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Abstract

An algorithm is designed to decompose a tropical univariate rational
function into a composition of tropical binomials and trinomials. When
a function is monotone, the composition consists just of binomials. Sim-
ilar algorithms are designed for decomposing tropical algebraic rational
functions being (in the classical language) piece-wise linear functions
with rational slopes of their linear pieces. In addition, we provide a
criterion when the composition of two tropical polynomials commutes
(for classical polynomials a similar question was answered by J. Ritt).

Introduction

We study decomposing tropical univariate rational functions (compositions of
tropical rational functions find applications in deep learning of neural net-
works, see e. g. [8], [12]). A tropical rational function is the tropical quotient
(which corresponds to the subtraction in the classical sense) of two tropical
polynomials. Thus, a tropical rational function is (classically) a piece-wise
linear function with integer slopes of its linear pieces. A tropical root of a
tropical rational function is defined as a point at which the function is not
differentiable.

Relaxing the requirement that the slopes are integers allowing them to be
rationals, we arrive to the concept of tropical algebraic rational functions or
tropical Newton-Puiseux rational functions [4] playing the role of algebraic
functions in tropical algebra. Furthermore, in sections 1, 2 one can consider
real slopes, then the algorithms are supposed to be executed on Blum-Shub-
Smale machines [1].
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In classical algebra the problem of decomposing polynomials, rational and
algebraic functions was elaborated in [2], [6], [3]. In tropical algebra the answer
to the decomposing problem differs essentially from its classical counterpart.
We show that a tropical rational function is a composition of binomials and
trinomials. The similar holds for tropical algebraic rational functions.

In section 1 we introduce tropical monotone rational and algebraic rational
functions and bound the number of tropical roots of compositions of tropical
polynomials, monotone rational functions and rational functions.

In section 2 we design an algorithm which decomposes a tropical alge-
braic function and also a tropical monotone algebraic rational function into a
composition of tropical binomials. In addition, we design an algorithm which
decomposes a tropical algebraic rational function into a composition of trop-
ical binomials and trinomials. Moreover, we provide a bound on the number
of components.

In section 3 decompositions of tropical rational functions (so, with integer
slopes of their linear pieces) are studied. We design an algorithm which de-
composes a tropical monotone rational function into a composition of tropical
monotone binomials and monotone trinomials. Also we design an algorithm
which decomposes a tropical rational function into a composition of tropical
binomials and trinomials. In addition, a criterion is provided, when a trop-
ical monotone trinomial is decomposable. Finally, bounds on the number of
components are given.

In section 4 we prove (Theorem 4.2) that the composition of two tropical
polynomials f, g without free terms commutes: f ◦ g = g ◦ f iff there is
a common fixed point x0 (perhaps, x0 = ∞) for both f, g, i. e. f(x0) =
g(x0) = x0 and there exist a tropical increasing algebraic rational function
h and integers a, b ≥ 1, k, m ≥ 0 such that either f = hk, g = hm or f =
ax+ x0(1− a), g = bx+ x0(1− b) on the interval (−∞, x0] (similar conditions
hold on the interval [x0, ∞)), unless f = x + c1, g = x + c2, x ∈ R for some
c1, c2 ∈ R. In addition, we provide an example of a one-parametric family
{Tn}n≥2 of (commuting) increasing tropical rational functions on the interval
[0, ∞) such that Tn◦Tm = Tmn and which do not satisfy the above conclusion of
Theorem 4.2 in general. For classical polynomials the answer to commutativity
was given in [10], [11] (more recent generalizations and further references one
can find in [9]), in which commuting Chebyshev polynomials play a crucial
role.

In section 5 we introduce tropical polynomial (respectively, Laurent poly-
nomial and rational) parametrizations of polygonal lines. We show that any
polygonal line admits a tropical rational parametrization and provide criteria
when it does admit a tropical polynomial (respectively, Laurent polynomial)
parametrization.
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1 Tropical monotone rational functions

Recall (see e. g. [7]) that a (univariate) tropical polynomial has a form f =
min0≤i≤d{ix + ai}, ai ∈ R ∪ {∞}. Linear functions ix + ai, 0 ≤ i ≤ d are
called tropical monomials. So, the minimum plays the role of the addition in
tropical algebra, while the addition plays the role of the multiplication. Thus,
f is a convex piece-wise linear function with non-negative integer slopes of the
edges of its graph (sometimes, slightly abusing the terminology we call them
the edges of f). We consider the natural ordering of the edges from the left to
the right. A point x ∈ R is a tropical root of f if the minimum in f is attained
at least for two linear functions ix + ai, 0 ≤ i ≤ d. In other words, tropical
roots of f are the points at which f is not differentiable.

A tropical rational function is a difference (which plays the role of the di-
vision in tropical algebra) of two tropical polynomials. It is a piece-wise linear
function. So, its graph consists of several edges. Conversely, any continuous
piece-wise linear function with integer slopes of its linear pieces (edges of its
graph) is a tropical rational function (cf. [4] where one can find further refer-
ences). As the roots of a tropical rational function we again mean the points
at which the function is not differentiable.

If g, h are tropical rational functions with p, q tropical roots, respectively,
then (see [5]) the number of the roots of
• min{g, h} is at most p + q + 1;
• g + h or g − h is at most p + q.
In this paper we study compositions g ◦h (being tropical rational functions

as well). Note that if g, h are tropical polynomials then g ◦ h is also a tropical
polynomial. If s1, . . . , sk are consecutive (integer) slopes of (the linear pieces
of) a tropical rational function g then g is a tropical polynomial iff s1 > · · · >
sk ≥ 0.

In a tropical monotone increasing (or decreasing, respectively) rational
function g its slopes are positive (respectively, negative). Note that any trop-
ical polynomial min1≤i≤d{ix + ai} without free term is monotone increasing.

One can directly verify the following proposition.

Proposition 1.1 If g, h are tropical monotone rational functions with p, q
tropical roots, respectively, then the tropical monotone rational function g ◦ h
has at most p+q tropical roots. Moreover, if on an interval [a, b] ⊂ R function h
is linear with a slope s, and g is linear with a slope l on the interval [h(a), h(b)]
(respectively, [h(b), h(a)]) when h increases (respectively, decreases) then g ◦ h
is linear on the interval [a, b] with the slope sl.

