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Abstract

This paper presents an analytic approach to pattern stability and evolution
problem in morphogenesis. This approach is based on the ideas of the gene
and neural network theory. We assume that gene networks contain a number
of small groups of genes (called hubs) controlling morphogenesis process.
Hub genes represent an important element of gene network architecture and
their existence is empirically confirmed. We show that hubs can stabilize
morphogenetic pattern and accelerate the morphogenesis. The hub activity
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exhibits an abrupt change depending on the mutation frequency. When
mutation frequency is small, these hubs suppress all mutations and gene
product concentrations do not change, thus, the pattern is stable. When the
environmental increases and the population needs new genotypes, the genetic
drift and other effects increase the mutation frequency. For the frequencies
larger than critical, the hubs turn off, and as a result, many mutations can
affect phenotype. This effect can serve as an engine for evolution. We show
that this engine is very effective: the evolution acceleration is an exponential
function of gene redundancy. Finally, we show that the Eldredge-Gould
concept of punctuated evolution results from the network architecture, which
provides fast evolution, control of evolvability, and pattern robustness.

1. Introduction

Robustness is an important property of biological systems. Wild-type or-
ganisms are buffered, or “canalized”, against environmental or genetic vari-
ation in the course of both development (Manu et al., 2009b) and evolution
(Rendel, 1959). This term was coined by C. H. Waddington (1942), who
stated that ”developmental reactions, as they occur in organisms submit-
ted to natural selection ... are adjusted so as to bring about one definite
end-result regardless of minor variations in conditions during the course of
the reaction”. More recent work has shed light on the mechanistic origins
of canalization behavior. In some cases a specific gene, called a “genetic
capacitor” is responsible for canalizing behavior (Bergman and Siegal, 2003;
Levy and Siegal, 2008; Moczek, 2007) while in other cases the canalization
behavior arises from a small network of genes (Manu et al., 2009a). These
genes or networks of genes buffer environmental or genetic variations, thus
canalizing pattern formation and evolution. This situation implies an ap-
parent paradox, because canalized systems are nevertheless able to evolve
successfully to adapt to environmental changes. Different mechanisms of
canalization have been discussed, for example, in (Gunji and Ono, 2012;
Gursky et al., 2012; Gunji et al., 2014). In the paper by Gunji and Ono
(2012) a cellular automata-based model is proposed to generate a French
flag pattern as a model of canalization due to agents equipped with sociality.
In this model cell can be considered as an agent that transports morphogen.
A pattern occurs as a result of interaction of neighboring agents. The pa-
per by Gursky et al. (2012) contains a review of the canalization problem,
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describes different canalization mechanisms and considers canalization as a
result of gene interactions. Here we develop these ideas suggesting that the
basis of robustness and canalization is a network architecture in which the
genes or small networks responsible for canalization are hubs in larger gene
networks. Reminds that the hubs are strongly connected nodes in networks
(Albert and Barabási, 2002), a key element of network architecture. In sys-
tems level studies of metabolic networks, this architecture has been described
as “bow-tie” connectivity Zhao et al. (2006). Here we use a variant of this
idea, called an “empire structure” by Vakulenko (2013), wherein highly con-
nected hubs play the role of organizing centers, and each center interacts
with many weakly connected nodes, called satellites (see Fig. 1). Note that
hubs are a universal feature of scale-free networks, and have been identified
in a wide variety of natural and human-generated networks, including the
genetic, metabolic and economic networks, as well as the internet (Albert
and Barabási, 2002; Lesne, 2006). In particular, centralized networks have
been empirically identified in molecular biology, where the centers can be,
for example, transcription factors, while the satellite regulators can be small
regulatory molecules such as microRNAs (Li et al., 2010) or the target genes
of the Drosophila segmentation network.

