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Abstract

We introduce tropical holonomic sequences of a given order and cal-
culate their entropy in case of the second order.
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Introduction

We consider a tropical analog of univariate holonomic sequences [2], [5]. Nec-
essary concepts of tropical algebra one can find in [3].

Let A0(i), A1(i), . . . , An(i) ∈ R[i] be polynomials. We say that a sequence
w := {wi ∈ R : i ≥ 0} satisfies vector (A0, . . . , An) if the following tropical
equation

min{wi + A0(i), wi+1 + A1(i), . . . , wi+n + An(i)} (1)

holds for any i ≥ 0. According to tropical algebra [3] this means that the
minimum in (1) is attained for at least two different j among wi+j +Aj(i), 0 ≤
j ≤ n. In this case we say that w is a a tropical holonomic sequence of order
n.

For a classical holonomic sequence which satisfies equations∑
0≤j≤nAj(i)wj+i = 0 its element ws is determined uniquely for s greater

than n− 1 and greater than the roots of An.
This is not the case in the tropical setting. Therefore, in [1] we consider

a set WN ⊂ RN consisting of sequences {wi : 0 ≤ i < N} satisfying (1).
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Then WN is a tropical prevariety [3], so a union of a finite number of convex
polyhedra. We define the tropical entropy of vector A0, . . . , An as

H := H(A0, . . . , An) := lim sup
N→∞

dim(WN)/N (2)

Evidently, 0 ≤ H ≤ 1. Moreover, the proof of Proposition 5.1 [1] can be
literally transfered to conclude that H ≤ 1− 1/n.

In [1] we studied the case of constant polynomials A0, . . . , An. In this case
the limit limN→∞ dim(WN)/N(= H) does exist due to Fekete’s subadditive
lemma [4]. In addition, one can consider Newton’s graph P consisting of the
points (i, Ai), 0 ≤ i ≤ n on the plane. It was proved in Corollary 5.7 [1] that
the entropy H vanishes iff P is convex and (i, Ai), 0 ≤ i ≤ n form its vertices.
Moreover, Corollary 5.7 [1] states that if H > 0 then H ≥ 1/6.

In the present paper in case of the second order n = 2 we prove the existence
of the limit limN→∞ dim(WN)/N(= H) and explicitly calculate the tropical
entropy H (2). It appears that in this case the entropy is either 0, either 1/4
or 1/3.

1 Entropy of tropical holonomic sequences of

the second order

Let A(i), B(i), C(i) ∈ R[i] and {ui : i ≥ 0} be a tropical holonomic sequence
(of the second order) satisfying vector (A, B, C), i. e.

min{uj + A(j), uj+1 + B(j), uj+2 + C(j)} (3)

for j ≥ 0. Denote the entropy H := H(A, B, C) (see (2)). We write for a
polynomial A > 0 if A(j) > 0 for j >> 0.

Theorem 1.1 The limit limN→∞ dim(WN)/N(= H) does exist and
1) if

A(i) + C(i− 1) = B(i− 1) + B(i) (4)

for all i then H = 1/3;
2) if

A(i) + C(i− 1) < B(i− 1) + B(i), (5)

A(i + 1)− A(i) + C(i)− C(i− 1) = B(i + 1)−B(i− 1) (6)

then H = 1/4:
3) otherwise H = 0.

In the next two sections we prove the Theorem.
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2 Case of a positive entropy

2.1 Case A(i) + C(i− 1) = B(i− 1) + B(i)

Under the assumption (4) we construct a family of holonomic sequences {ui :
i ≥ 0} satisfying vector (A, B, C) by induction on i. As an induction base
put u0 = 0.

Suppose that a sequence {ui : i ≤ 3j} is already constructed for some
j ≥ 0. Then put

u3j+1 := u3j + B(3j − 1)−C(3j − 1), u3j+3 := u3j+1 + A(3j + 1)−C(3j + 1),

while u3j+2 define arbitrarily fulfilling the inequality u3j+2 ≥ u3j + A(3j) −
C(3j). Employing (4) one can verify by induction on j that the constructed
sequence satisfies vector (A, B, C). To this end, it suffices to show that u3j+2 ≥
u3j+1 + A(3j + 1)−B(3j + 1), u3j+2 ≥ u3j+3 + B(3j + 2)− A(3j + 2).