Remark 1.2 In general, the number of tropical roots of the composition g◦
h of tropical rational functions does not exceed pq+p+q. Moreover, if s0, . . . , sp
(respectively, t0, . . . , tq) are the slopes of (the graph of) g (respectively, h) listed

3



with possible repetitions (multiplicities), then the slopes of g ◦ h are among
sitj, 0 ≤ i ≤ p, 0 ≤ j ≤ q.

For a tropical rational function g = max{−2x + 1, 2x − 1} the number of
the tropical roots of k iterations of gk := g ◦ · · · ◦ g is 2k − 1 [8] (see also [5]).

Admitting rational coefficients in mini{bix + ai}, 0 ≤ bi ∈ Q, we arrive to
the concept of tropical algebraic functions (or tropical Newton-Puiseux polyno-
mials) [4]. Respectively, we consider tropical algebraic rational functions being
differences of tropical algebraic functions [4].

Remark 1.3 The above statement in Proposition 1.1 on the slopes of trop-
ical rational functions holds for tropical algebraic rational functions as well with
the difference that now we admit rational slopes rather than just integers. The
above bounds on the number of tropical roots also hold literally for tropical
algebraic rational functions.

2 Decomposing tropical algebraic rational

functions

In this section we consider tropical algebraic rational functions. As a
tropical algebraic rational binomial we mean a function of the form either
min{b1x + a1, b2x + a2}, 0 6= b1, b2 ∈ Q or max{b1x + a1, b2x + a2}. In the
geometric language the former function is a convex piece-wise linear function
with two (unbounded) edges (and we call it a tropical algebraic binomial), while
the latter one is concave. If b1, b2 > 0 then in both cases the functions are
monotone increasing.

Proposition 2.1 (i) There is an algorithm which for a tropical algebraic func-
tion f with k tropical roots yields a decomposition of f into k tropical algebraic
binomials;

(ii) let f be a tropical monotone algebraic rational function with k tropical
roots. Then the algorithm yields a decomposition of f into k tropical monotone
algebraic rational binomials.

Remark 2.2 Due to Proposition 1.1 and taking into the account that each
tropical algebraic rational binomial has a single tropical root, we conclude that
in Proposition 2.1 one can’t take less than k components.

Proof. The proofs for both items (i), (ii) proceed similarly. Let f have
consecutive slopes s0, . . . , sk of its linear pieces. Recall that s0 > s1 > · · · >
sk ≥ 0 in case (i) and s1, . . . , sk > 0 in case (ii). Denote by xl the l-th tropical
root of f, 1 ≤ l < k. Take a (piece-wise linear) function h with k slopes

s0.s1, . . . , sl−1, sl+1 · sl−1/sl, . . . , sk · sl−1/sl
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coinciding with f for x ≤ xl and replacing f by the composition with the
linear function ((sl−1/sl)x+ f(xl)(1− sl−1/sl)) ◦ f for x ≥ xl. Thus, h has the
tropical roots x1, . . . , xl−1, xl+1, . . . , xk. The described procedure replacing f
by h we call straightening: one tropical root (at xl) disappears.

Take a tropical algebraic rational binomial g coinciding with the identity
function x→ x for x ≤ f(xl) and with the linear function (sl/sl−1)x+f(xl)(1−
sl/sl−1) for x ≥ f(xl). Then f = g ◦ h. Note that in case (i) g is a tropical
algebraic binomial since sl−1/sl < 1.

Proceeding by induction on k we complete the proof of the Proposition. 2

Remark 2.3 Observe that each tropical root of f corresponds to a suit-
able component in a decomposition of f . Thus, by choosing (in the proof of
Proposition 2.1 above) the tropical roots in different orders, we obtain k! ”com-
binatorially different types” of decompositions of f .

Now let f be a tropical algebraic rational function, our goal is to design
an algorithm which decomposes f . Let for definiteness the first edge of f with
a non-zero slope have a positive slope. Consider tropical roots x of f such
that f has an edge with a negative slope to the right of x. If there does not
exist such x then f is (non-strictly) monotone increasing, and we proceed to
study the monotone case later. Among such x pick x0 (perhaps, if not unique
then pick any of them) with the maximal value f(x0). Take a tropical root
x1 > x0 of f with the minimal value f(x1), provided that there is a tropical
root greater than x0. We have f(x1) < f(x0), f([x0, x1]) = [f(x1), f(x0)] in
case when x1 does exist and f([x0, ∞)) = (−∞, f(x0)], otherwise. In any case
max{f(x) : x ∈ (−∞, x0]} = f(x0).

First we consider the case when f(x) ≤ f(x0) for all x ≥ x1, provided that
there is a tropical rootof f greater than x0 (or f(x) ≤ f(x0) for all x ≥ x0 in
case when there are no tropical roots greater than x0). Note that in this case
f(x) ≤ f(x0) for all x ≥ x0 due to the choice of x0.

If both adjacent to x0 edges of f have non-zero slopes then the edge to the
left from x0 has a positive slope s0 > 0, while the edge to the right from x0

has a negative slope s1 < 0 (due to the choice of x0). Take as g a tropical
algebraic rational binomial which coincides with the identity function x→ x for
x ≤ f(x0) and with a linear function (s1/s0)x+f(x0)(1−s1/s0) for x ≥ f(x0).
So, g is a tropical non-monotone algebraic rational binomial.