In this work we address the apparent paradox of evolutionary change in
the face of canalizing stability by means of an analytically tractable math-
ematical model of the canalization effect and its abrogation. We show that
populations which experience an increase in mutation rate or pass through
a bottleneck, possibly because of environmental stress, release hidden ge-
netic information. Specifically, hubs in the network can create an abrupt
change. transition. In normal conditions, the hubs stabilize the gene expres-
sion pattern against all mutations. When the mutation rate increases or the
population size N decreases, the mutation probability p becomes higher (in
particular, this effect can result from the genetic drift effect, since the drift
induces a noise of intensity proportional to N−1/2). In particular, there is a
threshold effect in which when the probability p of a mutation becomes more
than some critical value pc, i.e., p > pc, the hub stabilization fails. This effect
produces an abrupt change and it is sharper for large gene networks. At this
point hidden genetic information is manifested in phenotype, so that hid-
den mutations captured during a long stability period start begin to play a
role in creating new phenotypes better adapted to new ecological conditions.
This evolutionary mechanism corresponds to the punctuated evolution ideas
of Gould and Eldredge (1972). Here we show that punctuated evolution is a
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natural consequence of an empire-type network organization.
In our approach to this problem, we also address a serious difficulty in evo-

lutionary theory, namely that classical population genetics does not consider
the hierarchical organization of multicellular organisms into differentiated
cell types that in turn make up tissues and organs. It instead treats the
organism as a unitary entity possessing organismal fitness. This formulation
avoids the problem that a condition that may be selectively advantageous
for a particular cell type with a particular gene expression state is selec-
tively disadvantageous for another cell type with a different gene expression
state, where both cell types contain the same genetic material. In this work
we represent the selective effects of mutations on a hierarchically organized
multicellular organism by using an idea from theoretical computer science
Valiant (2009). Namely, in this paper L.G. Valiant has found a connection
between the evolution problems and the fundamental computer science prob-
lem P 6= NP Cook (1971) that helps to formulate the problem in a more
rigorous mathematical way.

Our approach to the problem of understanding punctuated equilibrium
in the evolution of multicellular organisms in the face of canalization is based
on an analogy between these evolution processes and hard-combinatorial
problems. In the last decades these problems have received great atten-
tion from mathematicians and theoretical physicists (Friedgut and Bourgain,
1999; Deroulers and Monasson, 2006; Achlioptas, 2001; Mertens et al., 2006;
Mézard and Zecchina, 2002). This analogy enables us to obtain an analytical
relation for the evolution speed as a function of gene redundancy.

The connection of evolution with hard combinatorial problems allows us
to formulate a precise statement of the meaning of feasible evolution (Valiant,
2009). In the framework of this model, evolution is feasible if one can find a
local search algorithm, for example, a greedy one, that resolves the problem
in Poly(n) elementary steps. These steps can be thought of as single mu-
tations. This idea, which connects the P 6= NP problem with evolutionary
biology was first formulated by Valiant (2009) ( note that from this paper we
have used only idea about connection between evolution feasibility and al-
gorithm feasibility, and also a connection with problem P 6= NP , our model
significantly differs from model Valiant (2009) ).

Note that if P = NP, an equality that most do not believe to be correct,
then evolution is always feasible.

The most fundamental hard-combinatorial problem is the famous k-SAT
one. We state some important facts about k-SAT in the next section.

4



2. k- SAT problem

2.1. Formulation of the problem

Cook and Levin (1971) have shown that k-SAT problem is NP-complete,
moreover, this problem has important applications for bioinformatics.

The k-SAT problem can be formulated as follows. Let us consider the
set Vn = {x1, ..., xn} of boolean variables xi ∈ {0, 1} and a set Cm of m
clauses. The clauses Cj are disjunctions (logical ORs) involving k literals
yi1 , yi2 , ..., yik , where each yi is either xi or the negation x̄i of xi. The problem
is to test whether one can satisfy all the clauses by an assignment of boolean
variables.

It can be illustrated by the following picture (see Fig 1).

Figure 1: This image illustrates a toy k − SAT problem for n = 4 logical variables
x1, x2, x3, x4 for k = 3 and m = 2. Clauses are triangles, we have here two clauses
of length 3. Solution of the problem is correct, if all clauses are true. In this
case we can take, for example, x1 = 0, x2 = 0, x3 = 1, x4 = 1. This toy example
is easy to resolve, however, the problem becomes difficult for n,m >> 1. In our
biological model, we interprete xi as genes and clauses as gene patternsfor different
cell types.

