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Abstract

For a tropical univariate polynomial f we define its tropical Hilbert
function as the dimension of a tropical linear prevariety of solutions of
the tropical Macauley matrix of the polynomial up to a (growing) de-
gree. We show that the tropical Hilbert function equals (for sufficiently
large degrees) a sum of a linear function and a periodic function with an
integer period. The leading coefficient of the linear function coincides
with the tropical entropy of f . Also we establish sharp bounds on the
tropical entropy.
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Introduction

One can find the basic concepts of tropical algebra in [8].
Consider a tropical univariate polynomial f := min0≤i≤n{iX + ai} where

ai ∈ Z, 0 ≤ i ≤ n. We call y := (y1, y2, . . .), yj ∈ R, j ≥ 1 a tropical recurrent
sequence satisfying the vector a := (a0, . . . , an) [3] if for any j ≥ 1 the following
tropical (linear) polynomial is satisfied:

min
0≤i≤n

{yj+i + ai}, (1)

i. e. the minimum in (1) is attained at least for two different values among
0 ≤ i ≤ n.
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When one considers classical recurrent sequences (x1, x2, . . .) satisfying re-
lations

∑
0≤i≤n aixi+j = 0 similar to (1), the first n values x1, . . . , xn determine

the rest of the sequences uniquely. This is not the case for tropical recurrent
sequences.

Denote by D(s) ⊂ Rs a polyhedral complex of all the sequences (y1, . . . , ys)
satisfying (1) for 1 ≤ j ≤ s− n. The function d(s) := da(s) := dim(D(s)) we
call the tropical Hilbert function of the tropical polynomial f (or equivalently,
of the vector a of its coefficients). Obviously, d(s) ≤ d(s + 1) ≤ d(s) + 1.
It is observed in [3] that d(s + t) ≤ d(s) + d(t). Therefore, due to Fekete’s
subadditivity lemma [10] there exists the limit

H := H(a) = lim
s→∞

d(s)/s (2)

which is called [3] the tropical entropy of the tropical polynomial f or of the
vector a. Evidently, 0 ≤ H ≤ 1.

In the classical commutative algebra Hilbert function of a polynomial g =∑
I gIX

I ∈ F [X1, . . . , Xm] is defined as the growth function of the quetient
ring F [X1, . . . , Xm]/(g) in the filtration with respect to degree. For a given
degree e this function coincides with the dimension of the space of solutions
of a linear system ∑

I

gIYI+J = 0 (3)

for all vectors J := (j1, . . . , jm) ∈ Zm, 0 ≤ j1, . . . , jm such that for every vector
I = (i1, . . . , im) from the support of g we have i1 + j1 + · · ·+ im + jm ≤ e. Note
that a linear system (3) forms the rows of Macauley matrix.

In the tropical algebra there is no concept of a quotient linear space, that
is why we stick with an alternative definition of Hilbert function based on the
dimension of the space of solutions of a linear system (1) which is equivalent
to tropical recurrent sequences.

Note that multidimensional tropical recurrent sequences appear also as the
solutions of the tropical Macauley matrix [3] (generalizing tropical equations
(1)). Macauley matrix emerges in a tropical version of the weak Hilbert Null-
stellensatz (see [1], [2], [5], [6], [7]).

The main result of the paper (see Theorem 5.4 and Corollary 5.5) states
that the tropical Hilbert function d(s) is quasi-linear, i. e. coincides with a
sum Hs+ r(s) (for sufficiently large s) of a linear function Hs (see (2)) and a
periodic function r(s) with an integer period.

Recall that in the classical commutative algebra Hilbert function of an ideal
in F [X1, . . . , Xm] is a polynomial (for sufficiently large degrees filtrations). In
its turn, the degree of this polynomial is less than m (in particular, in case
m = 1 Hilbert polynomial is a constant). In the tropical setting which we
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study, the degree of the tropical Hilbert function can be less or equal to m,
and the coefficient at the power of m equals the entropy H (provided that
the function is approximated by a polynomial). Thus, in case of dimension
m = 1 which we study in the present paper, the tropical Hilbert function d(s)
coincides with the linear function Hs up to a periodic function (for sufficiently
large s).

We mention that in [2], [3] it is proved that H = 0 iff each point (i, ai) ∈
R2, 0 ≤ i ≤ n is a vertex of Newton polygon being the convex hull of the rays
{(i, x ≥ ai)}, 0 ≤ i ≤ n.

It would be interesting to extend the results of the paper to vectors
(a0, . . . , an) with ai ∈ Z ∪ {∞}. Another problem is to improve the bound
on the period in the function r(s) and the bound on s starting with which the
tropical Hilbert polynomial coincides with Hs+ r(s) (sometimes, a bound on
s is called the regularity of f).

In section 1 we prove some auxiliary bounds on tropical recurent sequences.
In section 2 we describe a directed graph G := Ga and provide a construction,
how following paths of G to yield tropical recurrent sequences (satisfying the
vector a). In section 3 we show that this construction is complete, so that any
tropical recurrent sequence (satisfying the vector a) can be yielded following an
appropriate path of G. In section 4 we prove that the tropical Hilbert function
fulfils inequalities Hs + b ≤ d(s) ≤ Hs + e for explicitly given constants
b, e. Also, an explicit calculation (and an algorithm as a by-product) of H is
provided in terms of G, thereby in terms of the vector a. In particular, we
obtain that H is a rational number. In section 5 the main result of the paper
is established. An explicit bound on s starting with which d(s) = Hs + r(s)
holds (so, the regularity) is provided. Also, an explicit bound on the period
of r(s) is exhibited. In section 6 we consider tropical recurrent sequences y :=
(y1, y2, . . .), yj ∈ R, j ≥ 1 satisfying a tropical boolean vector a := (a0, . . . , an)
where a0 = an = 0 and each ai, 0 ≤ i ≤ n equals either 0 or ∞ and prove the
similar to the previous sections results in this case, in particular, the quasi-
linearity of the tropical Hilbert function. Finally, in section 7 we establish the
sharp lower bound H(a) ≥ 1/4 on the tropical entropy when H(a) is positive.
Also we show the sharp upper bound H(a) ≤ 1 − 2/(n + 1) in case when
Newton polygon of a has a single bounded edge. We conjecture that the latter
bound holds for an arbitrary vector a.

1 Bounds on connected coordinates

Let a := (a0, . . . , an) ∈ Zn+1 be a vector, assume that for its amplitude an
inequality holds

max
0≤i≤n

{ai} − min
0≤i≤n

{ai} ≤M. (4)
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Consider a tropical recurrent sequence z := (z0, z1, . . .), zj ∈ R satisfying
vector a. We call a coordinate zj0 (or, more precisely, j0) connected if there
exists 0 ≤ k0 ≤ n such that zj0 + ak0 = min0≤k≤n{zk+j0−k0 + ak}. In other
words, one can’t diminish the value of zj0 without changing all other zj, j 6= j0
and keeping the property of being a tropical recurrent sequence satisfying a.
Otherwise, we call zj0 disconnected. We say that connected coordinates j0 < j1
are neighbouring if any intermediate coordinate j0 < j < j1 is disconnected.

Lemma 1.1 Assume that a vector a ∈ Zn+1 fulfils (4) and a tropical re-
current sequence z satisfies a. Let j0 < j1 be a pair of neighbouring connected
coordinates. Then

i) j1 − j0 ≤ n;
ii) |zj0 − zj1| ≤ 2M .

Proof. To prove i) suppose the contrary, then the minimum
min0≤k≤n{zj0+k + ak} is attained only for k = 0 which contradicts to that
z satisfies a.

To prove ii) suppose the contrary. First, for definiteness assume that zj1 ≥
zj0 , hence zj1 − zj0 > 2M . There exists 0 ≤ k1 ≤ n such that

zj1 + ak1 = min
0≤k≤n

{zj1+k−k1 + ak}. (5)

If j1− k1 ≤ j0 then zj0 +aj0−j1+k1 < zj1 − 2M +aj0−j1+k1 ≤ zj1 −M +ak1 . and
we get a contradiction with (5), thus j1 − k1 > j0.

We claim that the minimum min0≤k≤n{zj0+k + ak} attains only for k = 0.
Indeed, for any connected j2 ≤ j0 + n we have

zj2 + aj2−j0 ≥ zj1 + ak1 − aj2−j1+k1 + aj2−j0 > zj0 + a0,

where the first inequality is due to (5), while the second inequality follows
from zj1 − zj0 > 2M and from (4). This proves the claim. We come to a
contradiction with that z satisfies a, which completes the proof of ii) in case
zj1 ≥ zj0 .

The case zj1 ≤ zj0 is handled in a similar way. The lemma is proved. 2

Corollary 1.2 For a connected coordinate j of a tropical recurrent se-
quence satisfying a

i) and any connected coordinate s an inequality holds zs ≤ zj + 2M |s− j|:
ii) and any coordinate s an inequality holds zs ≥ zj− 2M ·max{|s− j|, n}:
iii) if zs+n > mins0≤k<s+n{zk} + 2Mn for some s0 ≥ s, s0 ≥ 0 then the

coordinate s+ n is disconnected.

4



Proof. i) follows immediately from Lemma 1.1 ii).
ii) follows from i) when a coordinate s is connected, moreover, in this case

zs ≥ zj − 2M |s− j|. (6)

For a disconnected coordinate s one can assume w.l.o.g. that s > j. Take
the maximal connected coordinate s0 < s. Lemma 1.1 i) implies that s−s0 < n.
The minimum min0≤k≤n{zk+s−n+ak} is attained for some connected coordinate
k0 + s− n ≤ s0. Therefore, when k0 + s− n ≥ j, we obtain

zs + an ≥ zk0+s−n + ak0 ≥ zj − 2M(k0 + s− n− j) + ak0

due to (6) which proves ii) in this case.
When k0 + s− n < j, we obtain

zs +an ≥ zk0+s−n +ak0 ≥ zj − 2M(j− k0− s+n) +ak0 ≥ zj − 2M(n− 1) +ak0

again due to (6). This completes the proof of ii).
iii) follows from ii). 2

2 Construction of a graph of tropical recur-

rent sequences

Assume that we are producing by recursion a tropical recurrent sequence sat-
isfying vector a = (a0, . . . , an), and that a finite fragment (a prefix) of the
sequence is already produced. Denote by (y1, . . . , yn) ∈ Rn the last n coordi-
nates (a suffix) of the fragment. The continuations yn+1 ∈ R of the fragment
depend just on signs of certain linear inequalities on the differences between
the pairs of the coordinates yi − yj, 1 ≤ i < j ≤ n. These linear inequali-
ties define a polyhedron P := Pv ⊂ Rn which corresponds to a vertex v of a
directed finite graph G := Ga which we construct in the present section.

The edges of G outcoming from v (to certain vertices w) are determined by
possible signs of (linear) inequalities on the differences yi − yn+1, 1 ≤ i ≤ n.
The latter inequalities together with the (linear) inequalities on the differences
yi − yj, 2 ≤ i < j ≤ n inherited from Pv, define a polyhedron Pw ⊂ Rn (with
the coordinates y2, . . . , yn+1), a vertex w of G and an edge (v, w).

