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Abstract

Tropical differential equations are introduced and an algorithm is
designed which tests solvability of a system of tropical linear differential
equations within the complexity polynomial in the size of the system
and in its coefficients. Moreover, we show that there exists a minimal
solution, and the algorithm constructs it (in case of solvability). This
extends a similar complexity bound established for tropical linear sys-
tems. In case of tropical linear differential systems in one variable a
polynomial complexity algorithm for testing its solvability is designed.

We prove also that the problem of solvability of a system of tropical
non-linear differential equations in one variable is NP -hard, and this
problem for arbitrary number of variables belongs to NP . Similar to
tropical algebraic equations, a tropical differential equation expresses
the (necessary) condition on the dominant term in the issue of solvability
of a differential equation in power series.
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Introduction

Tropical algebra deals with the tropical semi-rings Z+ of non-negative integers
or Z+∪{∞} endowed with the operations {min, +}, or with the tropical semi-
fields Z or Z ∪ {∞} endowed with the operations {min, +,−} (see e. g. [6],
[7], [9]).

A tropical linear differential equation is a tropical linear polynomial of the
form

min
i,j
{a(j)

i + x
(j)
i , a} (1)
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where the coefficients a, a
(j)
i ∈ Z+∪{∞}, and a variable x

(j)
i is treated as ”j-th

derivative of xi := x
(0)
i ”.

For a subset Si ⊂ Z+ we define the valuation

V alSi
({j ≥ 0}) := V alSi

({x(j)
i }j≥0) : Z+ → Z+ ∪ {∞}

of variable xi as follows. For each j ≥ 0 take the minimal s ∈ Si (provided
that it does exist) such that s ≥ j and put V alSi

(j) := s − j: in case when
such s does not exist put V alSi

(j) :=∞. We use a shorthand

V alS1,...,Sn := V alS1 × · · · × V alSn : Zn
+ → (Z+ ∪ {∞})n.

Observe that if Xi is a power series in t with the support {ts, s ∈ Si} then

V alSi
(j) is the order ordt(X

(j)
i ) at zero of the j-th derivative X

(j)
i .

We say that S1, . . . , Sn is a solution of the tropical linear differential equa-
tion (1) if the minimum mini,j{a(j)

i + V alSi
(j), a} is attained at least twice or

is infinite (as it is accustomed in tropical mathematics [6], [7]). The latter is
a necessary condition of solvability in power series in t of a linear differential
equation

∑
i,j Ai,j · X(j)

i = A in several indeterminates X1, . . . , Xn. Namely,
the orders of power series coefficients equal ordt(Ai,j) = ai,j, ordt(A) = a and
the support of Xi is Si. More precisely, (1) expresses that at least two lowest
terms of the expansion in power series of the differential equation have the
same exponents, which is similar to that the tropical equations concern the
lowest terms of the expansions in Puiseux series of algebraic equations.

We study solvability of a system of tropical linear differential equations

min
i,j
{a(j)

i,l + x
(j)
i , al}, 1 ≤ l ≤ k (2)

where 1 ≤ i ≤ n, 0 ≤ j ≤ r and for all finite coefficients a
(j)
i,l , al ∈ Z we have

0 ≤ a
(j)
i,l , al ≤M . Thus, the bit-size of (2) is bounded by knr log2(M + 2).

We say that a solution T1, . . . , Tn of (2) is minimal if the inequality
V alT1,...,Tn ≤ V alS1,...,Sn holds pointwise for any solution S1, . . . , Sn of (2).

Note that (2) extends tropical linear systems when for all the occurring

derivatives x
(j)
i we have j = 0. Thus, the complexity bound of testing solv-

ability of (2) in the next theorem generalizes the similar complexity bound of
solvability of tropical linear systems from [1], [2], [4].

Theorem 0.1 If a system (2) of tropical linear differential equations is
solvable then it has the (unique) minimal solution. There is an algorithm which
tests solvability of (2) and in case of solvability yields its minimal solution
within the complexity polynomial in knrM .
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Note that S ⊂ T ⊂ Z+ iff the inequality V alS ≥ V alT holds pointwise. For
S1, . . . , Sn, T1, . . . , Tn ⊂ Z+ we have for the pointwise minimum

V al(S1,...,Sn)∨(T1,...,Tn) := V alS1∪T1,...Sn∪Tn = min{V alS1,...,Sn , V alT1,...,Tn}.