A biological interpretation of k-SAT is quite transparent and can be for-
mulated as follows. The number n is the gene number. Each gene is involved
in formation of many differentiated cell types, and the gene can be either
turned on or turned off in a given cell type. We have m cell types, therefore,
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the case m� 1 corresponds to the formation of a multicellular organism with
many cell types. The number m can be interpreted, therefore, as a rough
measure of the phenotype complexity. The parameter k determines genetic
redundancy; that is, a cell type is formed by k different genes. The main
difficulty of the k-SAT problem is that a logical variable xi can be involved in
different clauses as xi and x̄i therefore, it is difficult to assign xi in a correct
way. Biologically, this effect corresponds to the pleiotropy of genes. Namely,
activation of a gene can help to create a useful cell type but, on the other
hand, can become deleterious in other cell types.

Fig.1 show that, despite this model simplicity, cells can have different
gene expression patterns, for example, if x1 = 1, gene x1 is not expressed for
1 cell type and expressed for 2-th one. It also illiustrates the simplest case
of the gene pleiotropy effect. In fact, the activation of the first gene, x1 = 1,
helps in expression of 1-th cell type, but, at the same time, it prevents to
create 2th one. We obtain the 2-th cell type due to the gene redundancy (on
Fig 1. by a choice of x2, x3 and x4).

2.2. Random large k-SAT models

The famous unresolved problem of theoretical computer science, P 6= NP,
is equivalent to the following question: does there exist an algorithm solving
the k-SAT problem in polynomial time, that is to say in Poly(|X|) steps,
where X is the k-SAT problem input and |X| = nm the size of this input.
Suppose we are dealing with a randomly generated k-SAT formula and n�
1. The parameter α = m/n plays a key role in the description of k-SAT
asymptotic behaviour as n→∞.

Evolution can be considered as a problem involving a number of con-
straints. A natural mapping of this problem to computer science is the prob-
lem of making an assignment in a random formula in Conjuctive Normal
Form (CNF) to satisfy the maximal possible number of m disjunctions. If
the disjuctions have the same size k, we obtain the classical k-SAT problem.
Many properties of k-SAT also hold for more general constraint problems,
and it is useful to briefly discuss random k-SAT.

Consider k-SAT of a random structure with m = αn clauses and n vari-
ables assuming n � 1. Let k > 2. For α > αc(n, k), where αc is a critical
value, there are no solutions on average with probability close to 1, and for
α < αc(n, k), there exists, on average, a solution with probability close to 1.
By ”on average”, we mean that we always consider a formula, that is to say
a scheme of genetic regulation, of a random structure. A naturally plausible
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conjecture is that there exists a limit

lim
n→+∞

αc(n, k) = αc(k).

This result is not yet proved, but a close result has been demonstrated
(Friedgut and Bourgain, 1999; Achlioptas, 2001):

αc(n, k) ≈ ln(2)2k, k >> 1, n→∞.

There also exists an important second critical value αd(n, k) < αc(k). For
large k this value can be estimated by

αd(n, k) ≈ 2k/k.

If α < αd(n, k) then all solutions form a unique cluster. A cluster in the
space {0, 1}n of boolean sequences of length n can be defined as a connected
set. Here we assume that two sequences are connected (adjacent), if the
Hamming distance between them equals 1 (so, the sequences differ in a single
coordinate).

If the solutions form a single big cluster, this means that one solution can
be obtained from another by flipping some number of boolean variables. In
this case simple algorithms of local search are capable of finding solutions
in Poly(n) time. There are a number of such algorithms (WalkSat, GSat,
DPLL etc.) (Selman et al., 1992; Kirkpatrick and Selman, 1994; Mézard
and Zecchina, 2002). Local search algorithms will have difficulties beyond
the clustering phase transition Mézard and Zecchina (2002). Thus, evolution
proceeds while the level of the gene freedom is sufficiently high. Note that
there is a very effective algorithm, Survey Propagation (SP) (Braunstein
et al., 2005; Mertens et al., 2006), that allows us to find a solution very
rapidly; for n = 106 it proceeds in minutes.

If αc(n, k) > α > αd(n, k), the set of solutions is a union of exponentially
many clusters.

2.3. Evolution and random k-SAT

As stated above, we identify the clauses (centers) with cell types, logical
variables with genes, and the parameter k with gene redundancy. Thus the
problem of understanding the evolution of of cell types and tissues becomes
a hard combinatorial problem. It is natural to assume that such problems
have a random structure because evolution is a random process.
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We conjecture that evolution may be successful, when the number of
cell types m is less than αdn, where n is the number of genes. Then the
solutions form a single cluster and hence all solutions can be obtained by a
local search in Poly(n) steps. This threshold αd grows exponentially with k,
implying that the phenotype complexity grows exponentially as a function
of redundancy.