Therefore, denoting by UN := {ui : 0 ≤ i < N} ⊂ RN the tropical
prevariety of sequences satisfying (3) for 0 ≤ j < N − 2, we get dim(UN) ≥
bN/3c since the coordinates u3j+2, j ≥ 0 attain arbitrarily sufficiently large
values. Hence,

lim inf
N→∞

dim(UN)/N ≥ 1/3 (7)

To prove the opposite inequality H ≤ 1/3 fix for the time being N , a
sequence (u0, . . . , uN−1) ∈ UN , and consider a graph G := GN with N vertices
{0, . . . , N − 1}. For each 0 ≤ j ≤ N − 3, if the minimum in (3) is attained
on some two indices among j, j + 1, j + 2 then between these indices draw
an edge in G (it is not excluded that there could be three edges between
j, j+1, j+2). Observe that any such graph G determines a convex polyhedron
in UN whose dimension does not exceed the number c of connected components
of G (moreover, one can show that this dimension equals c, although we don’t
make use of it here). Thus, our next goal is to bound c from above.

We call an interval of G a maximal (with respect to inclusion) subset (of at
least two elements) of its vertices being an interval and belonging to the same
connected component. Enumerate the connected components in an arbitrary
way.

Lemma 2.1 The following statements are valid under the assumption of
either (4) or (5):

i) two intervals can’t adjoin;
ii) the vertices between two neighbouring intervals belong to two alternating

components s, t, respectively (or, perhaps, there is a single vertex inbetween,
in this case we agree that s = t);
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iii) if neighbouring intervals belong to components p, q, respectively, then
{p, q} ⊂ {s, t} (or, in case s = t we have p = q 6= s).

Proof. i) Suppose that i, i + 1 belong to the same connected component,
while i+2, i+3 belong to a different connected component. Then (considering
triples of vertices i, i + 1, i + 2 and i + 1, i + 2, i + 3) (3) implies that

(ui + A(i) =)ui+1 + B(i) < ui+2 + C(i),

ui+1 + A(i + 1) > ui+2 + B(i + 1)(= ui+3 + C(i + 1))

which leads to a contradiction with (4) as well as with (5).
ii) If i, i+1 belong to the same connected component p, while i+2 belongs to

a different component s then i+3 belongs to p (considering triple i, i+1, i+2).
Similarly, i + 4 belongs to s (provided that i + 3 does not belong to the next
interval). Continuing this argument we establish ii) and in addition, iii) in
case p = q. To establish iii) in case p 6= q note that s = q considering triple
j − 2, j − 1, j where j is the beginning of the next interval (belonging to q).
2

One can deduce statement 1) of the Theorem from Lemma 2.1. Indeed, for
any new emerging component (by scanning G from the left to the right) its
first element is located betweem two neighbouring intervals because of i), in
addition, between two neighbouring intervals at most one new component can
emerge due to ii), iii). This entails an upper bound dN/3e+ 1 on the number
of connected components of G since the length of every interval is at least 2.
Hence the entropy H ≤ 1/3 and the limit limN→∞ dim(UN)/N = 1/3 taking
into account (7).

2.2 Case A(i) + C(i− 1) < B(i− 1) + B(i),

A(i + 1)− A(i) + C(i)− C(i− 1) = B(i + 1)−B(i− 1)

Now we proceed to the proof of statement 2) of the Theorem. First similar
to section 2.1 construct by induction a family of holonomic sequences VN :=
{vi : 0 ≤ i < N} ⊂ RN satisfying (3) such that dim(VN) ≥ N/4 − const.
Let 4j0 be greater than all the roots of polynomial B(i − 1) + B(i) − A(i) −
C(i− 1). Obviously, any sequence v0, . . . , vi satisfying (3) one can continue to
v0, . . . , vi, vi+1 also satisfying (3). Construct an arbitrary sequence v0, . . . , v4j0
satisfying (3). Then family U4j0+1 consists of this single sequence. Consider
the latter as a base of induction.

Suppose that a family V4j+1 = {vi : 0 ≤ i ≤ 4j} is already constructed for
some j ≥ j0. Put

v4j+1 := v4j + B(4j − 1)− C(4j − 1),
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v4j+2 := v4j + A(4j)− C(4j),

v4j+4 := v4j+2 + A(4j + 2)− C(4j + 2).