Assume now that (2) has solutions S1, . . . , Sn and T1, . . . , Tn. Then S1 ∪
T1, . . . , Sn ∪ Tn is also a solution. This is a tropical analogue of that the sum
of solutions of a system of linear differential equations is again its solution.
If s ∈ Si such that s ≥ r then one can replace Si by adding to it all the
integers greater than s (while keeping S1, . . . , Sn still to be a solution of (2)).
Therefore, one can suppose w.l.o.g. that for every 1 ≤ i ≤ n either Si is finite
and moreover Si ⊂ {0, . . . , r− 1} or the complement Z+ \ Si is finite. Thus, if
we define V := V al∨(S1,...,Sn) where

∨
ranges over all the solutions S1, . . . , Sn

of (2) then
∨

can be taken over a finite number of solutions, hence it can be
reduced to a single solution T1, . . . , Tn, thereby V = V alT1,...,Tn and T1, . . . , Tn

is the minimal solution of (2) which proves the first statement of Theorem 0.1.
Also we design a polynomial complexity algorithm for solving systems of

the type (2) in case of one variable (n = 1).

Theorem 0.2 There is an algorithm which tests solvability of a system (2)
of tropical linear differential equations in one variable x and yields its minimal
solution in case of solvability within the polynomial complexity. More precisely,
the complexity is bounded by O(kr log(rM)).

1 Bound on the minimal solution of a system

of tropical linear differential equations

Our next goal is to bound the (finite) complements Z \Si. For each 1 ≤ i ≤ n
with a finite Z \ Si denote by mi ∈ Si the minimal element of Si such that

mi ≥ r. If for some 1 ≤ l ≤ k the inequality mini,j{a(j)
i,l +V alSi

(j), al} > M +r
holds then for every 1 ≤ i0 ≤ n, 0 ≤ j0 ≤ r for which this minimum is attained:
a

(j0)
i0,l + V alSi0

(j0) = mini,j{a(j)
i,l + V alSi

(j), al} we have V alSi0
(j0) = mi0 − j0.

Consider a graph G which for each finite Si, 1 ≤ i ≤ n contains a vertex wi

and for each Si with a finite complement Z+ \Si contains two vertices wi, w∞i .

A derivative x
(j)
i corresponds to a vertex w∞i iff V alSi

(j) = mi − j (provided

that Z+ \Si is finite), else x
(j)
i corresponds to wi. Also G contains a vertex w0

to which corresponds every free term al, 1 ≤ l ≤ k.
If there are 1 ≤ l ≤ k, 1 ≤ i0, i1 ≤ n, 0 ≤ j0, j1 ≤ r such that

a
(j0)
i0,l + V alSi0

(j0) = a
(j1)
i1,l + V alSi1

(j1) = min
i,j
{a(j)

i,l + V alSi
(j), al} <∞ (3)
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then we connect in G by an edge vertices which correspond to the derivatives
x

(j0)
i0

and x
(j1)
i1

. Instead of a
(j0)
i0,l + V alSi0

(j0) could be al, then we consider the
vertex w0.

If a connected component of G contains only vertices of the form w∞i with
mi > r then for each w∞i from this component we replace mi by mi − 1, or
in other terms, augment Si by mi − 1, preserving so modified S1, . . . , Sn (for
which we keep the same notation) to be still a solution of (2) (in particular,
in this case S1, . . . , Sn was not the minimal solution). After that G can be
modified (we use the same notation for the modified G), and we continue this
process. Eventually, we arrive to a solution S1, . . . , Sn whose graph G has no
connected component satisfying the described property.

Therefore, each connected component of G contains a vertex of the form
wi0 (or perhaps, w∞i0 with mi0 = r) fulfilling (3) for suitable j0, l. Then

V alSi0
(j0) ≤ r (there is a possibility that instead of a

(j0)
i0,l + V alSi0

(j0) we
consider the free term al), hence V alS1(j1) ≤ M + r follows from (3). Thus,
for every vertex w∞i from this connected component there is a path in G
of a length at most n − 1 connecting it with a vertex of the form wi2 (or
perhaps, w∞i2 with mi2 = r). Therefore, there is 0 ≤ j ≤ r such that
mi − j = V alSi

(j) ≤ (n − 1)(M + r) (one can show the latter inequality fol-
lowing along the path and applying the above argument). Thus, we conclude
with the following lemma.

Lemma 1.1 Let T1, . . . , Tn be the minimal solution of system (2). Then
for each 1 ≤ i ≤ n for which Z+\Ti is finite the bound mi ≤ N := (n−1)(M +
r) + r holds.

This lemma extends Lemmas 1.2, 2.2 [4] established for tropical linear
systems.