As h take a tropical algebraic rational function which coincides with f for
x ≤ x0 and coincides with the composition with the linear function ((s0/s1)x+
f(x0)(1 − s0/s1)) ◦ f for x ≥ x0. Then f = g ◦ h. By a block of edges of f
we mean a sequence of consecutive edges of the equal signs of their slopes
(ignoring edges with zero slopes). Observe that h has one less block of edges
than f does. Thus, by passing from f to h we straighten f at point x0.
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Otherwise, if one of adjacent to x0 edges has zero slope then as g take a
tropical binomial coinciding with the identity function x → x for x ≤ f(x0)
and with the linear function −x + 2f(x0) for x ≥ f(x0). As h take a tropical
algebraic rational function which coincides with f for x ≤ x0 and with the
composition with the linear function (−x+ 2f(x0))◦ f for x ≥ x0. Then again
f = g ◦h, and h has one less block of edges than f does. On the other hand, h
has the same number of tropical roots as f does, so one does not straighten a
piece-wise linear function at a point if one of two adjacent edges to this point
has zero slope.

Now we proceed to the case when f(x) takes a value greater than f(x0)
for some x > x1 (in this case there are tropical roots of f greater than x0,
therefore, x1 does exist). Then min{f(x) : x ≥ x0} = f(x1).

A tropical regular algebraic rational trinomial is a piece-wise linear function
with 3 edges having rational non-zero slopes. If the slopes are decreasing or
increasing positive integers we talk about a tropical trinomial.

Construct the following tropical algebraic rational functions h, g. If both
the edge of f with the right (and respectively, the left) end-point (x0, f(x0)) has
a non-zero slope s+ (respectively, a non-zero slope s−) then h on the interval
(−∞, x0] coincides with the composition (−(s−/s+)x + f(x0)(1 + s−/s+)) ◦
f . Note that s+ > 0, s− < 0. As g take a function which on the interval
(−∞, f(x0)] coincides with the linear function −(s+/s−)x+f(x0)(1+s+/s−).
We have max{h(x) : x ≤ x0} = f(x0) and g((−∞, f(x0)]) = (−∞, f(x0)]. In
case if s+ · s− = 0 then h on the interval (−∞, x0] coincides with f , and g on
the interval (−∞, f(x0)] coincides with the identity function x→ x.

On the interval [x0, x1] the function h in both cases coincides with the com-
position (−x+2f(x0))◦f , and g on the interval [f(x0), 2f(x0)−f(x1)] coincides
with the linear function−x+2f(x0). Then h([x0, x1]) = [f(x0), 2f(x0)−f(x1)]
and g([f(x0, 2f(x0)− f(x1)]) = [f(x1), f(x0)].

Finally, define h on the interval [x1,∞) and g on the interval [2f(x0) −
f(x1), ∞). Similar to the consideration above of the interval (−∞, x0] denote
by t− (respectively, t+) the slope of the edge of f with the right (respectively,
the left) end-point (x1, f(x1)). If t− · t+ 6= 0 (in this case t− < 0, t+ > 0 due to
the choice of x1) then h on the interval [x1,∞) coincides with the composition
with the linear function (−(t−/t+)x + 2f(x0) + f(x1)(t−/t+ − 1)) ◦ f . In this
case g on the interval [2f(x0) − f(x1), ∞) coincides with the linear function
−t+/t−x + f(x1) + t+/t−(2f(x0)− f(x1)). Then min{h(x) : x1 ≤ x <∞} =
2f(x0)− f(x1) and g([2f(x0)− f(x1), ∞)) = [f(x1), ∞).

Otherwise, if t− · t+ = 0 then h on the interval [x1, ∞) coincides with the
composition (x+2f(x0)−2f(x1))◦f , and g on the interval [2f(x0)−f(x1), ∞)
coincides with the linear function x − 2f(x0) + 2f(x1). In this case again
min{h(x) : x1 ≤ x < ∞} = 2f(x0) − f(x1) and g([2f(x0) − f(x1), ∞)) =
[f(x1), ∞). Thus, f = g ◦ h.
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Observe that h has two less blocks of edges than f does. Also note that x
is a tropical root of h with the adjacent to x edges of h with the equal signs
of their slopes iff x is a tropical root of f satisfying the same property (we call
such x a non-extremal tropical root of h because x is not a local extremal of
h). In addition, the numbers of edges with zero slope are the same for f and
for h.

Thus, applying two described decomposition procedures to f and obtaining
g to be either a tropical non-monotone algebraic rational binomial or a tropical
regular algebraic rational trinomial, while it is possible, we arrive to a tropical
algebraic rational function f0 which is non-decreasing, so the slopes of its edges
are non-negative. Thus,

f = g1 ◦ · · · ◦ gk ◦ f0 (1)

where each of g1, . . . , gk is either a tropical non-monotone algebraic rational
binomial (their number among g1, . . . , gk denote by k2) or a tropical regular
algebraic rational trinomial (their number denote by k3 := k− k2). Therefore,
k2 + 2k3 equals the number of blocks of edges of f .

Now take a non-extremal tropical root x4 of f0. Let s− > 0 (respectively,
s+ > 0) be the slope of the adjacent to x4 left edge (respectively, right edge) of
f0. Denote by g(1) a tropical monotone increasing algebraic rational binomial
which coincides with the identity function on the interval (−∞, f0(x4)] and
which coincides with the linear function (s+/s−)x + f(x0)(1 − s+/s−) on the
interval [f0(x4), ∞). Denote by h0 a tropical non-decreasing algebraic rational
function which coincides with f0 on the interval (−∞, x4] and which coincides
with the composition ((s−/s+)x+f0(x4)(1−s−/s+))◦f0 on the interval [x4, ∞).

Then f0 = g(1) ◦h0 and h0 has no tropical root at x4, while having all other
tropical roots of f0, so h0 is a straightening of f0. Applying the just described
procedure to all non-extremal tropical roots of f0, we obtain a decomposition

f0 = g
(1)
1 ◦ · · · ◦ g

(1)
k1
◦ f (1) (2)

where each of g
(1)
1 , . . . , g

(1)
k1

is a tropical increasing algebraic rational binomial.

Every second edge of f (1) has zero slope, and the number k0 of edges with
zero slope of f (1) equals the same number of f . Observe that k1 equals the
number of non-extremal tropical roots of f (and also equals the number of
non-extremal tropical roots of f0). Hence k1 + k2 + 2k3 does not exceed the
number of edges with non-zero slopes of f .