Then we take v4j+3 in an arbitrary way satisfying inequality v4j+3 ≥ v4j+2 +
B(4j + 1) − C(4j + 1). One can verify that the constructed family V4j+5 :=
{vi : 0 ≤ i ≤ 4j + 4} satisfies (3). To this end it suffices to show that

u4j + A(4j) < u4j+1 + B(4j), u4j+1 + A(4j + 1) = u4j+2 + B(4j + 1),

v4j+3 ≥ v4j+2 + A(4j + 2)−B(4j + 2), v4j+3 ≥ v4j+4 + B(4j + 3)− A(4j + 3)

employing (5), (6). Similar to section 2.1 conclude that dim(V4j+1) = j − j0,
thus

lim inf
N→∞

dim(VN)/N ≥ 1/4 (8)

Now we prove the opposite inequality H ≤ 1/4 in statement 2) of the
Theorem. It goes analogously to the proof of the upper bound on the entropy
in section 2.1 considering graph G and applying Lemma 2.1 with a difference
that now the length of every interval is at least 3 (with a possible finite number
of intervals of length 2 lying in {0, . . . , 4j0}). Indeed, if i, i+ 1 was an interval
then

ui + B(i− 1) = ui+1 + A(i− 1), ui + A(i) = ui+1 + B(i),

and we get a contradiction with (5). Thus, H ≤ 1/4 and (8) implies the
existence of the limit limN→∞ dim(VN)/N = H = 1/4. The statement 2) of
the Theorem is proved.

3 Case of zero entropy

Now we proceed to a proof of statement 3) of the Theorem.

3.1 Case A(i) + C(i− 1) > B(i) + B(i− 1)

First we assume that

A(i) + C(i− 1) > B(i) + B(i− 1) (9)

(cf. (4), (5)). Denote by WN := {wi : 0 ≤ i < N} ⊂ RN the set of all
sequences satisfying (3). We show that dim(WN) is bounded from above by a
constant independent from N .

Lemma 3.1 Let w := {wi : 0 ≤ i ≤ 4j0} ∈ W4j0+1 (cf. section 2.1).
Then w has at most one-dimensional continuation in any WN for N > 4j0+1.
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Proof. Let {wi : 0 ≤ i ≤ N} ∈ WN+1 be a continuation of w. denote
by s ≥ 4j0 the maximal integer such that for every 4j0 ≤ t < s it holds
wt + A(t) = wt+1 + B(t). Suppose w.l.o.g. that s < N . We claim that
{wi : 0 ≤ i ≤ s + 1} ∈ Ws+2 has a unique continuation in any WN for
N > s + 1.

We consider two cases. In the first one

ws + A(s) > ws+1 + B(s) (10)

Then ws+2+C(s) = ws+1+B(s) because of (3). This together with (9) implies
that ws+1 +A(s+ 1) > ws+2 +B(s+ 1). Continuing this arguing by induction
on i we obtain that wi+2 + C(i) = wi+1 + B(i) for any i ≥ s. This proves the
claim in case (10).

In the second case

ws + A(s) < ws+1 + B(s) (11)

Then we have

ws+2 + C(s) = ws + A(s) (12)

Therefore, ws+1 +A(s+ 1) > ws+2 +B(s+ 2) since otherwise, summing up the
opposite inequality with (11), (12), we get a contradiction with (9). Hence, we
arrive to already considered in the first case inequality (10) which proves the
claim.

Thus, all the continuations of w in any WN for N > 4j0 have the following
form. For some 4j0 ≤ s < N for each 4j0 ≤ t < s it holds wt + A(t) =
wt+1 +B(t). After that, ws+1 can take an arbitrary value not less than ws−1 +
A(s− 1)−C(s− 1) (when s > 4j0 or when s = 4j0 and w4j0−1 +A(4j0− 1) =
w4j0 + B(4j0 − 1)). Subsequently, a continuation of {wi : 0 ≤ i ≤ s + 1} in
any WN for N > s is unique. Lemma is proved. 2

Lemma 3.1 implies that the entropy H = 0 in case (9).

3.2 Case A(i) + C(i− 1) < B(i) + B(i− 1),

A(i + 1)− A(i) + C(i)− C(i− 1) > B(i + 1)−B(i− 1)

Now we assume (5) and

A(i + 1)− A(i) + C(i)− C(i− 1) > B(i + 1)−B(i− 1) (13)
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Lemma 3.2 Under assumptions (5), (13) let a sequence {wi : 0 ≤ i <
N} ∈ WN . If wk+2 + C(k) = wk+1 + B(k) (cf. (3)) for a sufficiently large k
(namely, k > 4j0, cf. section 2.1) then

wk+2j+2 + C(k + 2j) = wk+2j+1 + B(k + 2j), (14)

wk+2j+3 + C(k + 2j + 1) = wk+2j+1 + A(k + 2j + 1) (15)

for any j ≥ 0.