Note that we do not think that evolution can be effective in a domain
where many clusters coexist. The transition from one cluster to another faces
a fitness barrier in the sense that it must fail to satisfy hn clauses for some
h > 0 (Moore and Mertens, 2011).

3. Model

3.1. Boolean gene network model

We consider a picture of gene regulation where the genes u1, . . . , un are
Boolean variables, ui ∈ {0, 1}, so that ui = 0 means that gene i is turned
off and ui = 1 means that it is turned on (Kauffman, 1969; Valiant, 2009;
Thieffry and Thomas, 1995). The total pattern of gene expression is denoted
by u = (u1, ..., un). We assume that each cell type zj of an organism is
controlled by many genes. The formation of cell type j under the control of
u is denoted by zj = 1.

Clearly that the genetic regulation may be very complicated. In general,
we are dealing here with a complicated boolean function zj = fj(u1, ....., un).
For example, we can try to design fj as a multilayered perceptron, since they
are universal approximators and therefore can simulate all boolean networks.
For example, for two layers we have

zj(u) = σ(
∑
k

Wjkθk(u)− h̃j), θk(u) = σ(wk1u1 + ...+ wknun − hk), (3.1)

where σ(z) = 1 for z > 0 and σ(z) = 0 for z ≤ 0 and wji ∈ {−1, 0,+1}.
In the simplest case, where we have only a single layer (perceptron model),

we can set Wjk = δjk, where δjk stands for the Kronecker symbol and h̃j =
0.5. Then zj is given by

zj(u) = θj(u) = σ(wj1u1 + ...+ wjnun − hj). (3.2)

We suppose that the threshold hj =
∑

wji<0wji + ξj, where ξj ∈ (0, 1) is a
uniformly distributed random number. At the level of computer science, the
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step function σ and the threshold hj ensures the disjunctive property of the
expression (3.2). At the level of biology, we suppose that the values of wji
denote the influence of the controlling genes ui on terminal differentiation
genes that are not explicitly included in the model, such as actin and myosin
in a muscle cell, ion channels in a neuron, and so on. We assume that each wji
takes the value 1 or –1 with equal probability β/2n, with β > 0 a parameter.
Thus the quantities zj are disjunctions of a random subset of literals u′1, ..., u

′
n

. Each literal u′k can be either a variable uk or its negation ūk. A negation
occurs in zj if a gene inhibits the formation of the j-th cell type. Note that
each disjunction involves, on average, k = β literals. The parameter β thus
represents the level of redundancy. Note that we use the disjunctions because
these logical functions have an important advantage: they provide a maximal
redundancy effect. Note that if we choose hj in another way, we can obtain
other logical operations, for example, majority functions.

Let us consider an example. Consider 3 cell types and 10 genes. Then,
by adjusting some wij, one can obtain, for example, such relations:

z1 = u3 OR ū5 OR u7, z2 = u4 OR u5, z3 = ū1 OR u8 OR ū4 OR u9.
(3.3)

The negation ūk is appeared because the corresponding wjk < 0, i.e., k-th
gene inhibites j-th type of cell differentiation. This example shows a gene
pleiotropy effect.

Note that this simple model fails to explain robustness. We improve it
in section 4 where a model describing canalization is proposed. This model
involves two layers.

3.2. Evolution

We represent fitness in silico by the sum of extant cell types needed for
survival, which we write in terms of the model as a sum of satisfied clauses

WF (u) =
m∑
j=1

wjzj(u), (3.4)

where zj are defined by (3.2) and wj > 0 are weights such that w1 + w2 +
...+ wm = m. We set, for simplicity, wj = 1.

Evolution requires variance in the population on which natural selection
operates. We generate variation in the model by a process of simple Boolean
mutations.
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We consider a population u consisting of Npop members. Each member of
the population ul is represented by the logical variable ul = {ul1, ul2, ..., uln}.
An elementary mutation step is to flip one bit of ulj(l) in the lth population
member for all l = 1, ..., Npop, where we choose jl randomly from the indices
{1, ..., n}, such that all choices are independent. If the mutation increases
the fitness WF (ul) we keep the new value ul, otherwise we retain the old one.