As a tropical singular algebraic rational trinomial we mean a trinomial
whose middle edge has zero slope. Slightly abusing the terminology, we admit
singular trinomials without one or two edges with non-zero slopes.

We are looking for a decomposition

f (1) = g
(0)
k0
◦ · · · ◦ g(0)1 (3)
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where g
(0)
i , 1 ≤ i ≤ k0 is a tropical singular algebraic trinomial. To decompose

take the left-most interval [x0, x1] on which f (1) is constant, in other words,
the edge of f (1) on [x0, x1] has zero slope. It can happen that x0 = −∞, in

this case some of the following considerations become void. Define g
(0)
1 on the

interval (−∞, x0] as the identity function and on the interval [x0, x1] as the
constant function with the value x0.

Let f (1) on the interval (−∞, x0] equal a linear function sx + r (so, s
is the slope of the left-most edge of f (1)), in particular sx0 + r = f (1)(x0).

Define g(0) (later we’ll get that g(0) = g
(0)
k0
◦ · · · ◦ g(0)2 ) on the interval (−∞, x0]

as the linear function sx + r. Therefore, g(0) ◦ g(0)1 on the interval (−∞, x0]
coincides with f (1). The same coincidence holds on the interval [x0, x1] as
well. Let the edge of f (1) with the left end-point (x1, f

(1)(x1) = sx0 + r)

have a slope p. Then define g
(0)
1 on the interval [x1, ∞) as the linear function

(p/s)x+x0−(p/s)x1. Also define g(0) on the interval [x0, ∞) as the composition

f (1) ◦ ((s/p)x− (s/p)x0 + x1). Then f (1) = g(0) ◦ g(0)1 .
Now we observe that g(0) is a continuous non-decreasing piece-wise linear

function: we have constructed it by gluing at x0 two non-decreasing piece-wise
linear functions both having the value sx0 + r = f (1)(x0) = f (1)(x1) at x0.
Moreover, the slope of the edge of g(0) with the right end-point (x0, f

(1)(x0))
equals s which coincides with the slope of the edge of g(0) with the left end-
point (x0, f

(1)(x0)). Therefore, g(0) has no tropical root at x0 (so, g(0) is a
straightening of f (1)), and g(0) is of a similar shape as f (1), i. e. g(0) is a
non-decreasing piece-wise linear function whose every second edge has zero
slope. On the other hand, g(0) has one less edge with zero slope than f (1) does.
Continuing in this way, we construct a required decomposition (3).

Combining (1), (2) and (3) we complete the proof of the following theorem.

Theorem 2.4 There is an algorithm which decomposes a tropical algebraic
rational function

f = g1 ◦ · · · ◦ gk ◦ g(1)1 ◦ · · · ◦ g
(1)
k1
◦ g(0)k0

◦ · · · ◦ g(0)1 (4)

where each gi, 1 ≤ i ≤ k is either a tropical regular algebraic rational trinomial
or a tropical non-monotone algebraic rational binomial (cf. (1)), each g

(1)
j , 1 ≤

j ≤ k1 is a tropical monotone algebraic rational binomial (cf. (2)), and each

g
(0)
l , 1 ≤ l ≤ k0 is a tropical singular algebraic trinomial (cf. (3)).

Moreover, if k3 is the number of tropical regular algebraic rational trinomi-
als, and k2 is the number of tropical non-monotone algebraic rational binomials
in (4), so k3 +k2 = k then 2k3 +k2 is the number of blocks of edges of f of the
equal (non-zero) signs of their slopes. The number 2k3+k2+k1 does not exceed
the number of edges of f with non-zero slopes, finally k0 equals the number of
edges with zero slopes.
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Remark 2.5 The number of tropical roots of f is greater or equal to k1 +
2k0, and on the other hand, is less or equal to 2k3 + k2 + k1 + 2k0, the latter
number also equals the total number of tropical roots in the components of f
from (4) (cf. Remark 1.2).

3 Tropical rational functions

In this section we study decompositions of tropical rational functions, we recall
that the slopes of edges of a piece-wise rational function f are integers (unlike
the section 2 in which the slopes could be rationals).

Theorem 3.1 (i) There is an algorithm which for a tropical monotone
rational function f yields its decomposition into tropical monotone binomials
and tropical monotone trinomials. The number of components does not exceed
the number of tropical roots of f (cf. Proposition 2.1 and Remark 2.2);

(ii) there is an algorithm which decomposes a tropical rational function

f = g1 ◦ · · · ◦ gk ◦ h1 ◦ · · · ◦ hm ◦ g(0)k0
◦ · · · ◦ g(0)1

(cf. (4)) where each gi, 1 ≤ i ≤ k is either a tropical non-monotone rational
binomial with ±1 slopes or a tropical non-monotone rational trinomial with
±1 slopes (cf. (1)), each hj, 1 ≤ j ≤ m is either a tropical regular monotone

binomial or a tropical regular monotone trinomial, and each g
(0)
l , 1 ≤ l ≤ k0

is a tropical singular monotone trinomial. The number of binomials among
g1, . . . , gk plus the double number of trinomials among g1, . . . , gk does not exceed
the number of blocks of edges of f (cf. Theorem 2.4). The number m does not
exceed the number of edges of f , and the number k0 equals the number of edges
of f with zero slopes (again cf. Theorem 2.4 and (3));

(iii) let f be a tropical monotone rational function (respectively, a tropical
polynomial) with the slopes of its edges a0, . . . , an ≥ 1 (respectively, a0 > . . . >
an ≥ 1) and denote by qi, 1 ≤ i ≤ n the denominator of the irreducible fraction
ai/ai−1. Then f is a composition of tropical rational binomials (respectively,
tropical binomials) iff (q1 · · · qn)|a0.

Remark 3.2 If f satisfies the latter condition in (iii) we call f completely
decomposable.

This condition in (iii) is equivalent to a more symmetric one: for any
m ≥ 1 and j ≥ 0 such that m + 2j < n it holds∏

0≤i≤j

am+2i |
∏

0≤i≤j+1

am+2i−1.

