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Abstract. We consider systems of differential equations with quadratic nonlinearities having

applications for biochemistry and population dynamics, which may have a large dimension n.

Due to the complexity of these systems, reduction algorithms play a crucial role in study of their
large time behaviour. Our approach aims to reduce a large system to a smaller one consisting of

m differential equations, where m << n. Under some restrictions (that allow us to separate slow
and fast variables in the system) we obtain a new system of differential equations, involving slow

variables only. This reduction is feasible from a computational point of view for large n that

allows us to investigate sensitivity of dynamics with respect to random variations of parameters.
We show that the quadratic systems are capable to generate all kinds of structurally stable

dynamics including chaos.

1. Introduction

In this paper, we consider the dynamics a class of systems of ordinary autonomous
differential equations with quadratic nonlinearities. These systems may have applications
for population dynamics and biochemistry (many examples from the BioModel database
[20] belong to the considered class). We develop algebraic methods to investigate the
dynamics of these systems, which use elementary algebra and invariant manifold theory
and do not involve numerical integration of differential equations. They are capable to find
equilibria, invariant domains and absorbing sets. We reduce high-dimensional dynamics
to low dimensional ones. We prove that this class of the quadratic systems can generate
all kinds of structurally stable dynamics, including chaotic ones.

1.1. A class of quadratic systems. In chemical and biological applications, the
species concentrations satisfy ordinary differential equations:

(1.1)
dxi
dt

= Fi(x), x ∈ Rn, 1 ≤ i ≤ n.

where Fi are some smooth functions of the concentrations xi.
We focus our attention on a special class QS of systems (1.1), where the field F in

(1.1) is defined by

(1.2) Fi = bi +
∑

j∈[1,...,n],j 6=i

Mijxj − (b̃i +
n∑
k=1

bikxk)xi +
∑

j,k∈[1,...,n],j 6=i,k 6=i

∑
Kijkxjxk,
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where i = 1, ..., n and

(1.3) bi ≥ 0, b̃i ≥ 0,Mij ≥ 0,Kijk ≥ 0.

Such systems are often arise in biology and biochemistry (for biochemical applications see
BioModel database [20]). Note that in the case when all coefficients bi,Mij and Kijk equal
zero, system (1.1) reduces to a generalized Lotka-Volterra system [10]. In the BioModel
database many systems are defined by the vector fields having the form (1.2). Some of
these systems are linear and many others do not contain terms Kijkxjxk with j 6= i, k 6= i.

1.2. Large time behaviour and structural stability. In this paper, we focus
on the multidimensional systems, where the number of the species (reagents) is large,
n >> 1. We consider the following question: what large time behaviour can emerge
in a system from the class QS when its coefficients range a large domain. In fact, the
kinetic rates (in our case, coefficients bik,Mij , b̃i and Kijk) are generally highly uncertain.
This uncertainty arises as a result of difficulties in measuring of these parameters and
a complicated structure of biochemical and biological systems for large n. Therefore,
sensitivity with respect to kinetic rate variations is a crucial question. A review of the
numerical methods that allow us to estimate sensitivity, can be found in [37].

The sensitivity problem is connected with the other question, namely, the structural
stabilityof dynamical systems. The fundamental concept of structural stability was intro-
duced by A. Andronov and L. Pontryagin in 1937 [1]. Roughly speaking, this means that
small perturbations of a structurally stable system do not change the topological structure
of the system trajectories.

Definition 1.1. We say that a dynamical system St on X is topologically orbitally
equivalent to a dynamical system T t on Y if there is a homeomorphism h: X → Y which
preserves orbits and the sense of direction in time.

Remark: One can use less restrictive definitions when h is a homeomorphism con-
necting the corresponding attractors or the corresponding non-wandering sets, or neigh-
borhoods of the attractors.

Definition 1.2. We say that a global semiflow St on a compact smooth manifold M
defined by differential equations

(1.4)
dq

dt
= Q(q), q ∈M

is structurally stable if each perturbed field Q+ Q̃ such that

|Q̃|C1
M
< ε

generates a semiflow that is orbitally topologically equivalent to St, if ε > 0 is small enough.

For two dimensional case n = 2 we have fundamental theorems of M. Peixoto [23],
which show that here the situation is relatively simple. Namely, a vector field on a two
dimensional smooth compact manifold (a closed surface, for example) is structurally stable
if and only if this field is of the Morse–Smale type. Remind that dynamics of Morse–Smale
systems is relatively simple and does not exhibit chaotic phenomena. Moreover, for any
integer r ≥ 1 the set of the Morse–Smale fields of class Cr is open and dense in the set of
all Cr vector fields, i.e., a generic system in 2D belongs to the Morse-Smale class (see ,
for example, [16] for more detail).
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However, for n > 2 the theory of dynamical systems faces formidable problems. It is
impossible to find a classification, up to homeomorphisms, of finite dimensional dynamical
systems. This fact follows from the fundamental results due to S. Smale: if the dimension
n > 3, then there is a structurally stable system that is not Morse–Smale and the set of
structurally stable fields of class Cr is not open and dense in the set of all Cr vector fields
(see [16], Chapter 1, Theorem 1.6). Therefore, it is impossible to construct a ”general
theory” of dynamical systems.