In section 3 we show that the tropical recurrent sequences satisfying a are
encoded by paths in G (and vice versa).

2.1 Vertices of graph Ga

Definition 2.1 We define a vertex v of the graph G and a correspond-
ing polyhedron P := Pv. The coordinates y1, . . . , yn of P are partitioned into
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two parts: we call them bounded and unbounded (we require that at least one
coordinate is bounded).

• A bounded coordinate ys0 is distinguished and the inequalities

ys0 − yj ≤ 0, 1 ≤ j ≤ n (7)

belong to defining inequalities of Pv.

• For each pair of bounded coordinates yl, yk, n ≥ l > k ≥ 1 an integer

(k − 2n)M ≤ m := m(k, l) ≤ (2n− k)M (8)

is determined such that either an equality

yk = yl +m (9)

or inequalities

yk < yl +m < yk + 1 (10)

belong to the defining inequalities of Pv.

• For each unbounded coordinate yj the inequality

yj − ys0 > jM (11)

belongs to defining inequalities of Pv.

Possible choices of bounded coordinates, of s0,m, of either equations or
inequalities provide all the polyhedra Pv and thereby, the vertices v of the graph
G under construction.

Remark 2.2 i) If a polyhedron Pv is empty we ignore a vertex v.

ii) If for bounded coordinates yr, yt, 1 ≤ r, t ≤ n holds yr − yt = m (see
(9)), we say that r, t belong to the same (equivalence) class.

iii) Informally, the difference (repectively, the ceiling function of the dif-
ference) of each pair of bounded coordinates is given in (9) (respectively, in
(10)), while for unbounded coordinates just lower bounds (11) via the minimal
coordinate, which is always a bounded one, are given.

2.2 An edge of the graph G in case of a unique contin-
uation of a prefix of a tropical recurrent sequence

Now we describe when G has an edge from a vertex v to a vertex w. Denote by
x1, . . . , xn the coordinates of the polyhedron Pw under construction. The poly-
hedron Pw relates to Pv informally as follows. For any point (y1, . . . , yn) ∈ Pv
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there exists a point (y2, . . . , yn, xn) ∈ Pw, and xn fulfills the conditions de-
scribed below in Definitions 2.5, 2.7, 2.8 (see Theorem 3.1 below). A value
of xn is either unique or varies in an open interval. Formally, in Defini-
tions 2.3, 2.5, 2.7, 2.8 we describe linear inequalities determining Pw.

In the following definition we provide a part of equalities and inequalities
of the forms (9), (10) describing Pw and complete the description in Defini-
tions 2.5, 2.7, 2.8.

Definition 2.3 Denote the coordinates of Pw by x1, . . . , xn. First, we im-
pose that a coordinate xr−1, 2 ≤ r ≤ n is bounded iff the coordinate yr is
bounded. The status of boundness of the coordinate xn is specified in Defini-
tions 2.5, 2.7, 2.8. Also we require that the inequalities of the forms (9), (10)
determining Pv on the pairs of bounded coordinates among yk, yl, 2 ≤ k < l ≤ n
are imposed on the coordinates xk−1, xl−1 of Pw. In particular, for each equal-
ity (respectively, inequalities) of the form (9) (respectively, (10)) the equality
xk−1 = xl−1 +m (respectively, inequalities xk−1 < xl−1 +m < xk−1 + 1) belong
to determining equalities of the form (9) (respectively, inequalities of the form
(10)) of Pw. Respectively, we impose the inequalities (k − 1 − 2n)M ≤ m ≤
(2n− k + 1)M of the form (8).

In Definitions 2.5, 2.7, 2.8 we impose equalities and inequalities of the forms
(9), (10) which involve the coordinate xn, and also inequalities of the forms
(7), (11) for Pw.

Lemma 2.4 For points (y1, . . . , yn) ∈ Pv the minimum

min
1≤r≤n

{yr + ar−1} (12)

is attained on a suitable subset of the bounded coordinates independent from a
point (y1, . . . , yn) ∈ Pv.

Proof. Due to (11) the minimum in (12) is attained only on bounded

coordinates yr. Let two points (y
(1)
1 , . . . , y

(1)
n ), (y

(2)
1 , . . . , y

(2)
n ) ∈ Pv. Assume

that for a pair of bounded coordinates yr, yt an inequality holds y
(1)
r + ar−1 ≤

y
(1)
t + at−1. Then y

(2)
r + ar−1 ≤ y

(2)
t + at−1 because of inequalities (9), (10),

taking into the account that ar−1, at−1 are integers. 2

Denote by S := Sv the set of r, 1 ≤ r ≤ n on which the minimum in (12) is
attained. In particular, all the elements from S belong to the same class (see
Remark 2.2). First consider the case when S consists of a single element t.

Definition 2.5 Let the set S = {t} be a singleton. We define a unique
edge in G outcoming from the vertex v (to a vertex w) and describe a system
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of equations and inequalities defining a polyhedron Pw. Recall that the inequal-
ities on the pairs of bounded coordinates among x1, . . . , xn−1 correspond to the
inequalities of the forms (9), (10) on the coordinates y2, . . . , yn, respectively,
defining Pv (see Definition 2.3).

Declare the coordinate xn to be bounded. When t > 1 we add the equality
xn − at−1 + an = xt−1 to the description of Pw. For each bounded coordinate
yr, 2 ≤ r ≤ n if there is an equality yt = yr + m of the form (9) in the
description of Pv, then we add the equality xn − at−1 + an = xr−1 + m of the
form (9) to the description of Pw. In a similar way if there are inequalities
yr < yt + m < yr + 1 of the form (10) in the description of Pv, then we
add inequalities yr < xn − at−1 + an + m < yr + 1 of the form (10) to the
description of Pw. We impose the inequalities of the form (8) on the integers
in the produced inequalities of the forms (9), (10).

Based on the produced so far equalities and inequalities of the forms (9),
(10) from the description of Pw one can compute a minimal possible 1 ≤ s ≤ n
such that xs is a bounded coordinate and xs ≤ xi for every bounded coordinate
xi, 1 ≤ i ≤ n. We add the inequality xs ≤ xi for every 1 ≤ i ≤ n (cf. (7)) and
the inequality xj − xs > jM for every unbounded coordinate xj, 1 ≤ j ≤ n− 1
(cf. (11)) to the description of Pw.

Remark 2.6 In a particular case t = 1 and all the coordinates y2, . . . , yn
are unbounded, the only bounded coordinate of Pw is xn. The description of Pw

consists of inequalities xn ≤ xi (cf. (7)) and of inequalities xi − xn > iM, 1 ≤
i ≤ n− 1 (cf. (11)).

2.3 Edges of G in case of non-uniqueness of continua-
tions of a prefix of a tropical recurrent sequence

Now we study the case when the set S consists of more than one elements.
Take a minimal t > 1 such that t ∈ S. There can be several edges in the graph
G outcoming from the vertex v.

Definition 2.7 First define a single edge from the vertex v to a vertex w
such that the coordinate xn is unbounded in Pw. Recall that the description
of Pw already contains the equalities and inequalities of the forms (9), (10)
introduced in Definition 2.3. Based on the latter equalities and inequalities
one can compute a minimal possible 1 ≤ s ≤ n − 1 such that xs is a bounded
coordinate and xs ≤ xi for every bounded coordinate xi, 1 ≤ i ≤ n − 1. Then
we add inequalities xs ≤ xi, 1 ≤ s ≤ n to the description of Pw (cf. (7)).
Finally, we add the inequality

xn − xs > nM (13)
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and the inequalities xi−xs > iM for all the unbounded coordinates xi, 1 ≤ i ≤ n
(cf. (11)).

We distinguish (13) among the latter inequalities of the form (11) for the
sake of easier references below.

The constructed vertex w is the unique one to which there is an edge in the
graph G from the vertex v such that the coordinate xn is unbounded. Still we
assume that |S| ≥ 2, t ∈ S with a minimal possible t > 1. Now we construct
vertices w with a bounded coordinate xn to which there are edges from v.

Definition 2.8 We declare the coordinate xn to be bounded. Recall that
the description of Pw already contains the equalities and inequalities of the
forms (9), (10) introduced in Definition 2.3. We add to the description of Pw

either the equality

xn − xt−1 = at−1 − an (14)

or inequalities

nM ≥ xn − xt−1 > at−1 − an. (15)

For every bounded coordinate xl, 1 ≤ l ≤ n we consider all possible consis-
tent (with the equalities and inequalities of the forms (9), (10) introduced in
Definition 2.3 and with either (14) or with (15), respectively) either equalities
of the form xl = xn + m(l) or inequalities of the form xl < xn + m(l) < xl + 1
for some integers m(l). Due to either (14) or (15), respectively, there is a fi-
nite numbers of possible integers m(l). The produced equations and inequalities
constitute the ones of the forms (9), (10) for Pw.

Based on the latter equalities and inequalities and the ones introduced in
Definition 2.3 we compute a minimal possible 1 ≤ s ≤ n such that xs ≤ xi for
every bounded coordinate xi, 1 ≤ i ≤ n. We add inequalities xs ≤ xi, 1 ≤ i ≤ n
(cf. (7)) to the description of Pw. Also we impose the inequality

xn − xs ≤ nM (16)

which in its turn imposes inequalities on the integers m(l). We impose the
inequalities of the form (8) on the integers in the produced inequalities of the
forms (9), (10). Finally, we add to the description of Pw inequalities xi−xs >
iM for every unbounded coordinate xi, 1 ≤ i ≤ n− 1 (cf. (11)).

Remark 2.9 i) Choosing all possible integers m(l) and either equalities or
inequalities, we obtain all the vertices w to which there are edges from v with
a bounded coordinate xn.

ii) The inequalities either (14) or (15) and the inequality (16) follow from
the produced ones of the forms (9), (10) defining Pw. In particular, the lefthand
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inequality of (15) and (16) follow from either an equality xn − xs = m of the
form (9) or an inequality xn − xs < m of the form (10) in the description of
Pw for some integer m ≤ nM (cf. (8)). The similar concerns the equality
(14) and the righthand inequality of (15). Thus, (14), (15) and (16) do not
formally occur in the description of Pw (to be compatible with Definition 2.1).
We have distinguished (14), (15) and (16) just for the sake of easier references
below.

iii) One can (equivalently) construct the edges outcoming from the vertex v
with a bounded coordinate xn in a more explicit manner. The equations of the
form xi−xj = m and the inequalities of the form xi−xj > m, 1 ≤ i, j ≤ n−1
defining Pw produced in Definition 2.3, provide uniquely the linear ordering
between xi + k, −N ≤ k ≤ N for all bounded coordinates among x1, . . . , xn−1
where N bounds from above all integers m(l) occurred in Definition 2.8. Then
a vertex w is uniquely determined by a choice of either an equation xn = xi +k
or inequalities xi + k1 < xn < xj + k2 for suitable bounded coordinates xi, xj
and −N ≤ k, k1, k2 ≤ N such that for no bounded coordinate xl, 1 ≤ l ≤ n−1
and an integer k0 holds xi + k1 < xl + k0 < xj + k2.

This completes the description of all the edges outcoming from the vertex
v in the graph G.