In particular, for n = 2 (trinomials), the condition in (iii) for a0, a1, a2 is
equivalent to a1|(a0a2).
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Proof. (i). If an increasing f has at least 4 edges then take any its tropical
root x0 being neither the left-most nor the right-most. Define h to coincide
with f on the interval (−∞, x0] and g to coincide with the identity function
on the interval (−∞, f(x0)]. Then define h on the interval [x0, ∞) to coincide
with the linear function x+f(x0)−x0, and define g on the interval [f(x0), ∞)
to coincide with the composition f ◦ (x− f(x0) + x0). Then f = g ◦ h.

Continuing in this way, applying further the described construction to g, h
we complete the proof of (i).

(ii). First, similar to the proof of Theorem 2.4 one represents (by means of
straightening) f = g ◦h (assume w.l.o.g. that the first edge of f with non-zero
slope has a positive slope), where g is either a tropical non-monotone binomial
with the slopes of its edges 1 and −1 or a tropical trinomial with the slopes
1, −1, 1, while h being a tropical rational function with less number of blocks
of edges than f .

Continuing in this way, while it is possible, we arrive to a tropical non-
decreasing rational function f (0) such that f = g1 ◦ · · · ◦ gk ◦ f (0) (cf. (1)).
Applying to f (0) the constructions from the proof of Theorem 2.4 (cf. (3)) and
from the proof of Theorem 3.1 (i), we complete the proof of (ii).

(iii). The proofs for both cases f being a tropical increasing rational func-
tion or a tropical polynomial go similarly.

Let f = g1 ◦ · · · ◦ gk where each gi, 1 ≤ i ≤ k is a tropical increasing
rational binomial (respectively, a tropical binomial) with slopes bi, ci, 1 ≤ i ≤
k (respectively, bi > ci). Denote by ri, 1 ≤ i ≤ k the unique tropical root of
gi. Partition R into intervals with the end-points (gi+1 ◦ · · · ◦ gk)−1(ri), 1 ≤
i ≤ k. In case of tropical polynomials f all these end-points are the tropical
roots of f . In case of tropical increasing rational functions f all gi for which
(gi+1 ◦ · · · ◦ gk)−1(ri) being not a tropical root of f , give a contribution into
g1◦· · ·◦gk by multiplying all the slopes of its edges on the intervals by the same
integer, so w.l.o.g. one can assume that each (gi+1 ◦ · · · ◦ gk)−1(ri), 1 ≤ i ≤ k
is a tropical root of f .

For 1 ≤ j ≤ n take the set Ij of 1 ≤ i ≤ k such that (gi+1 ◦ · · · ◦ gk)−1(ri)
is j-th root tj of f . Then aj/aj−1 =

∏
i∈Ij(ci/bi). Therefore, qj|

∏
i∈Ij bi. Since∏

i bi = a0, we conclude that (q1 · · · qn)|a0.
Conversely, let (q1 · · · qn)|a0. Put integers bj := qj, 1 ≤ j ≤ n − 1, bn :=

a0/(b1 · · · bn−1) and cj := bjaj/aj−1, 1 ≤ j ≤ n.
Construct gn, . . . , g1 recursively. As a base of recursion take gn such that

its unique tropical root coincides with tn (observe that gn is defined uniquely
up to an additive shift, in other words, one can replace gn by gn + e, e ∈ R).
Assume that gn, . . . , gm+1 are already constructed by recursion. Then take gm
such that its unique tropical root equals (gm+1 ◦ · · · ◦ gn)(tm). At the very last
step of recursion we adjust g1 by a suitable additive shift to make g1 ◦ · · · ◦ gn
coincide with f at one (arbitrary) point. Hence f = g1 ◦ · · · ◦ gn. 2
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Remark 3.3 The algorithms designed in sections 2, 3 have polynomial
complexity since after each procedure yielding a component (cf. (1), (2), (3))
either the number of blocks of edges or the number of edges drops at least by
one.

4 Tropical polynomials with commuting com-

position

Let f, g be tropical polynomials without free terms (some statements below
hold also for more general tropical increasing algebraic rational functions). In
this section we give a criterion when f ◦ g = g ◦ f . Note that the inverse
f−1 (i. e. f ◦ f−1 = Id equals the identity function) is a tropical increasing
algebraic rational function. Denote by fk := f ◦ · · · ◦ f the k times iteration
of f . We agree that f 0 := Id. Note that tropical increasing algebraic rational
functions constitute a group with respect to the composition.

Remark 4.1 Let f, g be tropical increasing algebraic rational functions
and f ◦ g = g ◦ f hold. We call x a fixed point of f if f(x) = x. The set
Ff ⊂ R of fixed points is a finite union of disjoint closed intervals {[xi, yi]}i
(including isolated points, i. e. xi = yi). Since f ◦ g(x) = g ◦ f(x) = g(x) we
conclude that g(Ff ) = Ff , therefore g(xi) = xi, g(yi) = yi for all i since g is
increasing.

Observe that either g(x) = x for any point yi < x < xi+1, either g(x) < x
for any point yi < x < xi+1 or g(x) > x for any point yi < x < xi+1. Indeed,
otherwise consider the set of fixed points Fg ∩ [yi, xi+1], and arguing as above
in the previous paragraph we get f(Fg ∩ [yi, xi+1]) = Fg ∩ [yi, xi+1], again
f(x) = x for any end-point of an interval of Fg ∩ [yi, xi+1], which contradicts
the choice of yi, xi+1, unless Fg ⊃ (yi, xi+1), in other words g(x) = x for any
point yi < x < xi+1. We allow intervals with ±∞ end-points.

In the case of tropical polynomials f, g without free terms there is at most
one end-point of the intervals of fixed points of f, g, which we denote by x0,
due to the convexity of f, g and taking into the account that the slopes of edges
of f, g are greater or equal than 1. Thus, there are at most two intervals
(−∞, x0], [x0, ∞) or just one interval (−∞, ∞) when x0 =∞.

Theorem 4.2 Tropical polynomials f, g commute: f ◦ g = g ◦ f iff either
x0 =∞ and f = x+c1, g = x+c2, x ∈ R for some c1, c2 ∈ R or −∞ < x0 <∞
and the following is valid.