To circumvent these serious difficulties, connected with the structural instability and
the uncertainty in kinetic rates, we propose a reduction approach combining an algebra and
a special method, the realization of vector fields (RVF) [24, 25]. Due to the complexity
of biochemical reaction networks, reduction algorithms play a crucial role in study of
biochemical system large time behaviour. Our approach aims to reduce a large system to
a smaller one consisting of m differential equations, where m << n. Namely, under some
restrictions (that allow us to separate m slow and n−m fast variables in the system) we
obtain a new system of differential equations involving the slow variables only. The vector
field, that defines the right hand sides of the reduced slow system, is called the inertial
form [35]. This reduction is feasible from a computational point of view for large n. An
interesting fact is as follows. We show that this inertial form is robust for large systems
with respect to random variations of many system parameters but it may be sensitive with
respect to other variations. Therefore we are capable to pick out some key parameters.

Note that there also exist other methods for the reduction of quadratic systems. In
the paper [13] algebraic invariants were found, which allow to test whether a given poly-
nomial kinetic system can be reduced, by a change of variables to the Lorenz system,
or not. General (not obligatory kinetic) systems of differential equations with quadratic
nonlinearities were investigated in detail by algebraic methods in the work [18]. It was
shown that they can generate all trajectories that can be obtained by arbitrary polynomial
differential equations of any orders

(
d

dt
)ny = P (y,

dy

dt
, ..., (

d

dt
)n−1y),

where P is a polynomial.
We also show that a narrow class of systems with quadratic nonlinearities can generate

all possible structurally stable dynamics. To this end we use algebraic methods, the
invariant manifold theory (decomposition into slow and fast variables) [7, 14, 16, 28,
35, 40, 43] and the RVF method [24, 25, 26, 27, 31, 39]. In order to obtain a given
dynamics, we vary some parameters in equations. In our case the parameters are entries
of the matrix M that defines linear terms in the right hand sides of the equations. The
main difference between results [18, 13] and this paper is as follows. In order to obtain
a given dynamics by methods [18, 13] it is necessary to vary all coefficients whereas we
adjust only a part of coefficients corresponding to linear terms (the quadratic terms are
fixed).

2. Some definitions and preliminaries

2.1. Positive cones and cooperative systems. It is natural to assume, from chem-
ical and biological points of view, that x(t) should stay in the positive cone Rn

> = {x :
xi ≥ 0, i = 1, ..., n}. We assume that a local semiflow St, generated by system (1.1),



4 SERGEY VAKULENKO, DMITRY GRIGORIEV, AND ANDREAS WEBER

conserves the positive cone, i.e., x(0) ∈ Rn
> implies x(t) ∈ Rn

> for all t while the trajec-
tory x(t) is defined. Then the positive cone can be considered as a phase space H of our
semiflow. For systems of chemical kinetics, fairly general conditions that guarantee this
cone preservation property, were obtained by A. Volpert [42]. In the case of QS systems
we have an elementary lemma that follows from results [42] and [34].

Lemma 2.1. If conditions (1.3) holds, then the semiflow defined by system (1.1) with
the right hand sides (1.2) preserves the positive cone Rn

>.

Given an Fi, it is difficult to describe in detail the local semidynamical system St as-
sociated with this vector field. Some facts are known about so-called monotone dynamical
systems. To describe such systems let us introduce a partial order in Rn:

(2.1) u ≥ v
means that for all

ui ≥ vi
for all i = 1, ..., n. Similarly, we introduce u > v. Some local semiflows preserve this partial
order ≥ and they are called monotone dynamical systems. The monotone semiflows have
an important property: all local attractors are equilibria and a complicated large time
behaviour is possible only for some specially adjusted initial data (data from a set of
measure 0, see [15, 33] and [27] for an overview). An important class of the monotone
dynamics appears if we consider so-called cooperative systems, where

(2.2)
∂Fi
∂xj
≥ 0 ∀ i 6= j, (x1, ..., xn) ∈ Rn

>.

Then u(0) ≥ v(0) implies u(t) ≥ v(t). Note that the QS systems defined by (1.2) are
cooperative if (1.3) holds and bik ≤ 0.

Unfortunately, a number of biochemical systems are not cooperative. Monotone sys-
tems that arise in chemical kinetics were studied in [19].

2.2. Invariant manifolds and attractors. To simplify the statement, we formulate
here some main definitions from dynamical system theory. If solutions of (1.1) exist for
all times t, our evolution equation defines a global semiflow (semigroup). It is a family of
maps St such that

(2.3) (i) S0 = I

(2.4) (ii) St+τ = StSτ , ∀ t, τ ∈ R+,

(2.5) (iii) St ∈ C0(Rn,Rn) ∀t > 0.

However, even a simple system with quadratic terms does not define, in general, a global
semiflow. As an example, one can consider the simplest equation u′ = u2, which exhibits
a blow-up effect where solutions are defined only within bounded time intervals (then we
speak about a local semiflow). Other examples and a general approach for blow-up effect
can be found in [6]. So, checking global semiflow property may be a non trivial problem.
We can do it using so-called invariant domains (see Sect. 2.2). In the general case eqs.
(1.1) define a local semiflow.