3 Description of tropical recurrent sequences

via paths in the graph

3.1 Yielding a short tropical recurrent sequence along
an edge of the graph

In this subsection for any point (y1, . . . , yn) ∈ Pv we prove the following claim.
If a sequence (y1, . . . , yn, x) ∈ Rn+1 satisfies the vector a then for exactly
one of the edges (v, w) of the graph G it holds that (y2, . . . , yn, x) ∈ Pw.
Conversely, for every edge (v, w) of G constructed according to one of Defini-
tions 2.5, 2.7, 2.8 there exists a point (y2, . . . , yn, xn) ∈ Pw such that the point
(y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a (for more precise statements see
Theorem 3.1).

We assume that a point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a. De-
note xi := yi+1, 1 ≤ i ≤ n − 1. We declare that a coordinate yi+1 is bounded
in Pv iff the coordinate xi is bounded in Pw. Then the bounded coordinates
among x1, . . . , xn−1 fulfill the inequalities of the forms (9), (10) introduced in
Definition 2.3, and moreover, they fulfill the inequalities of the form (8) for Pw

since the inequalities of the form (8) for the bounded coordinates x1, . . . , xn−1
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in Pw are weaker than the corresponding inequalities of the form (8) for the
same coordinates (y2, . . . , yn) = (x1, . . . , xn−1) for Pv.

Consider the case of a singleton S = {t}. Then xn = yt + at−1 − an. We
claim that (y2, . . . , yn, xn) ∈ Pw where the edge (v, w) of G is constructed
according to Definition 2.5. In particular, we declare the coordinate xn to
be bounded. For every unbounded coordinate yi, 1 ≤ i ≤ n the inequalities
(11) imply that yi − ys0 > iM . Recall (see Definitions 2.5, 2.7, 2.8) that
for a bounded coordinate xs it holds xs ≤ xl for each bounded coordinate
xl, 1 ≤ l ≤ n. If s0 = 1 then xs ≤ xn ≤ ys0 + M . Otherwise, if 1 < s0 ≤ n
then xs ≤ xs0−1 = ys0 . Therefore, for 1 < i ≤ n it holds that

xi−1 − xs = yi − xs ≥ yi − ys0 −M > (i− 1)M. (17)

In particular, the point (x1, . . . , xn) fulfills the inequalities of the form (7).
Also, the point (x1, . . . , xn) fulfills the inequalities of the form (11).

The inequality |yt − xn| ≤ M implies that the point (x1, . . . , xn) fulfills
the inequalities of the forms (8), (9), (10) on the differences xn − xj where
xj, 1 ≤ j < n is a bounded coordinate. Thus, the point (x1, . . . , xn) ∈ Pw for
an edge (v, w) of G constructed according to Definition 2.5. This proves the
claim in case S = {t}.

Now we study the case when |S| ≥ 2 and the inequality (13) is true.
We claim that in this case (x1, . . . , xn) ∈ Pw where the edge (v, w) of G is
constructed according to Definition 2.7. We declare the coordinate xn to be
unbounded. There exists 2 ≤ t ≤ n for which t ∈ S. If s0 = 1 then taking into
the account that yt + at−1 ≤ y1 + a0, we get that xs ≤ xt−1 = yt ≤ y1 + M .
Otherwise, if 2 ≤ s0 ≤ n then ys0 = xs. In any case it holds xs ≤ ys0+M . As in
case S = {yt} considered above, we obtain (17). This implies the inequalities
of the forms (7) and (11) making use of (13). This completes the proof of the
claim in case of |S| ≥ 2 and (13).

Now we assume that |S| ≥ 2 and (16) (so, (13) is not true). We claim
that (x1, . . . , xn) ∈ Pw where the edge (v, w) of G is constructed according
to Definition 2.8. We declare the coordinate xn to be bounded. There exists
2 ≤ t ≤ n for which t ∈ S. It holds xn ≥ xt−1 + at−1 − an. The inequality
yt + at−1 ≤ y1 + a0 implies that xs ≤ ys0 +M and (17) (as above). Again this
implies the inequalities of the forms (7) and (11).

For each bounded coordinate xl, 1 ≤ l < n there exists a unique integer m(l)

such that either xn = xl+m
(l) or xn < xl+m

(l) < xn+1 holds. They constitute
the inequalities of the form either (9) or (10), respectively, in the description of
Pw according to Definition 2.8. The inequality xn ≥ xt−1+at−1−an entails that
xs ≥ ys0 −M . Together with the inequalities (8) for Pv and (16) this implies
the inequalities of the form (8) for Pw on the integers m(l). This completes the
proof of the claim.
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Conversely, assume that it holds (x1, . . . , xn) := (y2, . . . , yn, xn) ∈ Pw for
an edge (v, w) of G constructed according to one of Definitions 2.5, 2.7, 2.8.
First, we study the case

i) there exists t ∈ S, 2 ≤ t ≤ n. If S = {t} then xn = xt−1 + at−1 −
an. Otherwise, if |S| ≥ 2 then xn ≥ xt−1 + at−1 − an. Therefore the point
(y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a.

Observe that if the edge (v, w) is constructed according to Definition 2.7
then the values of the coordinate xn vary in an open infinite interval bounded
from below. If the edge (v, w) is constructed according to Definition 2.8 and
the description of Pw contains an equality xn = xl + m(l) of the form (9) for
some 1 ≤ l ≤ n− 1 then the value of the coordinate xn is unique. Otherwise,
the values of the coordinate xn vary in an open finite interval.

ii) Now assume that S = {1}, then the point (x1, . . . , xn) ∈ Pw for an edge
(v, w) constructed according to Definition 2.5. If the description of Pv contains
an equality y1 = yl +m of the form (9) for some 2 ≤ l ≤ n then the description
of Pw contains the equality xn +an−a0 = xl−1 +m. Hence in this case for any
point (y2, . . . , yn, xn) ∈ Pw the point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector
a (in fact, (y2, . . . , yn, xn) ∈ Pw implies that xn = y1 + a0 − an). Otherwise,
the values of the coordinate xn such that (y2, . . . , yn, xn) ∈ Pw vary in an open
interval (perhaps, an infinite one), while only for the value xn = y1 + a0 − an
the point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a.

Summarizing, we have proved the following theorem.

Theorem 3.1 Let a point (y1, . . . , yn) ∈ Pv.
If a point (y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a then

(y2, . . . , yn, xn) ∈ Pw holds for exactly one edge (v, w) of the graph G con-
structed according to Definitions 2.5, 2.7, 2.8.

Conversely, let (y2, . . . , yn, xn) ∈ Pw for an edge (v, w) of G constructed
according to one of Definitions 2.5, 2.7, 2.8.

i) In case when there exists t ∈ S, 2 ≤ t ≤ n (see subsection 2.2) the point
(y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a. In case of an edge constructed
according to
• Definition 2.5, the value of xn is unique;
• Definition 2.7, the values of xn vary in an open infinite interval bounded

from below;
• Definition 2.8, the values of xn depending on the edge (v, w), can be either

unique or vary in an open finite interval.

ii) If S = {1} then only for the value xn = y1 + a0 − an the point
(y1, . . . , yn, xn) ∈ Rn+1 satisfies the vector a.
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3.2 The polyhedron of tropical recurrent sequences pro-
duced along a path of the graph

We consider paths in the graph G and describe how they correspond to the
tropical recurrent sequences satisfying the vector a. Take an arbitrary vertex
v0 as the first vertex in a path and any sequence y(0) := (y

(0)
1 , . . . , y

(0)
n ) ∈ Pv0 .

As in subsection 2.2 consider a subset S. If |S| = 1 then there is a unique
edge (v0, w0) in G outcoming from v0. In this case one applies Definition 2.5

and obtains a unique y
(0)
n+1 := x

(0)
n ∈ R such that (y

(0)
2 , . . . , y

(0)
n+1) ∈ Pw0 and

(y
(0)
1 , . . . , y

(0)
n+1) satisfies vector a (see Theorem 3.1).

Otherwise, if |S| > 1 then there are several edges outcoming from v0.
For each edge (v0, v1) one applies either Definition 2.7 or Definition 2.8, re-

spectively, and produces y
(0)
n+1 := x

(0)
n ∈ R such that (y

(0)
2 , . . . , y

(0)
n+1) ∈ Pv1 and

(y
(0)
1 , . . . , y

(0)
n+1) satisfies vector a (see Theorem 3.1). Recall (see Theorem 3.1 i))

that for certain edges (v0, v1) the value y
(0)
n+1 is unique, while for other edges

y
(0)
n+1 runs over an open interval.

An edge (v0, v1) for which the value y
(0)
n+1 is unique we call rigid, otherwise

if the values run over an open interval we call an edge augmenting. Due to
Theorem 3.1 i) the property of an edge to be rigid or augmenting does not
depend on a point y(0). Note that in case of S being a singleton, the edge is
rigid (cf. also Theorem 3.1 ii)).

So far, we have yielded a short tropical recurrent sequence (y
(0)
1 , . . . , y

(0)
n+1)

corresponding to an edge of G. We treat this as a base of recursion. Suppose
that we have yielded by recursion a tropical recurrent sequence (y

(0)
1 , . . . , y

(0)
n+k)

satisfying the vector a corresponding to a path T of the length k in G (the
length of a path is defined as the number of its edges). Let v be the last vertex

of T . Then we apply to v and to the suffix (y
(0)
k+1, . . . , y

(0)
n+k) of the yielded

sequence one of Definitions 2.5, 2.7, 2.8 as above in the base of recursion,
choosing an edge (v, w) of G and yielding y

(0)
n+k+1. Thereby, we get a tropical

recurrent sequence (y
(0)
1 , . . . , y

(0)
n+k+1) satisfying the vector a and corresponding

to the path Tw obtained by extending T by an edge (v, w). This completes the
recursive step.

Summarizing, we have established in this subsection the following proposi-
tion.

Proposition 3.2 For any path in the graph G any yielded (by the described
recursive process) sequence following this path is a tropical recurrent sequence
satisfying vector a.

Denote by QT ⊂ Rk+n a polyhedron of all the tropical recurrent sequences
which are yielded following the path T as described above (see Proposition 3.2).
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Thus, any yielded tropical recurrent sequence satisfies the vector a. The poly-
hedron QT is presented by the systems of linear equations and linear inequal-
ities produced in Definitions 2.5, 2.7, 2.8, respectively, applied to the edges of
the path T (see Theorem 3.1). Observe that when S 6= {1} Theorem 3.1 i)
implies that for the inequalities describing QT just the inequalities describing
Pv and Pw suffice, while when S = {1} one has to add to the latter inequalities
also the equality xn = y1 + a0 − an (see Theorem 3.1 ii)).

Observe that for a rigid edge (v, w) the polyhedron QTw ⊂ Rk+n+1 is
homeomorphic to QT , and the homeomorphism is provided by the projec-
tion along the last coordinate. For an augmenting edge (v, w) the polyhedron
QTw is homeomorphic to the cylinder QT ×R. In particular, in the latter case
dim(QTw) = dim(QT ) + 1. Summarizing, we have established the following
proposition.

