an almost complex or complex func- 

tion computable in real time by some Kolmogoroff algorithm.. 
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APPLICATION OF SEPARABILITY AND INDEPENDENCE NOTIONS FOR PROVING 

LOWER BOUNDS OF CIRCUIT COMPLEXITY 

D. Yu. Grigor'ev UDC 518.5:519.1 

This note consists of two independent parts. In the first part the concept of an 

( m,8 )-system for a set of linear forms is introduced, and a lower bound is ob- 

tained for the algebraic complexity of the computation of (m~l -systems on alge- 

braic circuits of a special form. In the second part, the notion of an [ -inde- 

pendent set of boolean functions is introduced and a lower bound is obtained for a 

certain complexity measure for circuits of boolean functions computing [ -inde- 

pendent sets. As a corollary it is shown that the standard algorithm for multi- 

plying ma ~ices or polynomials may be realized by a circuit of boolean functions 

in a way that is optimal with respect to a selected complexity measure. 

In our paper two lower bounds on the complexity of computation of algebraic circuits 

(defined in [i], [2]) are obtained. 

In Sec. 1 a lower bound is found for the computational complexity of a set of linear 

forms (Theorem i). The second bound is given in Theorem 2 in Sec. 2. It follows from this 

theorem that the standard procedures formultiplying multiple-digit numbers and multiplying 

matrices modulo 2 are optimal in a certain sense. 

i. Bounds for (~8~ -Systems of Linear Forms 

i. In thissection wewill consider thequestion of the complexity of algebraic circuits 

for the simultaneous computation of a set of linear forms with complex coefficients in the 

variables ~, ,~ . A set of linear forms may be represented by the matrix of their coef- 

ficients, denoted A below, and the problem reduces to the problem of constructing a circuit 

for the calculation of the product AX where X is the vector of variables ~. ~. 

Translated from Zapiski Nauchykh Seminarov Leningradskogo Otdeleniya Mathematicheskogo 
Instituta im. V. A. Steklova Akad. Nauk SSSR, Vol. 60, pp. 38-48, 1976. Main results presen- 
ted December 12, 1974 and May 29, 1975. 

1450 0090-4104/80/1405-1450507.50 �9 1981 Plenum Publishing Corporation 