If we have established that the system generates a global semiflow St, the next step is
to check that the system is dissipative. A global semiflow St is dissipative, if there is an
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absorbing set D ⊂ Rn
>, i.e., a set such that each trajectory x(t), t ∈ [0,+∞) enters this

set at some moment T0(x(0)) and does not leave this set in all following time moments:

x(t) = Stx(0) ∈ D ∀ t > T0.

Some criterion for dissipativity we state in this paper. If system (1.1) is dissipative,
we can assert that this system (global semiflow) possesses a global attractor, which is a
compact, connected and invariant set [12]. To define a global attractor, we first define
globally attracting sets. We say that a set A is a globally attracting one, if for each open
neighborhood V (A) of A and each bounded set B there is a time moment T (V,B) such
that

x(t) = Stx(0) ∈ V ∀ t > T (V,B) ∀ x(0) ∈ B.
The invariant set I can be defined as a set such that if a trajectory x(t), t ∈ (−∞,+∞)
lies in I at t = 0, this trajectory stays in I for all time moments:

x(0) ∈ I =⇒ x(t) ∈ I, t ∈ (−∞,+∞).

A set is positively invariant, if the last inclusion holds only for t > 0, and locally invariant
if it holds for some t ∈ (−δ,+δ). The global attractor can be defined as a minimal closed
globally attracting invariant set. Note that there is a variation in attractor definition.
Sometimes one uses other definitions, for example, J.Milnor’s attractor [16, 17, 28, 41].

We say that a set A1 is a locally attracting one, if there is B1(A) (attraction basin)
such that for each open neighborhood V (A1) ⊂ B1 of A1 and each bounded set B ⊂ B1

there is a time moment T (V,B) such that

x(t) = Stx(0) ∈ V ∀ t > T (V,B) ∀ x(0) ∈ B.

The local attractor is a minimal closed locally attracting invariant set in B1.
Invariant manifolds, locally attracting invariant manifolds, positively invariant mani-

folds are, respectively, sets I, which enjoy the corresponding property and, moreover, are
smooth manifolds. Importance of locally attracting invariant smooth manifolds can be
explained as follows. If we could find a locally (or even globally) attracting invariant man-
ifold M ⊂ D of a low dimension m << n, all dynamics in D can be reduced to a dynamics
on M defined by a smooth vector field (an inertial form) of dimension m. However, an
analytic expression for this field may be more complicated, for example, if the original
dynamics is defined by a polynomial field, the inertial form can be defined by a rational
in xi functions (the well known example: the Michaelis-Menten dynamics can be obtained
from a polynomial dynamics).

2.3. Hyperbolic sets and chaos. In this subsection we consider some facts on
hyperbolic sets used below. We follow [29] and first consider dynamical systems with
discrete time, i.e., maps. They can appear as numerical realizations of (1.1). Roughly
speaking, a subset Γ of a smooth manifold M is said to have a hyperbolic structure with
respect to a smooth map f if its tangent bundle may be split into two invariant subbundles,
one of which is contracting and the other is expanding under f (see in monograph [29] for
more detail). In the case of flows we can use a similar definition [29].

For flows, the simplest examples of hyperbolic sets are hyperbolic equilibria and hy-
perbolic limit cycles. There are possible hyperbolic sets having a fractal structure or
smooth (normally hyperbolic manifolds) but with a complicated dynamics (see for exam-
ple, [2, 11, 17, 29, 28]. They also are structurally stable (persistent).
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To prove, in a mathematically rigorous way, that a concrete system of polynomial
equations generates a chaotic behavior (i.e., the attractor is not a finite union of smooth
manifolds), it is not an easy problem. If we use numerical simulations, the question arises
on numerical errors and how to distinguish random fluctuations from chaos. Even such
classical system, as the Lorenz system [21], studied in a number of works, is not understood
completely (where n = 3!). A computer assisted proof of chaos existence for the Lorenz
system see [36] and for the forced damped pendulum equation [5].

Reference remark: The question of numerical checking the Morse–Smale property
was studied by B. M. Garay [8]. The general review for numerical approximation of
attractors etc., see in monograph L. Grune [9]. Note that numerical approximations are
correct if our system is structurally stable. Some topological methods for the Morse–Smale
systems can be found in [32].

3. Almost cooperative systems

Let us define a new class of systems of differential equations, almost cooperative sys-
tems (AC systems). This definition is motivated by the fact that if in relations (1.2)
coefficients bik > 0 for some i and k, then the corresponding system (1.1) is not coopera-
tive, however, the system can lie in the AC class. For general AC systems the attractor
structure is unknown, but we can obtain some estimates for their solutions.

Definition 3.1. Let us consider a smooth vector field F (x) defined on an open subset
D of the positive cone Rn

>. We say that it is a lower almost cooperative (AC) field in D if

(3.1) Fi(x) = Gi(x)− xiqi(x),

where G is bounded by smooth cooperative field G+, i.e.,

(3.2) Gi(x) ≤ G+
i (y), ∀ x, y ∈ D, x ≤ y,

where
∂G+

i

∂xj
≥ 0 ∀ i 6= j,

and qi satisfy estimates

(3.3) qi(x) > q−i (y), ∀ x, y ∈ D, x ≤ y
for some functions q−i . We say that F is an upper almost cooperative field if relation (3.1)

holds and there are a smooth field G− and smooth functions q+
j such that

∂G−i
∂xj

≥ 0 ∀ i 6= j,

and

(3.4) Gi(x) ≥ G−i (y), ∀ x, y ∈ D, x ≥ y,

(3.5) qi(x) < q+
i (y), ∀ x, y ∈ D, x ≥ y.