Proposition 3.3 Let T be a finite path of the graph G with an ending vertex
v, and Tw be an extension of T by an edge (v, w). If the edge (v, w) is rigid
then the polyhedron QTw of all the finite tropical recurrent sequences yielded
following Tw (see Proposition 3.2) is homeomorphic to the polyhedron QT , while
if (v, w) is augmenting then QTw is homeomorphic to the cylinder QT × R.

3.3 Completeness of the construction of tropical recur-
rent sequences

Now, conversely to Proposition 3.2, we claim that every tropical recurrent
sequence y := (y1, y2, . . .) satisfying the vector a emerges while following an
appropriate path of the graph G (see subsection 3.2). For the base of recursion
denote q := min1≤j≤n{yj}. If for some 1 ≤ j ≤ n it holds yj−q > jM then the
coordinate yj we declare unbounded (cf. (11)), otherwise - bounded. There
exists an initial vertex v0 of G with the bounded and unbounded coordinates
specified as in the previous sentence (see Definition 2.1) such that (y1, . . . , yn) ∈
Pv0 .

For the recursive step suppose that a path T of G of a length k is al-
ready produced such that the sequence (y1, . . . , yn+k) is yielded following T as
in subsection 3.2 (see Proposition 3.2). Let v be the last vertex of T , then
y(k) := (yk+1, . . . , yk+n) ∈ Pv. Apply Theorem 3.1 to y(k), this provides a
unique edge (v, w) of G such that (yk+2, . . . , yk+n+1) ∈ Pw, thus the sequence
(y1, . . . , yn+k+1) is yielded following the extended path Tw. This completes the
proof (by recursion) of the claim.

Observe that one could choose, perhaps, another initial vertex v′ of G
such that (y1, . . . , yn) ∈ Pv′ (the latter inclusion is the only property of v′

we require). In fact, one could declare (in an arbitrary way) any coordinate
yj, 1 ≤ j ≤ n either bounded or unbounded if it fulfills the inequalities jM <
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yj − q ≤ (2n − j)M (see (8)). If yj − q ≤ jM then yj should be bounded
(cf. (11)), while if yj − q > (2n − j)M then yj should be unbounded. After
choosing an initial vertex v0, the rest of a path T in G is produced uniquely (see
Theorem 3.1 and subsection 3.2). Therefore, each tropical recurrent sequence
satisfying the vector a corresponds to just a finite number of paths in G as in
subsection 3.2 (see Proposition 3.2). Moreover, this number does not exceed
the number of vertices in G. Thus, a tropical prevariety of all the tropical
recurrent sequences of a length n + k satisfying the vector a has the same
dimension as the union of polyhedra QT over all the paths T of the length k
in G. Thus, the following proposition is established.

Proposition 3.4 i) The union of the polyhedra Pv over all the vertices v of
the graph G coincides with Rn.

ii) For any tropical recurrent sequence y := (y1, y2, . . .) satisfying the vector
a and a vertex v of G such that (y1, . . . , yn) ∈ Pv there exists a unique path T of
G starting with v such that y is yielded along T as described in subsection 3.2
(see Proposition 3.2).

For a path T in the graph G denote by d(T ) the number of augmenting
edges in T . By n(T ) ≤ n denote the number of (equivalence) classes of the
coordinates in the first vertex of T (see Remark 2.2). We summarize the proved
above in the following theorem taking into account Propositions 3.2, 3.3, 3.4.

Theorem 3.5 For any vector a := (a0, . . . , an) ∈ Zn+1 with an amplitude
M (4) the constructed finite directed graph G := Ga satisfies the following
properties. For a path T of a length k in G denote by QT ⊂ Rk+n the polyhedron
of all the tropical recurrent sequences satisfying the vector a and being yielded
while following the path T in G. Then dim(QT ) = d(T ) + n(T ). Moreover,
the union of polyhedra QT over all the paths T of the length k coincides with
the tropical prevariety of all the tropical recurrent sequences of the length k+n
satisfying the vector a.

4 Calculating the entropy via the graph of

tropical recurrent sequences

In this section we study the tropical Hilbert function d(s) := da(s) (see the
Introduction). Due to Theorem 3.5 d(s) equals the maximum of n(T ) + d(T )
over all the paths T of the length s− n in the graph G.

We call a simple cycle in G optimal if the quotient of the number of aug-
menting edges in the cycle to the length of the cycle is the maximal among
the simple cycles. This maximal quotient we denote by H := Ha. Later we
show that H equals the entropy H := Ha (Corollary 4.3). Clearly, H equals
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the maximum of the same quotient over all the cycles in G (not necessary,
simple).

First, we prove a lower bound on the tropical Hilbert function d(s).

Lemma 4.1 d(s) ≥ H(s− n).

Proof. Take an optimal simple cycle U in G. Denote the length of U by
L and the number of augmenting edges in U by m, then H = m/L. Assign
to each augmenting edge of U the number 1 − H and to each rigid edge the
number −H. Then the sum of all these numbers equals 0. Due to the lemma
about leaders [9] there exists a vertex u of U such that the sum of the assigned
numbers along any subpath of U starting with u is non-negative.

Consider a path T of a length s− n starting with the vertex previous to u
in U and following the cycle U (i. e. T can wind the cycle U several times).
According to Theorem 3.5 dim(QT ) ≥ H(s− n). 2

Denote by V the number of vertices in G. Now we proceed to an upper
bound on the tropical Hilbert function.

Lemma 4.2 d(s) ≤ Hs+ (1−H)(V + n).

Proof. Consider a path T of a length L in G. Take a vertex v1 of G which
occurs in T at least twice (provided that it does exist). Then the subpath of
T between these two occurrings constitues a cycle of a length L1. Remove this
cycle from T , and continue removing cycles from the resulting paths, while
it is possible. Let L2, L3, . . . , Lq be the lengths of the consecutively removed
cycles. Then

dT ≤ H(L1 + · · ·+ Lq) + (L− L1 − · · · − Lq) ≤ H(L1 + · · ·+ Lq) + V

(cf. Theorem 3.5). Therefore, d(s) ≤ H(s−n) + (1−H)V +n taking into the
account that L− L1 − · · · − Lq ≤ V . 2

Lemmata 4.1, 4.2 imply the following corollary (see (2)).

Corollary 4.3 H = H.

Remark 4.4 The entropy H is a rational number.

5 Quasi-linearity of the tropical Hilbert func-

tion

Lemma 5.1 Any path T of a length s− n greater than V 2(V + n) + V in
the graph G such that n(T ) + d(T ) = d(s), contains a vertex from an optimal
cycle.
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Proof. First consider the case when H = 0. Then any simple cycle in G
is optimal, and the statement of the lemma is true even with a better bound
s − n > V . Thus, from now on in the proof of the lemma we assume that
H > 0.

Recall that according to Theorem 3.5 dim(QT ) = n(T ) + d(T ). Slightly
modifying the construction from the proof of Lemma 4.2 take the first repe-
tition of some vertex v in T (provided that it is possible). Then the subpath
of T between these two occurrences of v constitutes a simple cycle of a length
L1 in T . Remove this cycle from T and continue removing cycles from the
resulting paths in a similar way, while it is possible. Denote by L2, L3, . . . , Lq

the lengths of the consecutively removed cycles. Denote by B the denominator
of H (cf. Remark 4.4), obviously B ≤ V (see section 4).

Assume the contrary to the claim of the lemma. Then

d(T ) ≤ H(L1 + · · ·+Lq)− q/B+(s−n−L1−· · ·−Lq) ≤ H(s−n)− q/B+V.

The first inequality follows from the statement that the amount of augmenting
edges in the cycle with the length Li, 1 ≤ i ≤ q is not greater than H ·Li− 1

B
.

Making use of Lemma 4.1 we obtain an inequality q/B ≤ V + n, hence q ≤
V (V + n). The path T consists of q cycles and a path without cycles. Each
cycle has length not more than V as well as the path without cycles. Therefore,
s− n ≤ V 2(V + n) + V since L1, . . . , Lq ≤ V . 2

Denote by R the least common multiple of the lengths of all the optimal
cycles.

Lemma 5.2 For any s > (V 2 + 1)(V +n) we have d(s+R) ≥ d(s) +HR.

Proof. Take a path T of the length s−n in G such that n(T )+d(T ) = d(s)
(cf. Theorem 3.5). Due to Lemma 5.1 T contains a vertex v which belongs
to an optimal cycle C of a length c. Glue in the path T at the vertex v the
number R/c of copies of the cycle C, the resulting path of the length s−n+R
denote by T1. In other words, in T1 one follows first T till the vertex v, then
there are R/c windings of the cycle C (finishing at v), finally after that one
again follows path T (starting at v). Clearly, d(T1) = d(T ) + (R/c)Hc. 2

Lemma 5.3 If for some s > (V 2 + 1)(V + n) we have

d(s+ iR) = d(s) +HiR, 0 ≤ i ≤ V ((1−H)V + n+ 1)

then d(s+ jr) = d(s) +HjR for any j ≥ 0.

Proof. Due to Lemma 5.2 it holds d(s+ jR) ≥ d(s) +HjR. Suppose that

d(s+ jR) > d(s) +HjR (18)
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for some j > V ((1−H)V + n+ 1), and take the minimal such j. There exists
a path T of the length s + jR − n in G for which n(T ) + d(T ) = d(s + jR).
For 0 ≤ i ≤ V ((1−H)V + n + 1) denote by Ti the beginning of the T of the
length s+ iR− n. One can represent the path T = TiTi as a concatenation of
two paths.

There exists a subsequence 0 ≤ i0 < i1 < · · · < i(1−H)V+n+1 ≤ V ((1 −
H)V +n+ 1) such that each path Til , 0 ≤ l ≤ (1−H)V +n+ 1 ends with the
same vertex v of G. Assume that there exists 0 ≤ l ≤ (1−H)V + n for which

d(Til+1
) ≤ d(Til) +H(il+1 − il)R. (19)

Then we consider a concatenation T := TilTil+1
being a path of the length

s+ jR− n− (il+1 − il)R in G. We obtain

d(T ) = d(T ) + d(Til)− d(Til+1
) > d(s) +HjR−H(il+1 − il)R

due to (18), (19), and we get a contradiction with the choice of the minimal j
(see (18)).

Thus, for every 0 ≤ l ≤ (1−H)V + n we have

d(Til+1
) ≥ d(Til) +H(il+1 − il)R + 1.

Summing up these inequalities for 0 ≤ l ≤ (1−H)V + n we conclude that

d(Ti(1−H)V +n+1
)− d(Ti0) ≥ H(i(1−H)V+n+1 − i0)R + (1−H)V + n+ 1

which contradicts to Lemmata 4.1, 4.2. 2

Note that V < (Mn)n (see Definition 2.1) and R < exp(V ). Lemmata 4.1,
4.2, 5.2, 5.3 entail the following theorem.

Theorem 5.4 For s > (V 2 +1)(V +n)+V ((1−H)V +n+1)2 the tropical
Hilbert function da(s) of the integer vector a = (a0, . . . , an) with an amplitude
at most M (4) fulfils the following equality:

da(s+R) = da(s) +HR.

for some integer R < exp((O(Mn))n) where H := Ha is the tropical entropy
of the vector a.