We allow selection to operate from time to time as follows. The only
organisms conserved in the population after a selection step is the individual
u∗ = ul with maximal fitness WF and all mutants that can be obtained from
u∗ by mutations in kloc places. After selection we again continue the mutation
process as above. This algorithm is a simple variant of the well known GSAT
(Selman et al., 1992; Kirkpatrick and Selman, 1994).

After a large number of mutations the system loses the property of evolv-
ability. That is, it reaches a state ufinal in which fitness can no longer in-
crease because mutations for this final pattern are either neutral, conserving
fitness so that WF (umut) = WF (ufinal), or lead to a decrease in fitness with
WF (umut) < WF (ufinal) (see section on numerical simulations). This pattern
fragility occurs for any simple algorithms of local search.

The question of how to buffer maximally adapted organism against dele-
terious mutations is nontrivial. We address this question in the following
subsections.

4. Canalization by hubs

To describe canalization mechanism, we extend the simplest k-SAT
model. To obtain such a more sophisticated model, we take into account
the following basic fact: the hubs can stabilize the morphogenesis and buffer
mutations (Bergman and Siegal, 2003). A way to describe this effect is to
consider two layered perceptron (3.1) involving an extra term Zc(u) which
describes the effect of hub genes involved in canalization:

Zc(u) = σ(v1u1 + ...+ vnun + h0), (4.1)

where vi are some appropriate coefficients. Here we assume that, in (4.1),
either vi = 1 (activation of i-th gene by the center), or vi = −1 (inhibition of
i-th gene by the center). A mutation, that flips vi, occurs with a probability p.
This probability, together with the threshold h0, will be defined by a specific
procedure to be described below. Our choice of this buffering term is natural
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from a genetic point of view, where it corresponds to buffering via hubs, an
effect confirmed experimentally (Bergman and Siegal, 2003; Levy and Siegal,
2008)). It is also a natural choice in terms of computer science because it can
be obtained from the Valiant-Vazirani-Vazirani isolation lemma Valiant and
Vazirani (1986). Such a term describes an action of a ”central” gene acting
on all genes that determine morphogenesis (see Fig. 1).

The difference between the simplest k -SAT local model and this two layer
model can be explained by ideas Gunji and Ono (2012), in particular, by an
interesting economical analogy suggested in this paper. In the k-Sat model
we have only market agents interacting locally. Acting in a local manner,
they form a global market (pattern), which may be unstable. In the extended
model we take into account some global centers (for example, a government)
which influence all market agents.

Then two layer boolean model with extra term Zc is as follows:

zj(u) = σ((1− b)θj(u) + bZc(u)− h̃j), h̃j ∈ (0, 1), (4.2)

where θj is defined by (3.2) and b ∈ (0, 1/2) is a buffering parameter. In a
sense, it is a minimal model that can produce the canalization and an abrupt
change.

Finally, we have the following biological picture. Each cell type is con-
trolled by a block of random structure consisting, on average, of β genes.
Moreover, an organizing center, or “hub” influences the morphogenesis pro-
cess via the term bZc involving a number of genes. Here the coefficient b
determines the level of buffering, so that for larger b buffering is bigger. We
call this an “empire structure” because the hub exerts control over the pat-
terning process in the same manner as the center of an empire controls the
periphery.

We now discuss the choice of vi. To describe an abrupt change in evolu-
tion, the term Zc should satisfy the following property:

Z: Let u = u∗ be a maximally fit genetic pattern (without mutations).
Then, if the mutation frequency is less than a critical level pc, i.e. p < pc,

Zc(u) = 1 for all u 6= u∗.

If p > pc,
Zc(u) = 0 for all u 6= u∗ and Zc(u

∗) = 1.
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Figure 2: This image illustrates an hub action on genes and an ”Empire structure”.
Genes ui are ”satellites”, which are under control a center that influence satellites
with intensities vi.

The canalized fitness, that corresponds to (4.2, is then as follows:

WFc(u) = WF (u) + bZc(u), (4.3)

where WF (u) is the fitness for the k-SAT model.