We say that F is almost cooperative (AC) if this field is upper and lower almost cooperative.

Example. Many systems from the BioModel database [20] lie in the AC class. For
instance, let us consider the following system (see BioModel database, example 21)

(3.6)
dx1

dt
= −(k0 + k8)x1 + k2x3 + k22,
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(3.7)
dx2

dt
= −(k1 + k9)x2 + k3x4 + k23,

(3.8)
dx3

dt
= k0x1 − (k2 + k4 + k10)x3 + k6x5,

(3.9)
dx4

dt
= k1x2 − (k3 + k5 + k11)x4 + k7x6,

(3.10)
dx5

dt
= k4x3 − (k6 + k12)x5 − k14x5x6 + k15x7,

(3.11)
dx6

dt
= k5x4 − (k7 + k13)x6 − k14x5x6 + k16x7,

(3.12)
dx7

dt
= k14x5x6 − (k15 + k16 + k18)x7 + k17x8,

(3.13)
dx8

dt
= k16x7 − (k17 + k19)x8.

Notice that the semiflow defined by (3.6)-(3.13) preserves the positive cone. It is easy
to see that this system is defined by a lower AC field if all ki > 0. Indeed, the components
of the vector field F that defines the right hand sides of equations (3.6)-(3.13) have the
form Fi = Gi(x)−xiqi(x), where the field G is cooperative on the positive cone. Moreover,
qi(x) ≥ 0 for x ≥ 0. We can set G±i = Gi and q±i = const, for example,

q±1 = k0 + k8, q
±
2 = k1 + k9, q

±
3 = k2 + k4 + k10, q

±
4 = k3 + k5 + k11,

and
q−5 = k6 + k12, q

−
6 = k7 + k13, q

±
7 = k15 + k16 + k18, q

±
8 = k17 + k19.

Below we shall show that under some conditions solutions x are bounded, i.e., 0 < xi < Ci,
where Ci > 0 are some constants. Let us define D = {x : 0 < xi < Ci}. Then we can set
q+

5 = k6 + k12 + k14C5 and q+
6 = k7 + k13 + k14C6. Consequently, system (3.6)-(3.13) lies

in AC class in the domain D.
Remark: For a general system of polynomial differential equations it is not quite

obvious even that the system generates a global semiflow (i.e., solutions starting in an open
domain Ω are defined for all t > 0) and that, if this holds, then the system is dissipative.
To verify a global semiflow existence, we can use the following criterion. Assume the
boundary ∂Ω of Ω is a union of finite number of smooth manifolds, for example, a simplex
S or a box Π. We say that the domain Ω is invariant, if at the boundary ∂Ω the vector
field F is directed inward Ω [34]. It is well known that the system generates a global
semiflow in Ω, if Ω is invariant.

Let us formulate some useful sufficient conditions, which allow us to check that the dy-
namical system has an invariant domain. For systems of chemical kinetics such conditions
were found by A. Volpert [42].

i If the system has a conservation law

(3.14) E(x) =
n∑
i=1

cixi, ci > 0

and preserves the positive cone, the system defines a global semiflow in any simplex S =
{x : xi ≥ 0, E(x) < C}.
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ii The same holds if E(x) satisfies the inequality

(3.15)
dE(x(t)

dt
< −a0E(x(t)) + k0, a0, k0 > 0

along all the trajectories x(t), t ≥ 0. In this case there exists an absorbing set A defined
by A = {x : E(x) < k0/a0} and the corresponding semiflow is dissipative,

iii if there exists an invariant box

Πa = {x : 0 ≤ xi ≤ ai}.

As an example, consider (3.6)-(3.13). Let E be defined by (3.14), where n = 8. Then

dE(x(t))

dt
= −b1x1− b2x2− b3x3− b4x4− b5x5− b6x6− b7x7− b8x8− k14x5x6 + k22 + k23,

where

b1 = c3k0 − c1(k0 + k8), b2 = c4k1 − c2(k1 + k9), b3 = c1k2 + c5k4 − c3(k2 + k4 + k10),

b4 = c6k5 + c2k3 − c4(k3 + k5 + k11), b5 = c3k6 − c5(k6 + k12), b6 = c4k7 − c6(k7 + k13)

and

b7 = c5k15 + (c6 + c8)k16 − c7(k15 + k16 + k18), b8 = c7k17 − c8(k17 + k19).

If all bi > 0 then relation (3.15) holds. Thus, in this case our system has globally bounded
solutions and defines a global semiflow. This system has at least one equilibrium. We
shall discuss the question on the number of equilibria for (3.6)-(3.13) in the next section.
Note that conditions bi > 0, ci > 0 give a system of linear inequalities for ci. In general, it
is not clear that this system has a solution. However, if k18 > k16, then we can set cj = 1
for all j.