We call a function (from the natural numbers to themselves) quasi-linear if
it is a sum of a linear function and a periodic function with an integer period.

Corollary 5.5 The tropical Hilbert function

d(s) = Hs+ r(s)

is quasi-linear for s > (Mn)O(n) where r(s) is a periodic function with an
integer period less than exp((O(Mn))n).
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Example 5.6 Following [3], [4] one can show that
• d(0,0,0)(s) = ds/3e;
• d(0,1,0)(s) = ds/4e.

Remark 5.7 In case when the tropical entropy H = H(a) = 0 Lemma 4.2
implies that d(s) ≡ const for sufficiently large s, taking into account that d(s)
is a non-decreasing function. Recall (see [3]) that Newton polygon N (a) ⊂ R2

for a vector a = (a0, . . . , an) is defined as the convex hull of the rays {(i, y) :
y ≥ ai} for 0 ≤ i ≤ n. We say that the vector a is regular [3] if each point
(i, ai) with ai < ∞ is a vertex of N (a), and the indices i for which ai < ∞
constitute an arithmetic progression. It was proved in [3, Corollary 5.7] that
H(a) = 0 iff a is regular. For regular a in case when each (i, ai), 0 ≤ i ≤ n
is a vertex of N (a) one can deduce from [2, Corollary 4.9] that d(s) = s for
s ≤ n and d(s) = n for s ≥ n.

6 Tropical boolean vectors

As we already mentioned it would be interesting to extend the results of the
paper to arbitrary vectors a involving infinite coordinates. The first step to
implementing this idea can be considered as the construction of an appropriate
graph Ga (cf. section 2) for the case when a is a tropical boolean vector (see
the Introduction). In this case, the construction looks simpler and contains less
technical details comparing to the case considered in the previous sections 2,
3.

6.1 Construction of a graph for tropical boolean vectors

We call a vector a = (a0, . . . , an) tropical boolean vector if for all 0 6 i 6 n it
holds either ai = 0 or ai =∞, and a0 = an = 0.

Below we construct a directed graph G := Ga. First we define the vertices
of G.

Definition 6.1 Every its vertex v corresponds to an (open in its linear
hull) polyhedron P := Pv ⊂ Rn with the condition that for each pair of coordi-
nates yr, yt, 1 ≤ r, t ≤ n a system of equations and strict inequalities defining
P contains either yr = yt or yr < yt.

These linear restrictions set the order on the coordinates y1, . . . , yn. The
polyhedra {Pv} constitute a partition of Rn. When Pv is empty we ignore v.
Now we define the edges of G.

Definition 6.2 There is an edge (v, w) in G iff there exist vectors
(y0, . . . , yn−1) ∈ Pv, (y1, . . . , yn) ∈ Pw such that the sequence (y0, . . . , yn) ∈
Rn+1 satisfies the vector a.
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Similar to subsection 2.2 for a vertex v of G define S := Sv as a set of
0 ≤ t ≤ n − 1 such that yt = at + yt = min0≤j≤n−1{aj + yj}. In other words,
t ∈ S iff at = 0 and yt ≤ yj for each 0 ≤ j ≤ n − 1 such that aj = 0. The
definition of S does not depend on a choice of a point (y0, . . . , yn−1) ∈ Pv (cf.
Lemma 2.4). The following theorem is similar to Theorem 3.1.

Theorem 6.3 Let v be a vertex of the graph G := Ga and (y0, . . . , yn−1) ∈
Pv.

If a point (z0, . . . , zn−1) ∈ Pv and a sequence (z0, . . . , zn) ∈ Rn+1 satisfies
the vector a then (z1, . . . , zn) ∈ Pw for some edge (v, w) of G.

Conversely, let (y1, . . . , yn) ∈ Pw for an edge (v, w) of G, and the sequence
(y0, . . . , yn) ∈ Rn+1 satisfy the vector a. If t ∈ S for some 0 ≤ t ≤ n− 1 then
yn ≥ yt.

i) Let t ∈ S for some 1 ≤ t ≤ n− 1 and yr = yn for some 1 ≤ r ≤ n− 1.
Assume that a point (z0, . . . , zn−1) ∈ Pv. If a point (z1, . . . , zn−1, z) ∈ Pw then
z = zr. The point (z1, . . . , zn−1, zr) ∈ Pw, and the sequence (z0, . . . , zn−1, zr) ∈
Rn+1 satisfies the vector a.

ii) Let t ∈ S for some 1 ≤ t ≤ n − 1. Assume that yr1 < yn for some
1 ≤ r1 ≤ n− 1 and for every 1 ≤ r ≤ n− 1 neither yr1 < yr ≤ yn nor yn ≤ yr
holds. Then for any point (z0, . . . , zn−1) ∈ Pv if a point (z1, . . . , zn−1, z) ∈ Pw

then zr1 < z and for every 1 ≤ r ≤ n − 1 neither zr1 < zr ≤ zn nor zn ≤ zr
holds. For any zr1 < zn ∈ R the point (z1, . . . , zn) ∈ Pw and the sequence
(z0, . . . , zn) ∈ Rn+1 satisfies the vector a.

iii) Let t ∈ S for some 1 ≤ t ≤ n − 1. Assume that yr1 < yn < yr2 for
some 1 ≤ r1, r2 ≤ n − 1, and for every 1 ≤ r ≤ n − 1 neither yr1 < yr ≤ yn
nor yn ≤ yr < yr2 holds. Then for any point (z0, . . . , zn−1) ∈ Pv if a point
(z1, . . . , zn−1, z) ∈ Pw then zr1 < z < zr2 and for every 1 ≤ r ≤ n − 1 neither
zr1 < zr ≤ zn nor zn ≤ zr < zr2 holds. For any zn ∈ R, zr1 < zn < zr2 the point
(z1, . . . , zn) ∈ Pw and the sequence (z0, . . . , zn) ∈ Rn+1 satisfies the vector a.

iv) Let S = {1}. Then yn = y0. For any point (z0, . . . , zn−1) ∈ Pv the point
(z1, . . . , zn−1, z0) ∈ Pw and the sequence (z0, . . . , zn−1, z0) ∈ Rn+1 satisfies the
vector a.

Proof. An informal idea of the proof is to transfer inequalities on the
differences between the coordinates y to the corresponding inequalities on the
coordinates z, and back.

Let (z0, . . . , zn−1) ∈ Pv and a sequence (z0, . . . , zn−1, zn) ∈ Rn+1 satisfy the
vector a. Assume that t ∈ S for some 1 ≤ t ≤ n− 1, then

zt = at + zt = min
0≤j≤n

{aj + zj}. (20)
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First, consider the case when t ∈ S for some 1 ≤ t ≤ n− 1 and zn = zr for
some 1 ≤ r ≤ n (cf. i)). Then the sequence (y0, . . . , yn−1, yn = yr) ∈ Rn+1 also
satisfies the vector a. Indeed, (20) implies that yt = at+yt = min0≤j≤n{aj+yj}.
Therefore, due to Definition 6.2 there exists an edge (v, w) of G such that
(y1, . . . , yn−1, yn = yr) ∈ Pw. Hence (z1, . . . , zn−1, zn = zr) ∈ Pw as well. This
proves the first statement of the theorem in the case under consideration.

Now consider the case when t ∈ S for some 1 ≤ t ≤ n − 1 and zn > zr
for each 1 ≤ r ≤ n − 1 (cf. ii)). Then for any y > max1≤j≤n−1{yj} the
sequence (y0, . . . , yn−1, y) ∈ Rn+1 satisfies the vector a. Indeed, (20) implies
that yt = at + yt = min{min0≤j≤n−1{aj + yj}, y}. Due to Definition 6.2 there
exists an edge (v, w) (independent of y) of G such that (y1, . . . , yn−1, y) ∈ Pw.
Hence (z1, . . . , zn−1, zn) ∈ Pw as well. This proves the first statement of the
theorem in the case under consideration.

The case when t ∈ S for some 1 ≤ t ≤ n − 1 and zr1 < zn < zr2 for some
1 ≤ r1, r2 ≤ n − 1 such that for each 1 ≤ r ≤ n − 1 neither zr1 < zr ≤ zn
nor zn ≤ zr < zr2 holds (cf. iii)) can be studied in a similar manner as the
previous case.

Finally, consider the case S = {1} (cf. iv)). Then z0 < zl for each
1 ≤ l ≤ n − 1 for which al = 0. Therefore, zn = z0. Hence the se-
quence (y0, . . . , yn−1, y0) ∈ Rn+1 satisfies the vector a. Due to Definition 6.2
there exists an edge (v, w) of G such that (y1, . . . , yn−1, y0) ∈ Pw. Therefore
(z1, . . . , zn−1, z0) ∈ Pw as well. This proves the first statement of the theorem.

One can directly verify the second statement of the theorem. 2

Corollary 6.4 The edges of the graph G do not depend on choices of points
(y0, . . . , yn−1) ∈ Pv.

Remark 6.5 Let an edge (v, w) fulfill the assumptions of one of the items
Theorem 6.3 i), ii), iii) and a point (z0, . . . , zn−1) ∈ Pv. Then for any z ∈ R
such that (z1, . . . , zn−1, z) ∈ Pw the sequence (z0, . . . , zn−1, z) ∈ Rn+1 satisfies
the vector a. In contrast, in case of Theorem 6.3 iv) only for the value z = z0 it
holds that the sequence (z0, . . . , zn−1, z) satisfies the vector a (cf. Theorem 3.1).

6.2 The polyhedron of tropical recurrent sequences
yielded along a path of the graph

Consider an arbitrary path T of a length k with vertices v0, . . . , vk in the graph
Ga. Similar to subsection 2.2 we describe a recursive process yielding along T
tropical recurrent sequences satisfying the vector a. For the first vertex v0 take
any vector (y1, . . . , yn) ∈ Pv0 . Assume by recursion that a tropical recurrent
sequence (y1, . . . , yk+n) is already yielded along T . Then (yk+1, . . . , yk+n) ∈
Pvk . Take an edge (vk, w) of G and denote by Tw the extension of T by
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(vk, w). We choose yk+n+1 ∈ R such that (yk+2, . . . , yk+n+1) ∈ Pw and the
sequence (yk+1, . . . , yk+n+1) ∈ Rn+1 satisfies the vector a. Thus, the tropical
recurrent sequence (y1, . . . , yk+n+1) is yielded along Tw. Theorem 6.3 justifies
that a required yk+n+1 exists and moreover, Theorem 6.3 describes all possible
yk+n+1. This completes the description of the recursive process.