4.1. The Hebb rule and canalization

We construct vi in the buffering term Zc(u) as follows. Hebb’s rule is a well
known idea in biological learning theory. It states that if two neurons tend
to fire synchronously, synaptic connections between them tend strengthen.
Proposals have been made that such a process operates in evolution (Watson
et al., 2010; Adams, 1998). This idea is particularly reasonable if the pair of
genes considered as a code for transcription factors. These proteins bind to
noncoding control DNA, and it is well known that such regulatory regions
evolve rapidly with the frequent turnover of binding sites He et al. (2011). If
there is a selective advantage for a pair of such genes to be simultaneously
expressed, mutations that stabilize such interactions will provide the type of
buffering effect we represent here as a generalization of Hebb’s rule.
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If we assume that, for the interaction between the genes and the center,
an analogue of the Hebb rule holds, and, moreover, that the center is always
active, we obtain the following algorithm:

A1: If ui = 1 over a long time period, then vi = 1; otherwise vi = −1.
Evolution takes place over a long time, and so the algorithm can be recast

into a statement about the final, maximally adapted state:
A2: If for the final pattern u we have ui = 1, then vi = 1; otherwise

vi = −1.
Algorithm A2 leads to the relation

Zc(u,X) = σa(h0 − S), S =
n∑
i=1

|ui − u∗i |, (4.4)

where σa(x) is a sigmoidal function, for example, σa = (1 + exp(−ax))−1 and
u∗ is the maximally adapted gene expression pattern. The quantity S is the
Hamming distance between the current gene expression pattern u and the
maximally adapted pattern u∗. Notice that S and thus Zc involve all genes.
Eq. (4.4) can be interpreted as follows: in the gene network there is a hub,
which summarizes the contributions of all genes to stabilize pattern. The
terms wi = |ui−u∗i | in (4.4) states a form of Hebb’s rule. If all ui = Xi, then
wi = 0, otherwise wi > const > 0. If all wi = 0 we have Zc = 0. If h0 is
small enough in this case Zc = 1.

In relation (4.4) we assume that there is a single hub. Such situation
is unstable with respect to mutations, which can delete the hub. One can
generalize (4.4) for the case of many (say, r) hubs that makes the hub system
stabler with respect to hub deletions. Then

Zc(u,X) =
r∑
l=1

σa(h0l − Sl), Sl =
n∑
i=1

ηil|ui − u∗i |, (4.5)

where ηil are non-negative weight coefficients. In this study we consider the
case r = 1.

5. Canalization and passage through bottleneck

We now show that, under certain assumptions, that there is a critical
mutation frequency pc

Zc(u, p) ≈ 1, (p < pc), Zc(u, p) ≈ 0, (p > pc). (5.1)
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This means that as p increases gradually, the canalization term Zc(u, p) de-
creases sharply.

To this end, we compute the expectation E[S] and the deviation D[S]
assuming that all ui can mutate independently with a small probability p.
Then E[|ui−u∗i |] = p so E[S] = np. Also, deviation E[|ui−ui|] = p(1−p) and
hence D[S] = np(1− p) ≈ np. For large n one has (D[S])1/2 << E[S]. The
central limit theorem shows then that h0 − S is a gaussian random variable
sharply localized at h0− np, thus, (5.1) holds. For the critical probability pc
we obtain

pc ≈
h0

n
, (n� 1, np� 1). (5.2)

We find, therefore, a mechanism, which is consistent with experimental
data and fundamental biological concepts (Levy and Siegal, 2008; Bergman
and Siegal, 2003; Manu et al., 2009b; Moczek, 2007). This can be understood
in terms of a passage of the population through a bottleneck, perhaps induced
by a stress.

Experimental data show. (Levy and Siegal, 2008; Bergman and Siegal,
2003) that a stress may damp the canalization effect and this, in turn, can
lead to a loss of robustness. This fact can be explained by this model as
follows. When a population consisting of N members, lives in a stress con-
ditions, the population abundance N diminishes. The genetic drift effect is
proportional to N−1/2 (Sviregev and P, 1982). Therefore, for small N , when
the population goes through a “bottleneck” (hard environmental conditions
diminishing the population size), the mutation frequency pmut exceeds pc.
This releases a hidden gene information captured at long stage when the
population have lived in stable environment that, in turn, can produce for-
mation of new organisms (more adapted to new hard conditions). Certainly,
the stress can directly affect the probability p, if it is connected with chemical
reagents, radiation etc.