For quadratic fields F , such as (3.6)-(3.13), checking the point iii that a Πa is invariant,
can be simplified. Let us formulate an assertion.

Lemma 3.2. Let conditions (1.3) hold and bik ≥ 0 for all i, k. If the vector a is a
solution of the following quadratic programming problem:

(3.16) bi +
n∑

j=1,j 6=i
Mijaj +

∑
j,k∈[1,...,n],j 6=i,k 6=i

∑
Kijkajak < (b̃i + biiai)ai, i = 1, ..., n,

then the box Πa is invariant.

If Kijk = 0 then system of inequalities (3.16) reduces to a linear programming problem.
Given a lower AC field F , we associate with this field the superfield F+ defined by

(3.17) F+
i (x) = Gi(x)+ − xiq−i (x), ∀ x ∈ D.

Similarly, given an upper AC field F , we associate the subfield F+ by

(3.18) F−i (x) = Gi(x)− − xiq+
i (x), ∀ x ∈ D.

The following assertion allows us to estimate solutions of almost cooperative systems.
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Proposition 3.3. Let F be a lower AC field, and F+ be the corresponding superfield.
Let us consider the Cauchy problems

(3.19)
dx

dt
= F (x), x(0) = u,

(3.20)
dx+

dt
= F+(x+), x+(0) = u+,

such that u < u+. Then the corresponding solutions x,x+ satisfy the estimate

(3.21) x(t) < x+(t)

for all t such that x+(t),x(t) are defined and lie in D.
Similarly, let F be an upper AC field, and F− be the corresponding subfield. Let us

consider the Cauchy problem

(3.22)
dx−

dt
= F−(x−), x−(0) = u−,

such that u− < u. Then the corresponding solutions x,x− satisfy the estimate

(3.23) x(t) > x−(t)

for all t such that x(t),x−(t) are defined and lie in D.

Proof. We prove the estimate x(t) < x+(t), the second estimate can be derived in a
similar way. Suppose that, at a time moment, this inequality is invalid. Then there exist
a time moment t0 and an index j such that

(3.24) xi(t) ≤ x+
i (t) t < t0, i = 1, ..., n

(3.25) xj(t0) = x+
j (t0),

and

(3.26)
dxj(t)

dt
≥
dx+

j (t)

dt
t = t0.

Consider the equations for j-th components at t = t0. We have

(3.27)
dxj(t)

dt
= Gj(x)− xjqj(x),

(3.28)
dx+

j (t)

dt
= G+

j (x+)− x+
j q
−
j (x+).

Let us denote w = x+
j − xj . Then, due to (3.25) and (3.26), one obtains

w(t0) = 0,
dw

dt
(t0) ≤ 0.

On the other hand, by (3.27) and (3.28) we have

(3.29)
dw(t)

dt
= S1 + S2,

where
S1 = G+

j (x+)−Gj(x), S2 = xj(t0)(qj(x(t0))− q−j (x+(t0))).

We have S1(t0) ≥ 0 by definition of G+
j and AC fields, see (3.2). Furthermore, by (3.3)

S2 > 0. Therefore, we have obtained a contradiction and the assertion is proved.
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Example. Let us consider system (3.6)-(3.13) and let k16 < k18. Then this system
has an absorbing set in the simplex

(3.30) A = {x : xi ≥ 0,

8∑
j=1

xi = C},

where C is a constant. This fact allows us to estimate solutions to (3.6)-(3.13) for large t
by Prop. 3.3. To obtain an upper estimate, we replace equations (3.10) and (3.11) to

(3.31)
dx5

dt
= k4x3 − (k6 + k12)x5 + k15x7,

(3.32)
dx6

dt
= k5x4 − (k7 + k13)x6 + k16x7,

and consider the system of equations (3.6)-(3.9), (3.31), (3.32), (3.12) and (3.13). This
modified system is cooperative and thus all local attractors of this system are equilibria
X+. These equilibria can be found in a simple way since this system contains a single
nonlinear term (see the next section). So, for large t solutions of (3.6)-(3.13) satisfy
xi(t) < X+

i .

4. Systems with sparse quadratic terms

System (3.6)-(3.13) has a unique nonlinear term. Such systems can be reduced to a
single equation with time delay. In some cases this equation can be investigated. Let us
consider the following class of vector fields Fi

(4.1) Fi(x) =

n∑
j=1

Mijxj + aixi0xj0 + ki,

where i0, j0 ∈ {1, ..., n} are some fixed indices, ki > 0, ai are some coefficients Mij > 0 if
j 6= i.

Let us set Q(t) = xi0(t)xj0(t), a = (a1, ..., an) and k = (k1, ..., kn). For example, in
(3.6)-(3.13) we have i0 = 5, j0 = 6. Let M be the linear operator defined by matrix M.
Let us consider the evolution semigroup L(t) = exp(Mt). Assume that

(4.2) ||L(t)x|| ≤ C exp(−bt)||x||, C, b > 0

for all positive x from the positive cone, i.e., such that xi > 0. Inequality (4.2) holds, for
example, if the matrix M has a dominant negative diagonal, i.e.,∑

j=1,...,n,j 6=i
Mij +Mii < 0

Then all eigenvalues of M have negative real parts. Moreover, we have the following result.