2 Algorithm testing solvability and producing

the minimal solution of a system of tropical

linear differential equations

Now we proceed to design an algorithm which tests whether a system (2) is
solvable and if yes then yields its minimal solution T1, . . . , Tn. The algorithm
starts with the setting T1 = · · · = Tn := {0, . . . , N} (see Lemma 1.1), perhaps,
being not a solution of (2), and then modifies T1, . . . , Tn recursively while a
current T1, . . . , Tn is not a solution. If eventually a current T1, . . . , Tn becomes
a solution then it is the minimal solution. We show by recursion that for
any solution S1, . . . , Sn of (2) the pointwise inequality V alS1,...,Sn ≥ V alT1,...,Tn

holds for a current T1, . . . , Tn.
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If a current T1, . . . , Tn is not a solution of (2) then two cases can emerge.
In the first case there exist 1 ≤ i0 ≤ n, 0 ≤ j0 ≤ r, 1 ≤ l ≤ k such that a finite
minimum mini,j{a(j)

i,l + V alTi
(j)} < al is attained at a single pair i0, j0. Let

V alTi0
(j0) = s−j0 where s ∈ Ti0 is the minimal element of Ti0 such that s ≥ j0.

The algorithm modifies Ti0 discarding s from it. The inequality V alS1,...,Sn ≥
V alT1,...,Tn still holds for any solution S1, . . . , Sn of (2) since Si ⊂ Ti, 1 ≤ i ≤ n.
Note that if s = mi0 < N (see Lemma 1.1) then mi0 increases by one. If
s = N(= mi0) then Si0 is finite due to Lemma 1.1 and Si0 ⊂ {0, . . . , r − 1}.
In the second case al is the unique minimum in mini,j{a(j)

i,l + V alTi
(j), al},

then system (2) has no solution. One can show by recursion that for a current
T1, . . . , Tn we have Ti = (Ti ∩ {0, . . . , r − 1}) ∪ {mi, . . . , N}, 1 ≤ i ≤ n.

The algorithm terminates when either T1, . . . , Tn is a solution of (2), in this
case T1, . . . , Tn is the minimal solution, or the algorithm detects that (2) has
no solution.

When (2) is homogeneous, i. e. al = ∞, 1 ≤ l ≤ k, system (2) has a
solution with all infinite functions V alSi

, 1 ≤ i ≤ n. It can happen that
the algorithm terminates with all T1, . . . , Tn being void, that means that the
infinite solution of (2) is its unique one.

To bound the complexity of the algorithm observe that it runs at most
n(N +1) steps because at each step at least one of the current sets T1, . . . , Tn ⊂
{0, . . . , N} decreases. The cost of each step is polynomial in knr log M (the
algorithm for every 1 ≤ i ≤ n stores mi, provided that Z+ \ Ti is finite, and
also stores Ti ∩ {0, . . . , r − 1}). This completes the proof of Theorem 0.1.

3 Polynomial complexity solving systems of

tropical linear differential equations in one

variable

We design a polynomial complexity algorithm for solving a system of tropical
linear differential equations (2) in one variable x. The algorithm basically fol-
lows the algorithm from Theorem 0.1 with a few modifications. In fact, the
algorithm designed in this Section is a version of the algorithm from Theo-
rem 0.1, the modification consists in that its steps are ordered in a special way
(observe that at each step of the algorithm from Theorem 0.1 there could be
several choices of an element to be discarded from the current set T ). We use
the notations from Section 2.

First, if there exists s < r from T such that a finite minimum minj{a(j)
l +

V alT (j)} is attained at a unique j0 for some 1 ≤ l ≤ k and it holds V alT (j0) =
s−j0 then the algorithm discards s from T . This is also a step of the algorithm
from Theorem 0.1, and we refer to it as a step of the finite type. In other words,
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the algorithm designed in this Section has a preference in discarding elements
s which are less than r. As above denote by m0 ≥ r the minimal element of
T ∩ [r,∞).

Second, let otherwise m0 be the only candidate to be discarded from T for
all the equations from (2) which are not satisfied by T . Then the algorithm
from Theorem 0.1 would just discard m0, while the algorithm under description
discards from T possibly more elements at one step.

For each 1 ≤ l ≤ k consider a unique 0 ≤ j0 ≤ r (provided that it does
exist, i. e. the l-th equation is not satisfied by T ) such that V alT (j0) = m0−j0

and a
(j0)
l +m0−j0 = minj{a(j)

l +V alT (j)}. Take the maximal pl (or the infinity
when it is not defined) such that

a
(j0)
l + m0 − j0 + pl ≤ a

(j)
l + V alT (j) (4)

for any 0 ≤ j < r for which V alT (j) = s1− j for suitable T 3 s1 < r. Observe
that pl ≥ 1.