6. Results of numerical simulations on evolution

6.1. Simulation of evolution and mutation effects

We have considered populations with 50−−100 members. Redundancy
parameter β was taken in the interval β ∈ [6, 10]. During evolution pro-
cess, the number m of constraints in a random CNF formula increasing from
m = 300 up to m ∈ (800, 1800). This means that we simulate an increasing,
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in time, sharpness of ecological environment and increasing organism com-
plexity: an “organism” should satisfy more and more constraints. Between
these steps of environment changes, we have made 100−−200 mutations for
such population member. After each mutation series we have checked the
fitness values, the pattern stability level and value of the buffering term.

Our results are as follows. First, they are consistent with main facts about
k-SAT described in the previous section. We have found an abrupt change for
α ∈ (10, 16), i.e., in the most of cases, a gene system with β = 7 and n = 100
genes can satisfy m ∈ (1000, 1600) constraints (to create an organism with
≈ 1500 features). Solutions form a giant cluster and the Hamming distance
between different solutions is not large (of order 10).

Notice that for k = 7 the best estimate for algorithmic phase transition is
≈ 33, see Achlioptas (2001). It is clear that in the our case this value should
be smaller, since we have many clauses (disjunctions) of size < 7, and the
algorithm is not optimal.

Patterns u∗, that maximize the fitness WF (u), are fragile if the buffer
mechanism is turned out (bc = 0). To check the pattern robustness we have
produced 50 single random mutations and 50 random double mutations. We
have observed the following picture. Let ∆W1 = W (u∗) − W (umut) be a
vector of lengths 50 that contains the fitness variations for single mutations,
and ∆W2, ∆W3 analogous vectors for double and triple mutations. Typical
results for the last stage of evolution, when the constraint number m = 1900,
are as follows. The quantity ∆W3 lies within the interval [3, 11], ∆W2 lies
within [1, 9] and ∆W1 is in [0, 3], where we have ≈ 5− 10 neutral mutations
(with ∆W1 = 0). It is natural that single mutations are less dangerous a
part of these mutations are neutral. This negative mutation effect can be
completely compensated by the buffering term bcZc, which takes the values
50 for all mutations. For this final evolution stage, the averaged number of the
satisfied constraints in the population (i.e., the fitness) is Waveraged = 1887
and the maximal number is Wmax = 1892. For previous evolution stages,
when m = 800, we have ∆W1 ∈ [−1, 3].

We observe here more neutral mutations and even some positive muta-
tions. Namely, we have 3 positive mutations ∆W1 = −1 and ≈ 18 neutral
mutations. The maximal number of the satisfied constraints is close to the
limit value, Wmax = 799.

Figs. 6.1 and 6.1 illustrate some properties of evolution.
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Figure 3: The plot of minimal (over the population) number of non-satisfied con-
straints mNS as a function of the number of constraints m. Horizontal axis is m,
m ∈ [300−2000], vertical axis is the mNS value. Each evolution step adds 100 new
constraints. The number of mutation at each step 100, the population contains
100 member. The parameter β = 7
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Figure 4: This plot shows a part of neutral double mutations as a function of the
constraint number m (“organism complexity”). The parameter β = 8. On the
horizontal axis values m/100 are shown.

6.2. Evolution boundaries

For usual k-SAT when all clauses have the same size K we can obtain a
simple estimate of the critical value αc of the phase boundary by the Markov
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estimate (Moore and Mertens, 2011). Let Z be the number of satisfying
assignments for k-SAT. Then the Markov inequality says that Pr{Z > 0} ≤
EZ. Computing the expectation we find that

Pr{Z > 0} < ξn, ξ = 2(1− 2−k)α.

The expected number of satisfying assignments is exponentially small if ξ < 1
that gives the for the phase boundary αc the estimate αc < 2kln2.

We are dealing with a CNF formula of a random structure where the
clauses have sizes k1, ..., kn distributed by a normal law. Repeating the above
arguments we obtain that the expected number of satisfying assignments is
exponentially small if

S(α, n) =
m∑
i=1

ln(1− 2−ki) < −n, m = αn. (6.1)

The equation S(α, n) = −n gives a rough estimate for the phase boundary
αc.