Lemma 4.1. Assume for (1.1) with F defined by (4.1) there are coefficients ci > 0
such that E defined by (3.14) satisfies (3.15) with k0 = 0. Then (4.2) holds.

Proof. Relation (3.15) with k0 = 0 implies that E(t) ≤ ||x|| exp(−a0t). Since xi > 0,
this inequality entails (4.2).

Let us introduce projection operators Pi to i-th components. Then system (4.1) re-
duces to the relationship

(4.3) Q(t) = Rt(Q(·)),
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where a nonlinear operator Rt is defined by

Rt = (

∫ t

0
Pi0 exp(M(t− τ))(aQ(τ) + k)dτ)(

∫ t

0
Pj0 exp(M(t− τ))(aQ(τ) + k)dτ).

This equation, in general, can describe a complicated behaviour (see [12]). A general
approach to such equations is to find equilibria and study bifurcations [12]. Assume (4.2)
holds. Then equilibria Q∗ can be found by the following procedure. Given a Q∗, equations
for equilibria give a linear system

(4.4)
n∑
j=1

Mijxj = −aiQ∗ − ki,

with respect to x1, x2, ..., xn. Solving this system, we obtain xi = αiQ∗ + βi, where αi, βi
are some coefficients. Therefore, for Q∗ we have

(4.5) Q∗ = (αi0Q∗ + βi0)(αj0Q∗ + βj0).

Similarly, we can seek equilibria for systems with sparse quadratic terms that leads to a
quadratic system of a low dimension.

Let us consider system (3.6)- (3.13) as an example. Here i0 = 5 and j0 = 6. As a
result of straightforward computations, we obtain equation (4.5) with

α5 = −(k14 + k15r)R
−1
5 , β5 = R−1

5 k4(k2k0(k0 + k8)−1 + k4 + k10)−1k22k8(k0 + k8)−1,

α6 = −(k14 + k16r)R
−1
6 , β6 = R−1

6 k5(k3k1(k1 + k8)−1 + k3 + k11)−1k23k1(k1 + k9)−1,

where r = (k15 + k18 + k16k19(k17 + k19)−1)−1 and

R5 = k6 + k12 − k6k4(k2k8(k0 + k8)−1 + k4 + k10)−1,

R6 = k7 + k13 − k7k5(k3k9(k1 + k9)−1 + k3 + k11)−1.

One can show that in this case equation (4.5) has two positive solutions.

5. Strategy to find a complex behaviour

5.1. Realization of vector fields. In this section we state a method of the realiza-
tion of vector fields (RVF) that allows us to show that the quadratic systems can exhibit
complicated large time behaviour. The main idea is to study families of dynamical systems
depending on parameters. The complexity of the behaviour of the family can be measured
as follows: which vector fields can be obtained by variations of the family parameters.
The method RVF has been introduced by P. Poláčik [27, 24, 25] (we change slightly the
original version to adapt it for our goals).

Let us consider a family of global semiflows StP in a fixed Banach space B. We assume
that these semiflows depend on a parameter P ∈ B1, where B1 is another Banach space.

Denote by Bm the unit ball {q : |q| ≤ 1} in Rm centered at 0, where q = (q1, q2, ..., qm)
and |q|2 = q2

1 + ...+ q2
m. Let us consider a system of differential equations on the ball Bm:

(5.1)
dq

dt
= Q(q),

where

(5.2) Q ∈ C1(Bm), sup
q∈Bm

|∇Q(q)| < 1.
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Assume the vector field Q is directed strictly inward to the ball Bm at the boundary
∂Bm = {q : |q| = 1}:
(5.3) Q(q) · q < 0, q ∈ ∂Bm.

Then eq. (5.1) defines a global semiflow on Bm. Let ε be a positive number.

Definition 5.1. We say that the family of global semiflows StP realizes the vector field
Q with accuracy ε (briefly, ε-realizes), if there exists a parameter P = P(Q, ε, n) ∈ B1

such that
1 semiflow StP has a positively invariant manifold Mm;
2 this manifold is embedded into B by a sufficiently smooth map

(5.4) z = Z(q), q ∈ Bm, z ∈ B, Z ∈ C1+r(Bm),

where r > 0;
3 the restriction of the semiflow StP to Mm is defined by the system of differential

equations

(5.5)
dq

dt
= Q(q) + Q̃(q,P), Q ∈ C1(Bm),

where

(5.6) |Q̃(·,P)|C1(Bm) < ε.

This means that the dynamics on the invariant manifold is defined by the variables
q1, q2, ..., qm and approximates prescribed dynamics (5.1) with accuracy ε.

Using these ideas let us describe a realization vector field approach for systems (1.1),
where the field F is defined by (1.2). This approach works under some assumptions, which
mean that the system involves slow and fast variables. To avoid too cumbersome relations,
we assume Kijk = 0 for all i, j, k.

Let us choose a subset Km = {i1, ..., im} of In = {1, 2, ..., n}, where 1 ≤ m < n. Let
K̄m = In − Km be the complement of Km. We break all variables xi into two sets, the
slow ones qj = xij and the fast variables, which are all the rest xk with k ∈ K̄m.