Proof goes by induction on j . Suppose that (14) holds for some j ≥ 0
(the base is for j = 0). Then wk+2j+2 +B(k+2j+1) > wk+2j+1 +A(k+2j+1)
because of (5), therefore, (15) is true (invoking (3)). Summing up (14), (15)
and employing (13) for i := k + 2j, we obtain that

wk+2j+3 + B(k + 2j + 2) < wk+2j+2 + A(k + 2j + 2).

Hence, (14) is valid for j := j + 1, this proves the inductive hypothesis and
lemma. 2

Consider graph G := GN constructed in section 2.1 corresponding to the
sequence {wi : 0 ≤ i < N}. Lemma 3.2 entails that G contains at most one
interval of the form k, k + 1, . . . where k > 4j0. Moreover, if there is such an
interval then it is of the form k, k + 1, . . . , N , so ends at N . Therefore, GN

can contain at most one new connected component in comparison with G4j0 .
Indeed, if m > 4j0 is the first element of a new component then m− 2, m− 1
belong to the same component (due to (3)), hence m− 2, m− 1 is the end of
an interval which contradicts to Lemma 3.2. Note that GN can contain even
less components than G4j0 does.

From this follows that the number of components of G is bounded from
above by a constant independent from N . Hence (cf. section 2.1), dim(WN)
is bounded from above by a constant independent from N , thus the entropy
H = 0 under assumptions (5), (13).

3.3 Case A(i) + C(i− 1) < B(i) + B(i− 1),

A(i + 1)− A(i) + C(i)− C(i− 1) < B(i + 1)−B(i− 1)

Lemma 3.3 Let (5) and

A(i + 1)− A(i) + C(i)− C(i− 1) < B(i + 1)−B(i− 1) (16)

be fulfilled. Assume that a sequence {wi : 0 ≤ i < N} ∈ WN and for some
k > 4j0 it holds

wk+2 + C(k) = wk+1 + B(k). (17)
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Then for any j ≥ 1 we have

wk+j+2 + C(k + j) = wk+j + A(k + j). (18)

Proof goes by induction on j. Suppose that (18) is already established for
all 1 ≤ j ≤ s for some s ≥ 0 (thus, one can treat the void case s = 0 as a base
of induction).

Summing up inequalities (16) for i := k + 2t, 0 ≤ t ≤ r we obtain that

B(k) +
∑

1≤m≤2r

(−1)mA(k + m) < B(k + 2r) +
∑

0≤m≤2r−1

(−1)mC(k + m) (19)

First, let s be odd. Summing up equations (18) multiplied by signs (−1)j

for 1 ≤ j ≤ s, with (19) for r := (s+ 1)/2 and also with (17) we get inequality

wk+s+2 + B(k + s + 1) > wk+s+1 + A(k + s + 1). (20)

Hence, (3) entails that

wk+s+3 + C(k + s + 1) = wk+s+1 + A(k + s + 1)

which proves (18) for j := s + 1.
Now let s be even. Applying (19) for k := k + 1, r := s/2 we obtain

inequality

B(k+1)+
∑

1≤m≤s

(−1)mA(k+m+1) < B(k+s+1)+
∑

0≤m≤s−1

(−1)mC(k+m+1).

Summing up the latter inequality with (5) for i := k+1, we establish inequality

−B(k) +
∑

0≤m≤s

(−1)mA(k + m + 1) < B(k + s + 1) +
∑

0≤m≤s

(−1)mC(k + m)(21)

Similar to the case of odd s summing up equations (18) multiplied by signs
(−1)j for 1 ≤ j ≤ s, with (21) and with (17), we again get inequality (20).
Then again (3) entails (18) for j := s + 1 which completes the proof of the
inductive hypothesis and Lemma. 2

As in section 3.2 Lemma 3.3 implies that graph G := GN can contain at
most one interval of the form k, k+1, . . . where k > 4j0. Also as in section 3.2
we conclude that the entropy H = 0. This completes the proof of the Theorem.
2
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