Denote by QT ⊂ Rk+n the set of all the tropical recurrent sequences yielded
along T by the described recursive process. One can define QT by imposing
linear inequalities for each edge of T . Say, for an edge (vi, vi+1), 0 ≤ i ≤
k − 1 we impose that the point (yi+1, . . . , yi+n+1) belongs to Pvi , the point
(yi+2, . . . , yi+n+2) belongs to Pvi+1

. This suffices for edges (vi, vi+1) fulfilling the
items Theorem 6.3 i), ii), iii). In case of Theorem 6.3 iv) one has to impose an
extra condition that yi+1 = yi+n+2, i.e. the sequence (yi+1, . . . , yi+n+2) ∈ Rn+1

satisfies the vector a. Thus, QT is (an open in its linear hull) polyhedron.
If an edge (vi, vi+1) fulfills one of the items Theorem 6.3 i), iv) we call the

edge rigid, otherwise, if the edge fulfills one of the items Theorem 6.3 ii), iii)
we call the edge augmenting. Similar to subsection 2.2 when the edge (vk, w)
is rigid the value of yk+n+1 is unique, while when the edge is augmenting the
values of yk+n+1 vary in an open interval. Therefore, when the edge (vk, w)
is rigid the polyhedron QTw is homeomophic to QT , while when the edge is
augmenting the polyhedron QTw is homeomophic to QT × R.

Conversely, Theorem 6.3 implies that any tropical recurrent sequence sat-
isfying the vector a emerges along a suitable path of G in the described above
recursive process. Thus, the tropical prevariety of all tropical recurrent se-
quences of a length k + n satisfying the vector a coincides with the union of
polyhedra QT over all the paths of the length k in G.

For a path T in the graph G denote by d(T ) the number of augmenting
edges in T . By n(T ) ≤ n denote the number of the pairwise distinct coor-
dinates in (y1, . . . , yn) ∈ Pv0 for the first vertex v0 of T . We summarize the
proved above in the following theorem which is analogous to the Theorem 3.5
for the case when a is a tropical boolean vector.

Theorem 6.6 For any tropical boolean vector a := (a0, . . . , an) (i. e. a0 =
an = 0 and each ai, 0 ≤ i ≤ n equals either 0 or ∞) a finite directed graph
G := Ga is construced with the following properties. For an arbitrary path T of
a length k in G denote by QT ⊂ Rk+n the polyhedron of all the tropical recurrent
sequences satisfying the vector a and corresponding (as described above in this
subsection) to the path T in G. Then dim(QT ) = d(T ) + n(T ). Moreover, the
union of polyhedra QT over all the paths T of the length k coincides with the
tropical prevariety of all the tropical recurrent sequences of the length k + n
satisfying the vector a.

Now let us notice that all the arguments presented in sections 4 and 5 for
the graph constructed in section 2 are also true in the case of tropical boolean
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vectors. Indeed, both definitions of n(T ) and d(T ) and thereby, da(s) coincide
with the definitions for the case when a has a finite amplitude. Moreover, an
analogue of Theorem 3.5 holds in the tropical boolean case (Theorem 6.6). As
all the statements from sections 4 and 5 (except of Theorem 5.4 and Corol-
lary 5.5) depend only on da(s) and on Theorem 3.5, we can formulate the
following corollaries.

Corollary 6.7 Lemmata 4.1, 4.2, 5.1, 5.2, 5.3 and Corollary 4.3 hold
when a is a tropical boolean vector.

Proof. Follows from the proofs of the mentioned statements. 2

Corollary 6.8 Theorem 5.4 and Corollary 5.5 hold when a is a tropical
boolean vector putting in the bounds M = 1.

Proof. From subsection 6.1 it follows that V is less than the amount of orders
on an n-element set, hence it is less than nn. Thus, we can put M = 1. in the
bounds. The remaining part of the proof is literally as in the proofs of the
mentioned statements. 2

7 Sharp bounds on the tropical entropy

7.1 Sharp lower bound on the positive entropy

In this section our main goal is to prove that if for a vector a = (a0, . . . , an) ∈
Zn+1 its tropical entropy H(a) > 0 then H(a) > 1

4
. Together with the example

[3, Example 5.5] demonstrating that H(0, 1, 0) = 1/4 (cf. also Example 5.6)
we will conclude that this bound is sharp. This result is the answer to the
hypothesis that was formulated in [3, Remark 5.6] (for the criterion of positivity
of the tropical entropy see [3, Corollary 5.7], cf. also Remark 5.7).

Theorem 7.1 If a vector a is not regular then H(a) > 1
4
.

Proof. Consider Newton polygon N (a) of the vector a (see Remark 5.7). It
has several bounded edges and two unbounded edges. First, assume that there
is a bounded edge of N (a) such that it contains at least three points of a,
i. e. of the form (i, ai) (in this case we follow the proof of [3, Theorem 5.5]).
Making a suitable affine transformation one can suppose w. l. o. g. that
this edge lies on the abscissas axis and (0, 0) is its left end-point. Consider
the points of a located on this edge: I := {(i, 0) : ai = 0}, then |I| > 3 by
our assumption. One can assume w.l.o.g. that the greatest common divisor
GCD(I) of the differences i1 − i2 of all the pairs of the elements i1, i2 ∈ I
of I equals 1. Otherwise, one can consider separately all GCD(I) arithmetic
progressions with the difference GCD(I).
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Pick any three elements of I not all with the same parity, say 0, 2i, j w.l.o.g.
where i > 1 and j being odd. Consider the following tropical recurrent se-
quence z satisfying a :

� z2l+1 = 0, for 0 ≤ l ∈ Z;

� z2(2qi+r) = 0, for 0 ≤ q ∈ Z and 0 6 r < i;

� z2((2q+1)i+r) > 0, for 0 ≤ q ∈ Z and 0 6 r < i.

Here and below while defining sequences zs, we consider only non-negative
subscripts s. Taking finite fragments (z1, . . . , zN) with growing N we conclude
that H(a) > 1

2+1+1
= 1

4
.

Now we assume that no edge of N (a) contains a point of a other than two
vertices of this edge. We take an edge of N (a) with the biggest difference
of indices of its vertices. Due to a suitable affine transformation we suppose
w.l.o.g. that these vertices are (0, 0) and (n0, 0). There exists i ∈ J such that
n0 does not divide i, since a is not regular. Among such i we pick i0 for which
c := ai0 is minimal. Then c > 0. Denote k = GCD(n0, i0). When n0

k
is even

we consider the sequence {zi}0≤i∈Z:

� zqn0−2ji0+i = 0, when 0 6 2j 6 n0

k
;

� z2qn0−(2j+1)i0+i = c, when 0 < 2j + 1 < n0

k
;

� z(2q+1)n0−(2j+1)i0+i > c, when 0 < 2j + 1 < n0

k
,

for 0 ≤ q ∈ Z, 0 6 i < k. This sequence satisfies a and taking finite fragments
(z1, . . . , zN) with growing N we conclude that H(a) > 1

2+1+1
= 1

4
. Thus further

we suppose that n0

k
is odd.

We denote the first (respectively, the last) index of a by b (respectively, by
e). Thus, the projection of N (a) is the interval from b to e on the abscissas
axis. Before we prove the statement of the theorem in general case let us prove
the following lemma.

Lemma 7.2 If there exists i1 6= i0 such that n0 - i1 and ai1 = ai0 then
H(a) > 1

4
.

Proof.

1. Let n0|(i1 − i0). Then we consider a sequence {zi}i∈Z such that:

� zqn0−2ji0+i = 0 when 0 6 2j < n0

k
;

� zqn0−(2j+1)i0+i > c when 0 < 2j + 1 < n0

k
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for 0 ≤ q ∈ Z, 0 6 i < k. This sequence satisfies a.

Indeed,

� For m = qn0 − 2ji0 + i we have minb6v6e{av + zv+m} = 0, the
minimum is attained at indices m and m+ n0.

� For m = qn0 − (2j + 1)i0 + i we have minb6v6e{av + zv+m} = c, the
minimum is attained at indices m+ i0 and m+ i1.

Taking finite fragments (z1, . . . , zN) with growing N we conclude that

H(a) > 1
2

for even n0

k
and H(a) >

n0
k
−1

2
·k

n0
> 1

3
.

2. Let n0 - (i1 − i0).

(a) Assume that k = 1 (since we consider the case where n0

k
is odd, thus

n0 is odd).

First, consider sequence {zi}0≤i∈Z such that:

� zqn0−2ji0 = 0 when 0 6 2j 6 n0;

� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� z(2q+1)n0−(2j+1)i0 > c when 0 < 2j + 1 < n0

for 0 ≤ q ∈ Z. This sequence satisfies a.

Indeed,

� For m = qn0 − 2ji0 we have minb6v6e{av + zv+m} = 0, the
minimum is attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0 we have minb6v6e{av + zv+m} = c,
the minimum is attained at indices m+ i0 and m.

� For m = (2q+1)n0−(2j+1)i0 we have minb6v6e{av+zv+m} = c,
the minimum is attained at indices m+ i0 and m+ n0.

Now, we claim that there exists 0 < 2l + 1 < n0 such that
zqn0−(2l+1)i0+i1 = 0 for all 0 ≤ q ∈ Z. Note, that if we found 2l′ + 1
such that zqn0−(2l′+1)i0+i′1

= 0 for all 0 ≤ q ∈ Z for some i′1 ≡ i1,
then zqn0−(2l′+1)i0+i1 = 0 for all 0 ≤ q ∈ Z.
Recall that GCD(i0, n0) = 1 and n0 - i1, therefore there exists mi1

such that mi1i0 ≡ i1 (mod n0) and 0 < mi1 < n0.

� If mi1 is odd then the required 2l + 1 equals n0 − 2. Indeed,
qn0−(n0−2)i0+mi1i0 = qn0−(n0−2−mi1)i0. 0 6 n0−2−mi1 <
n0 − 2 and (n0 − 1−mi1) is even, thus zqn0−(n0−2−mi1

)i0 = 0.

� If mi1 is even then the required 2l + 1 equals mi1 − 1. Indeed,
qn0 − (mi1 − 1)i0 + mi1i0 = qn0 + i0 = (q + i0)n0 − (n0 − 1)i0.
0 < n0 − 1 < n0 and n0 − 1 is even, thus z(q+i0)n0−(n0−1)i0 = 0.
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Now consider a sequence {zi}0≤i∈Z such that:

� zqn0−2ji0 = 0 when 0 6 2j 6 n0;

� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0 and l 6= j;

� z2qn0−(2l+1)i0 > 0;

� z(2q+1)n0−(2j+1)i0 > c when 0 < 2j + 1 < n0

for 0 ≤ q ∈ Z. This sequence satisfies a. Indeed,

� For m = qn0 − 2ji0 we have minb6v6e{av + zv+m} = 0, the
minimum is attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0 and j 6= l we have minb6v6e{av +
zv+m} = c, the minimum is attained at indices m+ i0 and m.

� For m = 2qn0 − (2l + 1)i0 we have minb6v6e{av + zv+m} = c,
the minimum is attained at indices m+ i0 and m+ i1.

� For m = (2q+1)n0−(2j+1)i0 we have minb6v6e{av+zv+m} = c,
the minimum is attained at indices m+ i0 and m+ n0.

Taking finite fragments (z1, . . . , zN) with growing N we conclude

that H(a) >
n−1
2

+1

2n
> 1

4
.

(b) Now assume that k > 1. Define k1 := GCD(i1, n0). W.l.o.g. we can
consider that k1 > k (otherwise we can swap i0 and i1).