In the new variables system (1.1) takes the form

(5.7)
dql
dt

= bil +
∑
j∈K̄m

Miljxj +

m∑
s=1

Milisqs − (b̃il +
∑
k∈K̄m

bilkxk +

m∑
s=1

bilisqs)ql

where l = 1, ...,m

(5.8)
dxi
dt

= bi +
∑
j∈K̄m

Mijxj +

m∑
s=1

Miisqs − (b̃i +
∑
k∈K̄m

bikxk +
m∑
s=1

biisqs)xi

where i ∈ K̄m.
Furthermore, let λ > 0 be a large parameter. Assume that

(5.9) bil = λ−1al, Milis = λ−1µls, b̃il = λ−1ãl, bilis = λ−1βls,

for all l, s = 1, ...,m and

(5.10) b̃i = λb̄i, biis = λb̄is, i = 1, ..., n, s = 1, ...,m.

We suppose that

(5.11) |al|, |ãl|, |µls| |βls|, |Milj |, |bilk| < C1,
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where i, s = 1, ...,m and j, k ∈ K̄m,

(5.12) |b̄i|, |Mij |, |Miis |, |b̄i|, |bik| |b̄is| < C2,

where i, k ∈ K̄m, s = 1, ...,m and the constants Ci are independent of λ. Let BmR = {q :
|q| < R|} be a ball in Rm of the radius R centered at 0.

Then, by classical theorems of the invariant manifolds [14, 11, 40, 43] we obtain the
following assertion.

Lemma 5.2. Assume that conditions (5.11) and (5.12) hold. Then for sufficiently large
λ > λ0(C1, C2, R) there exists a locally invariant and locally attracting m-dimensional
manifold Mm defined by

(5.13) xi = λ−1Xi(q) + λ−2φi(q, λ), i ∈ K̄m, q ∈ BmR
where

(5.14) Xi(q) = (bi +
m∑
s=1

Miisqs)(b̄i +
m∑
s=1

b̄iisqs)
−1, i ∈ K̄m

and where functions φi satisfy estimates

(5.15) |φi|C1(BmR ) < C0, i = 1, ..., n.

Dynamics (1.1) restricted to Mm is defined by the system

(5.16)
dql
dt

= λ−1Ql(q) + λ−2Q̃i(q, λ),

where

(5.17) Ql(q) = al +
∑
j∈K̄m

MiljXj(q) +
m∑
s=1

µlsqs − (ãl +
∑
j∈K̄m

biljXj(q) +
m∑
s=1

βlsqs)ql,

and

(5.18) |Q̃i(·, λ|C1(BmR ) < C14, i = 1, ..., n.

This lemma follows, for example, from results [14], Theorems 6.1 and 6.9.
Let us investigate sensitivity of the inertial form Q(q) on parameters. Consider the

term Gi(q) =
∑

j∈K̄m
MiljXj(q) involved in expression (5.17) for Qi. We have

(5.19) Gi(q) =
∑
j∈K̄m

Milj(bj +
m∑
s=1

Mjisqs)(b̄j +
m∑
s=1

b̄jisqs)
−1.

For large n this term has a property of stability with respect to random variations of
coefficients Milj ,Mjis , b̄j and b̄jis .

Assume that these coefficients are random variables subject to independent distribu-
tions and such that their expectations and variances fulfill estimates

(5.20) |EMilj |, |EMjis |, |Eb̄j |, |Ebjis | < CE ,

and

(5.21) |V ar(Milj)|, |V ar(Mjis)|, |V ar(b̄j)|, |V ar(bjis)| < Cv,

where CE , Cv are positive constants independent on λ and n.
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Then for q ∈ BR we have the following relations

(5.22) EGi(q) =
∑
j∈K̄m

EMilj(Ebj +

m∑
s=1

EMjisqs)E(b̄j +

m∑
s=1

b̄jisqs)
−1,

and

(5.23) |V ar(Gi(q))| < Cn,

where a positive constant C is independent of n.
These relations demonstrate robustness of the terms Gi(q) with respect to random

variations of the coefficients Milj ,Mjis , b̄j and b̄jis . In fact, generally the expectations

EGi(q) have order O(n) whereas the corresponding deviations V ar(Gi(q))
1/2 are O(n1/2).

Finally we conclude that reduced few dimensional dynamics is robust with respect
to variations of the coefficients Milj ,Mjis , b̄j and b̄jis . However, this dynamics may be
sensitive with respect to variations of the coefficients al, ãl and βls.

5.2. Complicated behaviour for large times. Let us consider systems (1.1) with
Fi defined by (1.2). For the case when the coefficients bik < 0, these systems generate
cooperative dynamics. Then the large time behaviour is relatively simple. We show that
in the case bik > 0 and large n we can obtain a complicated dynamics, in particular, all
kinds of hyperbolic dynamics. It is well known that such dynamics may be periodic or even
chaotic [2, 29, 17, 28]. We assume that the conditions bik > 0, Mij > 0 and Kijk = 0
hold for all i, j, k therefore the corresponding system (1.1) may be almost cooperative.