There exists a tropical increasing algebraic rational function h such that
h(x0) = x0 (see Remark 4.1) and
• either f = hp, g = hq for suitable non-negative integers p, q
• or f = ax + x0(1− a), g = bx + x0(1− b) for suitable integers a, b ≥ 1
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holds on the interval [x0, ∞). Similarly,
• either f = hk, g = hm for suitable non-negative integers k, m
• or f = dx + x0(1− d), g = ex + x0(1− e) for suitable integers d, e ≥ 1

holds on the interval (−∞, x0],

Remark 4.3 Note that h is not necessary a tropical polynomial.

Proof. In one direction, namely when either such appropriate h does exist
or c1, c2 do exist, obviously f ◦ g = g ◦ f holds.

From now on let f ◦ g = g ◦ f . If f(x) = x (respectively, g(x) = x) for
any x ≥ x0 one can put h := g, f = h0 (respectively, h := f, g = h0) on the
interval (x0, ∞). Thus, from now on we suppose that f(x) > x, g(x) > x
for any x > x0 (cf. Remark 4.1). We construct (increasing) h on the interval
(−∞, x0) and separately on the interval (x0, ∞) such that h(x0) = x0 and
after that glue them together and obtain a tropical increasing algebraic rational
function h required in Theorem 4.2.

Lemma 4.4 Let f, g be tropical increasing algebraic rational functions,
f ◦ g = g ◦ f and for some point yi < x < xi+1 it holds f(x) = g(x). Then f
coincides with g on the interval (yi, xi+1).

Proof of Lemma 4.4. Since neither f nor g has a fixed point in the
interval (yi, xi+1) one can assume for definiteness that f(y) > y, g(y) > y for
any yi < y < xi+1 (see Remark 4.1). For each integer k we have f(fk(x)) =
g(fk(x)). The increasing sequence x < f(x) < f 2(x) < · · · tends to xi+1 taking
into the account that Ff ∩ (yi xi+1) = ∅. Therefore, the right-most edges of f
and g on the interval (yi, xi+1) coincide. Suppose that f and g do not coincide
on the interval (yi, xi+1).

Take the left-most point z0 ∈ (yi, xi+1) such that f(y) = g(y) for any z0 ≤
y < xi+1. Hence on a sufficiently small interval [z, z0] function f (respectively,
g) is linear ax − az0 + f(z0) (respectively, bx − bz0 + f(z0)) and a 6= b. Since
xi+1 > f(z0) = g(z0) > z0 and due to the choice of z0 there exists a linear
function cx+d such that on a sufficiently small interval [z, z0] the composition
f ◦ g coincides with the linear function cbx − cbz0 + cf(z0) + d, while the
composition g ◦ f on [z, z0] coincides with the linear function cax − caz0 +
cf(z0) + d, which contradicts to the commutativity f ◦ g = g ◦ f and proves
Lemma 4.4. 2

Fix an interval (yi, xi+1) for the time being and denote by Tf the set of
tropical roots of f . We considered the case when f(x) = x for any x ∈ (yi, xi+1)
or when g(x) = x for any x ∈ (yi, xi+1) above, so we assume that either
f(x) > x for any x ∈ (yi, xi+1) or f(x) < x for any x ∈ (yi, xi+1), and
either g(x) > x for any x ∈ (yi, xi+1) or g(x) < x for any x ∈ (yi, xi+1)
(cf. Remark 4.1). First, we study the case (Tf ∪ Tg) ∩ (yi, xi+1) = ∅. Since
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g(yi) = f(yi) = yi, g(xi+1) = f(xi+1) = xi+1 we conclude that one or both
end-points of the interval (yi, xx+1) equal ±∞.

When both yi = −∞, xi+1 =∞, we have f = x + c1, g = x + c2 for some
c1, c2 ∈ R.

If yi ∈ R, xi+1 = ∞ (the case yi = −∞, xi+1 ∈ R is analyzed in a similar
way) then f (respectively, g) coincides on the interval (yi, ∞) with a linear
function ax−ayi +yi (respectively, bx− byi +yi) for suitable rationals a, b > 0
which establishes Theorem 4.2 in the case (Tf ∪ Tg) ∩ (yi, xi+1) = ∅.

From now on we again assume f, g to be tropical polynomials and let
(Tf ∪ Tg) ∩ (−∞, x0) 6= ∅ (cf. Remark 4.1).

Lemma 4.5 (i) If h1, h2 are tropical algebraic rational functions and x ∈
Th1◦h2 then either x ∈ Th2 or h2(x) ∈ Th1. For tropical polynomials f, g the
converse is true: if either x ∈ Tg or g(x) ∈ Tf then x ∈ Tf◦g;

(ii) let f ◦ g = g ◦ f . If x ∈ Tg then either f−1(x) ∈ Tg or g ◦ f−1(x) ∈ Tf ;
(iii) let f ◦ g = g ◦ f . If x ∈ Tf \ Tg then g(x) ∈ Tf .

Proof of Lemma 4.5. (i). For the converse statement the convexity of
f, g is used.

(ii). Denote y := f−1(x). Due to (i) y ∈ Tg◦f , hence either y ∈ Tg or
g(y) ∈ Tf again due to (i) and taking into the account that f ◦ g = g ◦ f ;

(iii) Since due to (i) x ∈ Tg◦f = Tf◦g we conclude that g(x) ∈ Tf again by
means of (i). 2

Consider a directed graph G with the nodes being the points from (Tf ∪
Tg)∩ (−∞, x0) and the arrows according to Lemma 4.5 as follows (recall that
G is not empty, the case of empty G was studied above). From every node
x ∈ Tg∩(−∞, x0) there is an arrow labeled by f−1 to the node f−1(x), provided
that f−1(x) ∈ Tg, and there is an arrow labeled by g◦f−1 to the node g◦f−1(x),
provided that g ◦ f−1(x) ∈ Tf (observe that f−1(x), g ◦ f−1(x) ∈ (−∞, x0)).
In addition, there is an arrow labeled by g from every node x ∈ Tf \ Tg to the
node g(x) ∈ Tf (again g(x) ∈ (−∞, x0)).