We will find k different indices l1, . . . lk such that zqn0+lj+i1 = 0 for
all 0 ≤ q ∈ Z and for all 1 6 j 6 k and lj1 6≡ lj2 for all j1 6= j2.
Note, that if i′1 ≡ i1 (mod n0) and zqn0+lj+i′1

= 0 for all 0 ≤ q ∈ Z
and for all 1 6 j 6 k then it is true for i1. Thus, we can assume
that 0 6 i1 < n0. We can represent i1 as s · k + r, where 0 6 r < k.
We study two different cases:

i. r = 0.
Denote n′ := n0

k
, i′0 = i0

k
and i′1 := i1

k
. Also denote a′ =

(aj)j≡0 (mod k). Similar to the previous case (k = 1) we can con-
sider sequence {z′i}0≤i∈Z that provides the bound H(a′) > 1

4
.

Now take sequence {zi}0≤i∈Z as follows:

� zi·k+r = z′i, for 0 ≤ i ∈ Z and 0 6 r < k.

This provides us the bound H(a) > 1
4
.

ii. r 6= 0
Note, that in this case k1 > k and thus s 6= 0 and s + 1 6= n0

k
.

Consider a′ = (aj)j≡0 (mod k). Sequence {z′i}0≤i∈Z is defined as
follows:

� z′
q′

n0
k
−2j i0

k

= 0, where 0 6 2j < n0

k
;

� z′
2q′

n0
k
−(2j+1)

i0
k

= c, where 0 < 2j + 1 < n0

k
;
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� z′
(2q′+1)

n0
k
−(2j+1)

i0
k

> c, where 0 < 2j + 1 < n0

k

for 0 ≤ q′ ∈ Z. Here we have three different cases:

A. s ≡ i0
k

(mod n0

k
).

From the proof for k = 1 we know that there exists 0 < 2l+
1 < n0

k
such that z′

q′
n0
k
−(2l+1)

i0
k
+(s+1)

= 0 for all 0 ≤ q′ ∈ Z.
Consider {zi}0≤i∈Z as follows:

� zqn0−2ji0+i, where 0 6 2j < n0 and 0 6 i < k;

� z2qn0−(2j+1)i0+i = c, where 0 < 2j + 1 < n0, j 6= l and
0 6 i < k;

� z2qn0−(2l+1)i0+i > c, where 0 6 i < k;

� z(2q+1)n0−(2l+1)i0+i, where 0 < 2j + 1 < n0 and 0 6 i < k

for 0 ≤ q ∈ Z. We claim that {zi}i∈Z satisfies a.
Indeed,

� For m = qn0−2ji0 + i we have minb6v6e{av +zv+m} = 0,
the minimum is attained at indices m and m+ n0.

� For m = 2qn0−(2j+1)i0+i, j 6= l we have minb6v6e{av+
zv+m} = c, the minimum is attained at indices m and
m+ i0.

� For m = (2q + 1)n0 − (2j + 1)i0 + i, j 6= l we have
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m+ n0 and m+ i0.

� For m = qn0−(2l+1)i0+i we have minb6v6e{av+zv+m} =
c, the minimum is attained at indices m+ i1 and m+ i0.

Taking finite fragments (z1, . . . , zN) with growingN we con-

clude that H(a) >
n
k
−1

2
·k+k

2n
> 1

4

B. s+ 1 ≡ i0
k

(mod n0

k
).

This case is the same as the previous one except that we
need to find 0 < 2l + 1 < n0

k
such that z′

q′
n0
k
−(2l+1)

i0
k
+s

= 0

for all 0 ≤ q′ ∈ Z.
Taking finite fragments (z1, . . . , zN) with growingN we con-

clude that H(a) >
n0
k
−1

2
·k+k

2n0
> 1

4

C. s, s+ 1 6≡ i0
k

(mod n0

k
).

From the proof for k = 1 we know that there exist 0 <
2l + 1, 2l′ + 1 < n0

k
such that z′

q′
n0
k
−(2l+1)

i0
k
+s

= 0 and

z′
q′

n0
k
−(2l′+1)

i0
k
+(s+1)

= 0 for all 0 ≤ q′ ∈ Z.
Consider {zi}0≤i∈Z as follows:
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� zqn0−2ji0+i, where 0 6 2j < n0 and 0 6 i < k;

� z2qn0−(2j+1)i0+i = c, where 0 < 2j + 1 < n0, j 6= l, l′ and
0 6 i < k;

� z2qn0−(2l+1)i0+i > c, where 0 6 i < k − r;
� z2qn0−(2l+1)i0+i = c, where k − r 6 i < k;

� z2qn0−(2l′+1)i0+i = c, where 0 6 i < k − r;
� z2qn0−(2l′+1)i0+i > c, where k − r 6 i < k;

� z2qn0−(2l+1)i0+i > c, where 0 6 i < k;

� z(2q+1)n0−(2l+1)i0+i, where 0 < 2j + 1 < n0 and 0 6 i < k

for 0 ≤ q ∈ Z. We claim that {zi}i∈Z satisfies a.
Indeed,

� For m = qn0−2ji0 + i we have minb6v6e{av +zv+m} = 0,
the minimum is attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0 + i, j 6= l, l′ we have
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m and m+ i0.

� For m = 2qn0 − (2l + 1)i0 + i, k − r 6 i < k we have
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m and m+ i0.

� For m = 2qn0 − (2l′ + 1)i0 + i, we have 0 6 i < k − r
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m and m+ i0.

� For m = (2q + 1)n0 − (2j + 1)i0 + i, j 6= l, l′ we have
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m+ n0 and m+ i0.

� For m = (2q + 1)n0 − (2l + 1)i0 + i, k − r 6 i < k we
have minb6v6e{av + zv+m} = c, the minimum is attained
at indices m+ n0 and m+ i0.

� For m = (2q + 1)n0 − (2l′ + 1)i0 + i, 0 6 i < k − r we
have minb6v6e{av + zv+m} = c, the minimum is attained
at indices m+ n0 and m+ i0.

� For m = qn0 − (2l + 1)i0 + i, 0 6 i < k − r we have
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m+ i1 and m+ i0.

� For m = qn0 − (2l′ + 1)i0 + i, k − r 6 i < k we have
minb6v6e{av + zv+m} = c, the minimum is attained at
indices m+ i1 and m+ i0.

Taking finite fragments (z1, . . . , zN) with growingN we con-

clude that H(a) >
n0
k
−1

2
·k+k

2n0
> 1

4
.
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2

Now we are returning to the proof of the theorem. Assume that there is
no such n - ii, i0 6= i1 that ai1 = ai0 . As in the proof of Lemma 7.2 we will
consider two different cases.

1. k = 1.

Define the following sequence {z′i}0≤i∈Z:

� z′qn0−2ji0 = 0 when 0 6 2j < n0;

� z′2qn0−(2j+1)i0
= c when 0 < 2j + 1 < n0;

� z′(2q+1)n0−(2j+1)i0
> c when 0 < 2j + 1 < n0

for 0 ≤ q ∈ Z.
We define L0 := {b 6 v 6 e, n0 - v, v 6= 0, n0, such that z′qn0−(n0−1)i0+v = 0

for all q ∈ Z}. Set x := min {av | v ∈ L0}. Also define ix by the equation
aix = x. If such ix is not unique then we choose any ix with such property.

(a) First assume that x 6 2c.

In this case we define a sequence {zi}0≤i∈Z as follows:

� zqn0−2ji0 = 0 when 0 6 2j < n0, 2j 6= n0 − 1;

� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� z(2q+1)n0−(2j+1)i0 > x when 0 < 2j + 1 < n0

� z2qn0−(n0−1)i0 = x;

� z(2q+1)n0−(n0−1)i0 > x

for 0 ≤ q ∈ Z. We claim that {zi}i∈Z satisfies a.

Indeed,

� For m = qn0−2ji0, 2j 6= n0−1 we have minb6v6e{av +zv+m} =
0, the minimum is attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0, 2j 6= n0 − 1 we have minb6v6e{av +
zv+m} = c, the minimum is attained at indices m and m+ i0.

� For m = (2q+1)n0−(2j+1)i0 we have minb6v6e{av+zv+m} = c,
the minimum is attained at indices m+ n0 and m+ i0.

� For m = 2qn0−(n−1)i0, we have minb6v6e{av +zv+m} = x, the
minimum is attained at indices m and m+ix (because av+zv+m

is at least x if v ∈ L0 and av + zv+m > min{c+ c, c+ x} > x if
v 6∈ L0).

� For m = (2q+1)n0−(n0−1)i0 we have minb6v6e{av+zv+m} = x,
the minimum is attained at indices m+n0 and m+ ix (because
av + zv+m is at least x if v ∈ L0 and av + zv+m > min{c+ c, c+
x} > x if v 6∈ L0).
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Taking finite fragments (z1, . . . , zN) with growing N we conclude

that H(a) >
n0−1

2
+1

2n0
> 1

4
.

(b) Now we assume that x > 2c.

Denote minv 6=i0, v-n0{av} by s. Note, that s > c. Indeed, other-
wise we can use lemma 7.2 and get the required bound. De-
note minv 6=0,n0, v|n0{av} by d. Note, that d > 0. Finally, set y :=
min{s+ c, x, 2c+ d}.
Define a sequence {zi}0≤i∈Z as follows:

� zqn0−2ji0 = 0 when 0 6 2j < n0, 2j 6= n0 − 1;

� z2qn0−(2j+1)i0 = c when 0 < 2j + 1 < n0;

� z(2q+1)n0−(2j+1)i0 > y when 0 < 2j + 1 < n0

� z4qn0−(n0−1)i0 = 2c;

� z(4q+1)n0−(n0−1)i0 = tq, where tq takes an arbitrary value from
the interval [2c, y];

� z(4q+2)n0−(n0−1)i0 = tq, where tq takes an arbitrary value from
the interval [2c, y];

� z(4q+3)n0−(n0−1)i0 = 2c

for 0 ≤ q ∈ Z. We claim that {zi}i∈Z satisfies a.

Indeed,

� For m = qn0−2ji0, we have 2j 6= n0−1 minb6v6e{av +zv+m} =
0, the minimum is attained at indices m and m+ n0.

� For m = 2qn0 − (2j + 1)i0, 2j 6= n0 − 1 we have minb6v6e{av +
zv+m} = c, the minimum is attained at indices m and m+ i0.

� For m = (2q+1)n0−(2j+1)i0 we have minb6v6e{av+zv+m} = c,
the minimum is attained at indices m+ n0 and m+ i0.

� For m = 4qn0 − (n0 − 1)i0, we have minb6v6e{av + zv+m} = 2c,
the minimum is attained at indices m and m + i0 (because
av + zv+m is at least x > 2c if v ∈ L0, and av + zv+m > min{s+
c, 0 + tq, d+ 2c} > 2c if v 6∈ L0).

� Form = (4q+1)n0−(n0−1)i0 we have minb6v6e{av+zv+m} = tq,
the minimum is attained at indices m and m + n0 (because
av + zv+m is at least x > y > tq if v ∈ L0, and av + zv+m >
min{c+ y, s+ c, d+ 2c} > y > tq if v 6∈ L0).