Theorem 5.3. Consider system (5.1) defined on the unit ball Bm satisfying condition
(5.2). Assume that the global semiflow StQ defined by this system has a hyperbolic set
HQ. Let ε be a small positive number. Then there exist a number n and coefficients

bi,Mij , b̃i, bik and Kijk such that the following property holds.
Consider the field F defined by these coefficients by (1.2). Consider the semiflow StF

generated by the corresponding system (1.1). Then this semiflow also has a hyperbolic set
HF homeomorphic to HQ. The corresponding restricted dynamics StQ|HQ

and StF |HF
are

topologically orbitally equivalent.

Proof. We set Kijk = 0, bi = 0 and Mij = 0 for all i, j, k. Then system (1.1) becomes

a generalized Lotka-Volterra one. We consider the number n and the coefficients b̃i and
bik as a parameter P. Now this theorem follows from results [38].

Such proving method has, however, a drawback. The hyperbolic sets that can be
constructed by this reduction to the generalized Lotka-Volterra systems lie on unstable
invariant manifolds Mm. Therefore, the corresponding hyperbolic dynamics is unstable
with respect to variations of initial data (when these data leave the invariant manifold).

We can overcome this difficulty using the results of the previous section and the follow-
ing approximation lemma. We set Kijk = 0 for all i, j, k and extend the set of parameters

including in P the number n and all coefficients bi,Mij , b̃i, bik}. Let Km = {1, , ...,m}.

Lemma 5.4. Consider the family of vector fields on the unit ball Bm depending on
parameter P:

(5.24) Vi(q,P) =
∑
j∈K̄m

Milj(bj +

m∑
s=1

Mjisqs)(b̄j +

m∑
s=1

b̄jisqs)
−1.
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For any C1-smooth field Q(q) on Bm and any ε > 0 there exists a P such that

(5.25) |V (·,P)− F (·)|C1(Bm) < ε

Moreover, conditions (1.3) and bik > 0 ∀i, k hold.

We prove this lemma for m = 1. The general case of arbitrary m can be obtained
from the one dimensional case by the standard methods, see [3]. For m = 1 we set q1 = z,
Mi1j = Mj and b̄jis = Mjis = a0. Let a0 > 0 be fixed, the number n and the positive
coefficients Mj , b̄j and bj will be considered as parameters. Relation (5.24) takes the form

(5.26) V (z,h, c) = c+

n∑
j=2

ρj(hj + z)−1.

where ρj = a−1
0 Mj(bj − b̄j), c =

∑n
j=2Mj and hj = bj/a0. Note that the coefficients ρj

can have different signs even under conditions Mj > 0, bj > 0, b̄j > 0 and a0 > 0.
Let us show that the set W of the functions V defined by relation (5.26), where

|hj | ≤ 1, is dense in the space of continuously differentiable functions on I = [0, 1], i.e.,
Clos(W ) = C1(I). Notice that, due to the Weierstrass theorem, for each ε1 > 0, each
function g(z) from C1(I) can be approximated by a sum P (z) =

∑n
k=1 pk(1 + z)−k with

accuracy ε1:

|g − P |C1(I) < ε1.

Now, by an inductive procedure, we show that each function pk(z) = (1 + z)−k can be
approximated in C1 - norm by a sum (5.26). In fact, let

S(z, δ) = δ−1((1 + z)−1 − (1 + (z − δ))−1).

Then

sup
z∈I
|(1 + z)−2 − S(z, δ)| < c1δ, sup

z∈I
| d
dz

((1 + z)−2 − S(z, δ))| < c2δ.

In a similar way, we can approximate (1 + z)−3, (1 + z)−4 etc.
To prove the lemma for m > 1, one use a standard trick, namely, the Radon trans-

formation, see [3]. Indeed, any functions F (q) can be approximated by a linear combi-
nation of the functions Fc(q) = f(zc) of the scalar arguments zc, where zc = c · q =
c1q1 + c2q2 + ...+ cmqm.

This lemma proves the theorem as follows. The lemma shows that the semiflow StF
ε-realizes any m-dimensional C1- smooth vector field, in particular, the field Q. If we
choose ε small enough, then, using the definition of structural stability and the theorem
on structural stability of hyperbolic sets (see [17, 28, 29] and subsections 1.2 and 2.3),
we obtain our assertion.

6. Conclusion

We have considered a class of systems of differential equations with quadratic nonlin-
earities. This class have important applications for biochemistry and population dynamics,
in particular, generalized Lotka-Volterra systems belong to this class.

We have also introduced a general class of systems of differential equations, the almost
cooperative systems (AC systems). Under some natural conditions, quadratic systems are
almost cooperative. We have obtained estimates of solutions for AC systems. By purely
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algebraic methods, that can be realized algorithmically by an elementary linear algebra,
we have studied the following problems :

(i) Finding invariant boxes in the phase space;
(ii) finding equilibria;
(iii) how to construct reductions of complicated high dimensional systems to low di-

mensional ones.
These reductions allow us to find periodical and chaotic regimes for almost cooperative

quadratic systems. Due to a transparent structure of the reduction algorithm, we can
investigate sensitivity of reduced low dynamical systems with respect to system parameter
variations. We show that the random variations of many parameters do not affect reduced
dynamics.
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[24] P. Poláčik, Realization of any finite jet in a scalar semilinear parabolic equation on the ball in R2, Annali

Scuola Norm Pisa 1991, 17, 83-102.
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