There is a cycle in G (due to Lemma 4.5), let it contain a node x. Denote
by t the composition of the labels of the arrows (starting with x) in this cycle.
Then t(x) = x and one can represent t = gs ◦ f−r (taking into the account
that f ◦ g = g ◦ f) for some non-negative integers s, r at least one of which
being positive. Observe that in fact, s, r > 0 since f(x1) < x1, g(x1) < x1 for
any x1 < x0 (cf. Remark 4.1).

Hence gs(x) = f r(x). Lemma 4.4 implies that gs coincides with f r on
the interval (−∞, x0). Denote n := GCD(s, r), then (gs/n ◦ f−r/n)n = Id
on the interval (−∞, x0). The function u := gs/n ◦ f−r/n is increasing piece-
wise linear. Therefore, one can partition R into a finite number of intervals
(including unbounded ones) such that on each of these intervals [y0, y1] it
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holds u(y0) = y0, u(y1) = y1, and either u(y) > y for any y0 < y < y1, either
u(y) < y for any y0 < y < y1 or u(y) = y for any y0 < y < y1 (cf. Remark 4.1).
Hence u = Id, i. e. gs/n = f r/n on the interval (−∞, x0).

For appropriate positive integers i, j it holds 1 = −i(s/n) + j(r/n). Con-
sider a tropical increasing algebraic rational function h := gj ◦ f−i. Then

hr/n = gjr/n ◦ f−ir/n = gjr/n ◦ g−is/n = g;
hs/n = gjs/n ◦ f−is/n = f jr/n ◦ f−is/n = f

on the interval (−∞, x0).
In a similar way one produces h on the interval (x0, ∞), provided that

x0 <∞. This completes the proof of Theorem 4.2. 2

Remark 4.6 It would be interesting to give a criterion for commuting trop-
ical increasing algebraic rational functions, and more generally, for tropical
non-monotone algebraic rational functions.

Remark 4.7 In fact, one can verify a similar to Theorem 4.2 conclu-
sion for any pair of increasing tropical rational functions f, g with commuting
composition on an interval [yi, xi+1] (cf. Remark 4.1) if any tropical root
z ∈ (yi, xi+1) of g is also a tropical root of f ◦ g. This condition fails in the
next example in which a commuting pair f, g of increasing tropical rational
functions does not satisfy the conclusion of Theorem 4.2.

Example 4.8 We exhibit a one-parametric family {Tn}n≥2 of increasing trop-
ical rational functions with commuting compositions (defined on the interval
[0, ∞), in addition Tn(0) = 0, n ≥ 2) and which do not satisfy the conclusion
of Theorem 4.2.

Fis a natural number k ≥ 2 and a real w > 0. Then the graph of Tn has
three edges with the slopes n, kn, n, respectively, and the tropical roots w/n, w
(this determines Tn uniquely). One can verify that Tn ◦ Tm = Tm ◦ Tn = Tmn.

If there exist integers p, q ≥ 0 such that T p
n = T q

m (cf. Theorem 4.2) then
np = mq. Thus, if for given n, m such p, q do not exist then Tn, Tm do not
satisfy the conclusion of Theorem 4.2.

5 Tropical polynomial and rational

parametrizations

We call a polygonal line L ⊂ Rn with k + 1 intervals a sequence of intervals
with endpoints v1, . . . , vk ∈ Qn such that i-th interval has endpoints vi, vi+1

for 1 ≤ i ≤ k − 1, while unbounded 0-th interval (a ray) has v1 as its right
endpoint, and unbounded k-th interval (a ray) has vk as its left endpoint. The
vector of slopes of i-th interval, 1 ≤ i ≤ k − 1 is defined as (ai,1, . . . , ai,n) :=
vi+1− vi, similarly one can define a vector of slopes (a0,1, . . . , a0,n) of 0-th and
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(ak,1, . . . , ak,n) of k-th intervals, respectively (we assume that the latter two
vectors of slopes are also rational).

We call a function of a form min−d≤i≤d{ai + ix}, ai ∈ R a tropical Lau-
rent polynomial, thus admitting arbitrary integer (not necessary non-negative)
slopes.

We say that tropical rational functions f1, . . . , fn in one variable t provide
a tropical rational parametrization of L if the map (f1, . . . , fn) : R → L is a
bijection and (for definiteness) (f1, . . . , fn)−1(vi) < (f1, . . . , fn)−1(vi+1), 1 ≤
i ≤ k − 1. In particular, {v1, . . . , vk} coincides with the set of all the tropical
roots of f1, . . . , fn, i. e. the points where one of the functions f1, . . . , fn is not
smooth. We suppose w.l.o.g. that one can’t discard any vi, 1 ≤ i ≤ k while
keeping the property of L to be a polygonal line. When f1, . . . , fn are tropical
polynomials (respectively, tropical Laurent polynomials), we talk about trop-
ical polynomial (respectively, tropical Laurent polynomial) parametrization of
L.

In case if L is a subset of a tropical curve one can treat a parametrization
of L as a parametrization of the tropical curve (cf. [4]) since a parametrization
provides a parametric family of solutions of a system of tropical equations.

Example 5.1 Let T ⊂ R2 be a tropical curve (a tropical line) defined by a
tropical polynomial min{x, y, 0}. Then L ⊂ T consisting of two rays {x =
0 ≤ y} ∪ {y = 0 ≤ x} admits a tropical rational parametrization with f1 :=
−min{t, 0}, f2 := −min{−t, 0}.

Proposition 5.2 A polygonal line L has
(i) always a tropical rational parametrization;

(ii) a tropical polynomial parametrization iff ai,j ≥ 0, 0 ≤ i ≤ k, 1 ≤ j ≤ n,
and ai,j = 0 implies al,j = 0 for all l ≥ i;

(iii) a tropical Laurent polynomial parametrization iff
• ai,j < 0 implies ai+1,j < 0;
• ai+1,j > 0 implies ai,j > 0;
• ai,j0 > 0, ai+1,j0 > 0, ai,j < 0, ai+1,j < 0 imply ai,j0/ai,j ≤ ai+1,j0/ai+1,j

for all 0 ≤ i ≤ k − 1, 1 ≤ j 6= j0 ≤ n.