� For m = (4q+2)n0−(n0−1)i0, we have minb6v6e{av +zv+m} =
2c, the minimum is attained at indices m + n0 and m + i0
(because av +zv+m is at least x > 2c if v ∈ L0, and av +zv+m >
min{s+ c, 0 + tq, d+ 2c} > 2c if v 6∈ L0).

� For m = (4q+3)n0−(n0−1)i0, we have minb6v6e{av +zv+m} =
2c, the minimum is attained at indices m and m+ n0 (because
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av + zv+m is at least x > 2c if v ∈ L0, and av + zv+m > min{c+
y, s+ c, 0 + tq, d+ 2c} > 2c if v 6∈ L0).

Taking finite fragments (z1, . . . , zN) with growing N we conclude
that H(a) > n0−1+1

4n0
= 1

4
.

2. k > 1.

Consider the following sequence {z′i}0≤i∈Z:

� z′qn0−2ji0+i = 0 when 0 6 2j 6 n0;

� z′2qn0−(2j+1)i0+i = c when 0 < 2j + 1 < n0;

� z′(2q+1)n0−(2j+1)i0+i > c when 0 < 2j + 1 < n0

for 0 ≤ q ∈ Z and 0 6 i < k.

For 0 6 i < k define L0,i := {b 6 v 6 e, n0 - v, v 6= 0, n0 such that
z′qn0−(n0−1)i0+i+v = 0 for all 0 ≤ q ∈ Z and such that qn0 − (n0 − 1)i0 +

i + v 6= q′n0 − (n0 − 1)i0 + i′ for any q′ and for any 0 6 i′ < k}. Set
xi := min{av | v ∈ L0,i}. Define ix,i by the equation aix,i = xi.

Denote minv 6=i0, v-n0{av} by s. Note, that s > c. Indeed, otherwise we can
use lemma 7.2 and get the required bound. Denote minv 6=0,n0, v|n0{av}
by d. Note, that d > 0. For 0 6 i < k set yi := min{s + c, xi, 2c + d}.
Finally, define M := max06i<k{xi, yi}.

Define a sequence {zi}0≤i∈Z as follows:

• zqn0−2ji0+i = 0 when 0 6 2j 6 n0, 2j 6= (n0 − 1), where 0 6 i < k;

• z2qn0−(2j+1)i0+i = c when 0 < 2j + 1 < n0, where 0 6 i < k;

• z(2q+1)n0−(2j+1)i0+i >M when 0 < 2j + 1 < n0, where 0 6 i < k;

For 0 6 i < k set:

(a) if xi 6 2c then:

• z2qn0−(n0−1)i0+i = xi;

• z(2q+1)n0−(n0−1)i0+i >M ;

(b) if xi > 2c then:

• z4qn0−(n0−1)i0+i = 2c;

• z(4q+1)n0−(n0−1)i0+i = tq,i, where tq,i takes an arbitrary value
from the interval [2c, yi];

• z(4q+2)n0−(n0−1)i0+i = tq,i, where tq,i takes an arbitrary value
from the interval [2c, yi];
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• z(4q+3)n0−(n0−1)i0+i = 2c

for 0 ≤ q ∈ Z. We claim that this sequence satisfies a. It is sufficient
to check that a subsequence {zqn0−(n−1)i0+i′}0≤q∈Z does not change the
minima in the subsequence {zqn0−(n−1)i0+i}0≤q∈Z with i 6= i′ in the defini-
tion of satisfiability of the vector a (see (1)). The latter is true because
zqn0−(n0−1)i0+i′ > c and thus zqn0−(n0−1)i0+i′ + av > c+ s > xi (if xi 6 2c)
and zqn0−(n0−1)i0+i′ + av > c+ s > yi (if xi > 2c).

Taking finite fragments (z1, . . . , zN) with growing N we conclude that in

the worst case H(a) >
(
n0
k
−1)k+k

4n0
= 1

4
.

2

7.2 Sharp upper bound on the tropical entropy in case
of a single bounded edge of Newton polygon

The last theorem is an upper bound on H(a) in case of a single bounded edge
of Newton polygon N (a). We conjecture that this bound holds for an arbitrary
vector a. We mention that in [3] a weaker upper bound 1−1/n was established
for an arbitrary vector a. Together with the result H(a) = 1− 2/(n+ 1) for a
vector a = (a0, . . . , an) with a0 = · · · = an = 0 [3, Example 5.2] it demonstrates
the sharpness of the obtained upper bound.

Theorem 7.3 If Newton polygon for a has only one bounded edge then
H(a) 6 1− 2

n+1
.

Proof. For convenience we make a suitable affine transformation such that
a0 = an = 0.

Consider the polyhedral complex D(s). It is a union of a finite number of
polyhedra such that each of these polyhedra Q satisfies the following condi-
tions. For every 0 6 j 6 s − n there exists a pair 0 6 i1 < i2 6 n such
that

zj+i1 + ai1 = zj + ai2 = min
06p6n

{zp+j + ap} (21)

for any (z1, . . . , zs) ∈ Q.

For every Q we consider the following restriction graph RG(Q) :

� vertices are the indices of coordinates from 1 to s;

� there is an edge between vertices i and j if there is a linear condition of
the form yi + γ = yj which is true for all (y1, . . . , ys) ∈ Q.
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Let us notice that RG(Q) is the union of connected components where each
component is the complete subgraph. Moreover, the dimension of Q equals
the number of components of RG(Q) (cf. [4]).

Let us fix some Q from the finite union above. For arbitrary (t1, . . . , ts) ∈ Q
we construct the following sequence by recursion:

� The first element of the sequence equals the least index i0 such that
ti0 = min16f6s tf ;

� Let iv be the last current constructed element of the sequence. If iv+n >
s then we terminate the process and declare iv to be the last constructed
element of the sequence.

� If iv + n 6 s then we consider min06p6n{tiv+p + ap}. According to the
definition of a tropical sequence and the definition of Q there exist 0 6
p1 < p2 such that min06p6n{ziv+p+ap} = ziv+p1 +ap1 = ziv+p2 +ap2 for all
(z1, . . . , zs) ∈ Q. If p1 > 0 then we set iv+1 = iv + p1 and iv+2 = iv + p2.
Otherwise, we just set iv+1 = iv + p2.

Note that there can be more than two indices where min06p6n{ziv+p+ap}
is attained for all (z1, . . . , zs) ∈ Q. We pick some pair p1 < p2.

We will call this sequence an equality row for (t1, . . . , ts). Now we claim two
important statements:

�

i0 < n+ 1 (22)

Indeed, suppose the contrary. Then consider min06p6n{ti0−n+p + ap}. As
ti0 = min16f6s{tf} and an = 0 then this minimum equals min16f6s{tf}
and there exist p1 < p2 6 n such that ti0−n+p1 + ap1 = ti0−n+p2 + ap2 =
min16f6s{tf}. As ap > 0 then we obtain that ap2 = ap1 = 0 and ti0−n+p1 =
ti0−n+p2 = ti0 . However, i0− n+ p1 < i0 and we get a contradiction with
that i0 is the least index such that ti0 = min16f6s{tf}.

�

tiv = ti0 , (23)

for all iv in the equality row.

We prove this by recursion. For i0 the statement is already true. Suppose
we have proved this statement for iv and we consider min06p6n{tiv+p+ap}
then either tiv + a0 = tiv+1 + ap2 equals this minimum or tiv+1 + ap1 =
tiv+2 + ap2 . However, this minimum is less or equal to tiv + a0 = tiv =
min16f6s{tf}. Recalling the fact that ap > 0 for 0 6 p 6 n we obtain
that ap1 = ap2 = 0 and either tiv+1 = tiv = ti0 or tiv+2 = tiv+1 = tiv = ti0 .
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Let us fix (t1, . . . , ts) ∈ Q and its equality row {i0, . . . , iE}. Consider an-
other arbitrary point (t′1, . . . , t

′
s) ∈ Q. We prove the following lemma:

Lemma 7.4 If for some v it is true that t′iv = min06f6s{t′f} then for all
w > v it is true that t′iw = t′iv .

Proof of lemma. Indeed, during the recursive construction of the equality
row iv for (t1, . . . , ts) there could appear one of the following three possibilities:

� v = 0. Then the processes of construction of equality row for (t1, . . . , ts)
and for (t′1, . . . , t

′
s) completely coincide.

� We considered min06p6n{tiv−1+p + ap} which is equal to tiv−1+p1 + ap1 =
tiv−1+p2 + ap2 for some p1 < p2 and iv = iv−1 + p2. Then the processes of
construction of equality row for (t1, . . . , ts) and for (t′1, . . . , t

′
s) completely

coincide starting from the next step.

� We considered min06p6n{tiv−1+p + ap} which is equal to tiv−1+p1 + ap1 =
tiv−1+p2 + ap2 for some p1 < p2 and iv = iv−1 + p1. We recall that these
equalities are true for arbitrary (z1, . . . , zs) ∈ Q and so they are true for
(t′1, . . . , t

′
s). Thus t′iv−1+p2

also equals min16f6s{t′f} and we come to the
previous case.

Now we define Qb as

{(y1, . . . , ys) ∈ Q and b is the least index such that yb = min16f6s{tf}}

According to the statement 22 Q =
n⋃

b=1

Qb. Next we prove the crucial

lemma.

Lemma 7.5 The number of connected components in the RG(Qb) is not
greater than s+ 4− 2s

n+1
.

Proof of lemma. According to the definition of Qb and according to lemma
7.4 for every iv > b from the equality row, (b, iv) is an edge in RG(Qb). We
partition [b, s] into disjoint intervals each of length n+ 1 starting from b. Now

we produce the following sequence {G′r}
[ s−q
n+1

]

r=0 of subgraphs by recursion on an
interval number:

� G′0 is just RG(Qb) without edges;
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� Suppose we have produced G′r and now we are considering (r + 1)-th
interval of length (n + 1). The interval contains at least one element iv
from the equality row. If there are at least two elements from the equality
row then for each iv from this interval we add an edge (b, iv) to the graph
G′r and obtain G′r+1.

Otherwise, we consider (r + 1)-th interval:

[b+ (n+ 1) · r; b+ (n+ 1) · r + n].

Consider min06p6n{yb+(n+1)·r+p + ap}. According to the definition of the
tropical sequence there exist p1 < p2 such that this minimum equals
yb+(n+1)·r+p1 +ap1 = yb+(n+1)·r+p2 +ap2 for all (y1, . . . , ys) ∈ Qb. Thus there
is an edge from RG(Qb) whose vertices have indices from the (r + 1)-th
interval and at least one of them does not lie in the equality row. We call
this edge a non-equality edge. Then we set G′r+1 as G′r with one added
edge (b, iv) and one added non-equality edge.

We claim that for every r the number of components in G′r is at least by
two less than G′r−1. It follows from the fact that at each step all edges have at
least one end-point which does not belong to the transitive closure of previous
subgraph.

Thus we obtain that the number of components is less than s− 2 · [ s−b
n+1

] 6
s+ 2− 2 s−b

n+1
6 s+ 4− 2 s

n+1
.

Now we note that dimQ = max16b6n{dimQb} and therefore, according to
lemma 7.5 we obtain that dimQ 6 s + 4− 2s

n+1
. Tending to the limit on s we

obtain the required statement of the theorem. 2
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