Denote by p the maximum of all such pl. Let p = pl0 for an appropriate
1 ≤ l0 ≤ k. If p = ∞ then the algorithm discards from T all the elements
s ≥ r. Else, if p < ∞ then the algorithm discards all the elements s from T
such that m0 ≤ s < m0+p. In other words, the algorithm replaces the minimal
element m0 of T ∩ [r,∞) by m0 + p, we call this step of the algorithm a jump.
Clearly, the jump replaces p steps of the algorithm from Theorem 0.1 each
consisting in discarding just one element from T (so, discarding consecutively

m0, m0 + 1, . . . ,m0 + p− 1) due to the unique monomial a
(j0)
l0

+ x(j0) at which
the minimum in (2) is attained for the l0-th equation.

Observe that after a jump either the (new current) T provides a solution of
(2) or the algorithm can execute a step of the finite type because of the choice
of p, see (4), so discards from T some element s < r.

As in Section 2 the algorithm terminates when either a current T provides
a solution of (2) (being the minimal solution as it was proved in Section 2) or
the algorithm exhausts T (which means that T ∩ [0, N ] = ∅, see Sections 1,
2). In the latter case if system (2) is homogeneous then it has the (unique)
infinite solution, otherwise a non-homogeneous system has no solutions (again
similar to Section 2).

To estimate the complexity of the algorithm note that after a jump the
algorithm executes a step of the finite type, i. e. discards from T an element
s < r. Therefore, the number of steps of the algorithm does not exceed 2r
taking into the account that the number of steps of the finite type is less
or equal than r. To bound the jump p observe that a

(j0)
l0

+ m0 − j0 + p =

a
(j1)
l0

+ s1 − j1 for appropriate j1, s1 < r (cf. (4)). Since j0 ≤ r we deduce that
m0 + p < 2r + M , hence p < r + M . Thus, one can estimate the complexity
by O(kr log(rM)), and we complete the proof of Theorem 0.2.
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4 NP -hardness of solvability of tropical non-

linear differential equations in one variable

Now generalizing tropical linear differential equations (see the Introduction)
we consider systems of tropical non-linear differential equations of the form

min
{P}
{aP +

∑
(i,j)∈P

x
(j)
i } (5)

where the coefficients aP ∈ Z+ and the minimum ranges over a certain (finite)
family of finite multisets P of pairs (i, j). We view |P | as the degree of the

monomial aP +
∑

(i,j)∈P x
(j)
i .

Similar to the case of tropical linear differential equations (see the Intro-
duction), we observe that the solvability of (5) is necessary for the solvability in

power series in t of a non-linear differential equation
∑
{P}AP ·

∏
(i,j)∈P X

(j)
i = 0

where ordt(AP ) = aP .
We prove that the problem of solvability (with a set S ⊂ Z+ similar to trop-

ical linear differential equations, see the Introduction) of a system of equations
of the form (5) is NP -hard already in the case of a single variable x. Mention
that in [9] NP -completeness of the solvability of tropical non-linear systems
(in several variables) is established.

We prove NP -hardness by means of reducing a 3-SAT boolean formula Φ
in n variables y0, . . . , yn−1 (see e. g. [3]) to a system EΦ of equations of the
form (5) in a single variable x, preserving the property of solvability.

The system EΦ contains (linear) equations

min{x(2j+1), 0}, 0 ≤ j ≤ 2n− 1 (6)

These equations mean that the valuation of each even derivative x(2j), 0 ≤ j ≤
2n− 1 equals either 0 or 1. Also EΦ contains (quadratic) equations

min{x(2j) + x(2j+2n), 1}, 0 ≤ j ≤ n− 1 (7)

They mean that either V al(x(2j)) = 0, V al(x(2j+2n)) = 1 (which corresponds
to the value ”true” of the variable yj, 0 ≤ j ≤ n − 1 of Φ) or V al(x(2j)) =
1, V al(x(2j+2n)) = 0 (which corresponds to the value ”false” of yj, respectively).
Finally, for each 3-clause of Φ, say of the form ¬yj1 ∨ yj2 ∨ ¬yj3 we add to EΦ

a (linear) equation

min{x(2j1+2n), x(2j2), x(2j3+2n), 0} (8)

Clearly, Φ is equivalent to the solvability of the system obtained by uniting
(6), (7) and (8) for all 3-clauses of Φ. Thus, we have proved

Proposition 4.1 The problem of solvability of systems of tropical non-linear
differential equations in a single variable is NP -hard.
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5 Solvability of systems of tropical non-linear

differential equations is in NP

Next we prove that the problem of solvability of systems of k tropical non-
linear differential equations of the form (5) of degrees |P | ≤ d fulfilling the
bounds: 0 ≤ aP ≤ M, 0 ≤ j ≤ r, 1 ≤ i ≤ n (in an arbitrary number
n of variables) belongs to NP . First, similar to Lemma 1.1 and using the
notations from Section 1, we show that if a system has a solution (with some
S1, . . . , Sn ⊂ Z+) then it possesses a sufficiently small solution.