6.3. Evolution rate

It is clear that the evolution rate decreases in m and increases in β. One
can compute the averaged number Nuns of non-satisfied constraints when
we substitute a random assignment in k-SAT. This gives Nuns ≈

∑m
i=1 2−ki ,

where ki are clause sizes. The relation is consistent with numerical simula-
tions. One can assume that for bc = 0 the rate Rev of our evolution algorithm(
Rev is the number of mutations steps in order to satisfy all constraints) is pro-
portional to Nuns. One can suppose that the following rough approximation
holds:

Rev ≈ const
m∑
i=1

2−ki ≈ const m 2−β. (6.2)

The coefficient const was adjusted by numerical simulations and the least
square method. The precision of this approximation is about 25 − −30 %,
see Figs. 4 and 5.

7. Conclusion

In this paper, we have presented an analytic approach to canalisation and
evolution problems. This approach is based on ideas of theoretical computer
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Figure 5: This plot shows the dependence of evolution rate r on the number of
constraints m. The blue curve presents results of numerical simulations, the red
curve is const · 2−β, where the constant is adjusted by the least square method.
The vertical axis shows the number of steps to satisfy all the clauses. Here n =
100, β = 6 and m ∈ [300, 600]. The blue curve exhibits a high randomness in the
step number.

science, gene and neural network theory. We assume that gene networks
contain some hubs, which control canalization processes (this assumption is
confirmed by experimental data). The hub activity depends on the mutation
frequency. For a favorable environment, when the mutation frequency is
small, these hubs block all mutations and gene product concentrations do
not change, thus, the pattern (phenotype) is stable. When environmental
conditions become harder and the mutation frequency increases, the hub
control fails. The natural mechanism for this increases is genetic drift, which
grows as the population abundance diminishes. Moreover, the environment
can increase the mutation frequency directly, for example, by a radiation,
chemical reagents etc. When the mutation frequencies become larger than
a critical value, the hub control turns off. Then all hidden mutations can
be released affecting the phenotypes. This effect serves as an engine for
evolution.

The second key question is to explain whether this engine is powerful
enough to form the complicated patterns during a “reasonable” (i.e. suf-
ficiently short) time, since the time for evolution is limited. If a species
fails to create new phenotypes during a ”short” time period this species will
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Figure 6: This plot shows the fitting of the evolution rate for different m = M and
n = N . We present the rate (the step number) as a exp−β/2, where a is fitted by
the least square method. The horizontal curve shows the values of β. The green
curve shows a exp−β/2, the blue one shows the mean values s of the numerical
simulations s. The two dotted red curves are the plots of s± = s± σ(s), where σ
denotes the standard deviation.

become extinct. To formalize this problem we formulate a mathematically
correct definition of a ”short time”. For this purpose, we use an approach
inspired by Valiant (2009). We consider the morphogenesis as a hard com-
binatorial problem. This problem involves two key parameters, β and α.
The first one determines genetic network redundancy and the second one
can be interpreted as a “gene freedom”. The evolution rate is exponentially
fast as a function of the redundancy parameter. We have presented an ap-
proximation for this rate. Simulations and theoretical results show that the
evolution rate Rev grows in genetic redundancy β in an exponential manner,
as Rev ≈ a exp−β/2, where a is a constant. We conclude that a random evo-
lution process is quite feasible when this genetic freedom is large enough, but
when the number of constraints become too large, the evolution stops.

There appears an interesting connection of our model to the Gould and
Eldredge theory of punctuated equilibrium. According to this theory, evo-
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lutionary change occurs relatively rapidly, alternating with longer periods of
relative evolutionary stability Eldredge and Gould (1972). These ideas have
excited the biocommunity—see the discussion in Ridley (2004) and recent
paper Gunji et al. (2014), where, in particular, a fundamental connection
of Gould and Eldredge theory with important concepts of adaptation and
adaptivity is studied. According to Gunji et al. (2014), ” adaptation reveals
the passive mode of biological processes. In contrast, adaptability reveals
the active mode of biological processes, the ability to thrive in an alternative
environment that is hidden within living systems”.

Our results show that gene networks with large gene redundancy and
having a typical network architecture with hubs—which is found practically
in all networks—can perform canalization and very fast evolution. Organisms
controlled by such networks evolve in a punctuated manner. It is shown
that strongly connected nodes (hubs) in gene networks are responsible for
adaptivity wheres weakly connected genes perform adaptation.
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