Proof. (i) We have to construct tropical univariate rational functions
f1, . . . , fn. First we construct piece-wise linear functions g1, . . . , gn with ratio-
nal slopes (in [4] such functions are called tropical Newton-Puiseux rational
functions). As a set of tropical roots of g1, . . . , gn we take points 1, . . . , k. The
vector of the values of g1, . . . , gn at point i we put vi, 1 ≤ i ≤ k. Thereby,
g1, . . . , gn are defined on interval [1, k] ⊂ R. To extend g1, . . . , gn to interval
(−∞, 1] (respectively, [k, ∞)) use the vector of the slopes of 0-th (respectively,
k-th) interval of L.
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To proceed to tropical rational functions f1, . . . , fn (so, piece-wise linear
functions with integer slopes), denote by M the least common multiple of all
the denominators of the slopes of g1, . . . , gn (i. e. the slopes of L). As the set
of tropical roots of f1, . . . , fn take points 1/M, . . . , k/M . The vector of the
values at point i/M we put vi, 1 ≤ i ≤ k. In other words, the corresponding
slopes of f1, . . . , fn are obtained from the corresponding slopes of g1, . . . , gn
multiplying by M . Satisfying also the latter condition, one extends f1, . . . , fn
to intervals (−∞, 1/M ] and [k/M, ∞).

(ii) If f1, . . . , fn constitute a tropical polynomial parametrization of L then
since the slopes of each fj, 1 ≤ j ≤ n (being a convex function) are non-
increasing non-negative integers we get the conditions stated in (ii).

Conversely, if the latter conditions are fulfilled one can recursively on i
choose positive rationals c0 = 1, c1, . . . , ck in such a way that ci+1 · ai+1,j ≤
ci · ai,j, 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n taking each ci+1 to be the maximal possible
among satisfying the latter inequalities. Therefore, one can take ci · ai,j, 1 ≤
j ≤ n as the slopes of (Newton-Puiseux polynomials [4], i. e. convex piece-
wise linear functions with rational non-negative slopes) gj, 1 ≤ j ≤ n with the
tropical roots at points 1, . . . , k. Then as at the end of the proof of (i) one
can obtain tropical polynomials fj, 1 ≤ j ≤ n with the non-negative integer
slopes M · ci · ai,j, 0 ≤ i ≤ k, 1 ≤ j ≤ n and with the tropical roots at points
1/M, . . . , k/M . Then f1, . . . , fn provide a required parametrization of L.

(iii) If there exists a tropical Laurent polynomial parametrization f1, . . . , fn
of L then the slopes bi,j, 0 ≤ i ≤ k, 1 ≤ j ≤ n of fj, 1 ≤ j ≤ n, respectively,
being integers fulfil the conditions bi,j ≥ bi+1,j, 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n.
On the other hand, there exist positive rationals c0, . . . , ck such that bi,j =
ci · ai,j, 0 ≤ i ≤ k, 1 ≤ j ≤ n. This entails the conditions from (iii).

Conversely, let the conditions from (iii) be fulfilled. Construct positive
rationals c0 = 1, c1, . . . , ck such that ci · ai,j ≥ ci+1 · ai+1.j, 0 ≤ i ≤ k − 1, 1 ≤
j ≤ n by recursion on i. Assume that c0 = 1, c1, . . . , ci are already constructed.
Take the maximal possible ci+1 > 0 such that ci · ai,j ≥ ci+1 · ai+1.j for all
1 ≤ j ≤ n such that ai,j > 0, ai+1,j > 0. Then for suitable j0 for which
ai,j0 > 0, ai+1,j0 > 0 it holds ci · ai,j0 = ci+1 · ai+1,j0 . For every 1 ≤ j ≤ n
for which ai,j < 0, ai+1,j < 0 the condition from (iii) ai,j0/ai,j ≤ ai+1,j0/ai+1,j

implies ci+1 · ai+1,j ≤ ci · ai,j.
Thus, as in (i), (ii) one first constructs piece-wise linear functions gj, 1 ≤

j ≤ n with rational non-increasing slopes ci · ai,j, 1 ≤ j ≤ n and with the
tropical roots at points 1, . . . , k. Denote by M the common denominator of
these slopes and construct tropical Laurent polynomials f1, . . . , fn with the
slopes obtained from the slopes of gj, 1 ≤ j ≤ n multiplying them by M
and with the tropical roots 1/M, . . . , k/M . Then f1, . . . , fn provide a required
parametrization of L. 2
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Remark 5.3 One can construct the required parametrizations in Proposi-
tion 5.2 within polynomial complexity following the proofs of (i), (ii), (iii).

It would be interesting to extend parametrizations from 1-dimensional
polygonal lines to multidimensional polyhedral complexes.

Acknowledgements. The author is grateful to the grant RSF 16-11-
10075, to MCCME for inspiring atmosphere and to anonymous referees for
useful remarks.

References

[1] L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and real computation.
Springer, 1998.

[2] J. von zur Gathen. Functional decomposition of polynomials: the wild
case. J. Symbolic Comput., 10:437–452, 1990.

[3] J. von zur Gathen, J. Gutierrez and R. Rubio. Multivariate polynomial
decomposition. Appl. Algebra Engrg. Comm. Comput., 14:11–31, 2003.

[4] D. Grigoriev. Tropical Newton-Puiseux polynomials. Lect. Notes Comput.
Sci., 11077:177–186, 2018.

[5] D. Grigoriev and V. Podolskii. Tropical combinatorial Nullstellensatz and
fewnomials testing. Lect. Notes Comput. Sci., 10472:284–297, 2017.

[6] D. Kozen, S. Landau and R. Zippel. Decomposition of algebraic functions.
J. Symbolic Comput., 22:235–246, 1996.

[7] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry:, vol-
ume 161 of Graduate Studies in Mathematics. American Mathematical
Society, 2015.
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