Substitute the solution into each equation of the form (5), then the valua-

tions of some derivatives x
(j)
i can equal mi − j, the valuations of all the other

derivatives consider as being fixed. We treat the system (after this substi-
tution) as an input of the linear programming problem (expressing that the
minimum in (5) is attained at least at two terms) with respect to the inde-
terminates mi (for all i for which they are defined), and the fixed valuations
consider as the coefficients of the input. Therefore, this input possesses a so-
lution with mi bounded (due to Hadamard’s inequality on determinants) by
N1 := n! · (M + rd) · dn. Note that this bound is worse than the bound on N
established in Lemma 1.1 for systems of tropical linear differential equations.

Since in order to give a solution S1, . . . , Sn it suffices just to specify Si ∩
[0, r], 1 ≤ i ≤ n and mi ≤ N1 (for i for which it does exist), we get the
following

Proposition 5.1 The problem of solvability of systems of tropical non-linear
differential equations belongs to NP .

6 Further research

Similar to tropical linear systems (cf. [1], [2], [4]) it is an open problem, whether
one can solve system (2) of tropical linear differential equations within the com-
plexity polynomial in knr log M (in other words, within the proper polynomial
complexity)? In Section 3 a polynomial complexity algorithm is designed for
testing solvability of systems of tropical linear differential equations in one vari-
able (n = 1). Is there a polynomial complexity algorithm for similar systems
in, say a constant number n ≥ 2 of variables?

It is known (see [1], [2], [4]) that the problem of solvability of systems of
tropical linear equations is in the complexity class NP ∩ coNP . Does the
problem of solvability of systems of the type (2) of tropical linear differential
equations belong to coNP? Proposition 5.1 implies that even a more gen-
eral problem of solvability of systems of the type (5) of tropical non-linear
differential equations lies in NP .
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It is proved in [8] the following coincidence for the closure in the euclidean
topology: Trop(V (I)) = V (Trop(I)) ⊂ Rn where I ⊂ K[X1, . . . , Xn] is a poly-
nomial ideal over the field K of Puiseux series and V (I) ⊂ Kn is the variety
of I. Does there hold an analogue of this coincidence for differential ideals?
In other words, is it true that for any differential ideal G in n independent
variables and a family S1, . . . , Sn ⊂ Z+ being a solution of the tropical differ-
ential equation Trop(g) for any g ∈ G, there exists a power series solution of
G whose tropicalization equals S1, . . . , Sn?

We say that S1, . . . , Sn is a Laurent solution of (2) if for every 1 ≤ i ≤ n
either Si ⊂ Z+ is as we considered above or Si = {b} is a singleton for some
negative integer 0 > b ∈ Z. In the latter case V alb(j) = b−j. This corresponds
to the order of the j-th derivative of a Laurent series of the form ctb(1 + O(t))
for a (complex) coefficient c. If all sets among S1, . . . , Sn are negative singletons
then the solvability of (2) reduces to the solvability of a tropical linear system.
The question is, what is the complexity of testing whether (2) has a Laurent
solution? Actually, one can extend this setting from Laurent solutions to
solutions of the form Si = {b} where b ∈ R \ Z+. This corresponds to a
necessary condition of solvability of a system of linear differential equations in
Puiseux series (when b ∈ Q) or in Hahn series (when b ∈ R, see e. g. [5]).

For a tropical linear differential monomial a + x(j), a, j ∈ Z+ define its
derivative as min{a − 1 + x(j), a + x(j+1)} when a ≥ 1 or as x(j+1) when
a = 0 (which mimics the usual derivation law). We spread this definition of
the derivative to all tropical linear differential equations of the form (2) by
the tropical linearity. The tropical ideal generated by the derivatives of all
the orders of tropical linear differential equations is called the tropical linear
differential ideal generated by these equations. Is it possible to test solvability
of a tropical linear differential ideal? Lest there would be a misunderstanding,
we note that a solution of a tropical linear differential equation is not necessary
a solution of the tropical ideal generated by this equation.
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