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Abstract. We consider a class of systems of differential equations with quadratic nonlinear-
ities. This class describes important biochemical models. We show that systems of this class
can realize any structurally stable dynamics. Given a low dimensional dynamics, we describe
algorithms that allow to realize this dynamics by a large biochemical network. Some concrete bio-
chemical examples are studied. Moreover, we show how a big system with random kinetic rates
can simulate a number of low dimensional ones. The proposed method is applied on Calcium
oscillations, extracellular signal-regulated kinase (ERK) signaling pathway and multistationary
Mitogen-activated protein kinase cascade system (MAPK) models from biochemistry.
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1. Introduction

Biochemical kinetic models can be represented as systems of ordinary differential equations with
polynomial—often quadratic—nonlinearities. These polynomial nonlinearities appear as a result of the
mass action law, and the corresponding models can involve hundreds of equations. Moreover, kinetic
rate values, which are coefficients in these equations, are very often not known precisely. Therefore, the
investigation of large time behavior and of the attractors of biochemical systems is a great challenge for
biochemistry. Since one can expect that these systems are not robust (structurally stable), variations
in kinetic rates can lead to dramatical effects. Note that direct numerical simulations do not allow to
study all possible variants of large time dynamical behavior. Indeed, if a model includes 1000 differential
equations and 2000 different kinetic coefficients, it is difficult to investigate all possible situations by
an exhaustive search. An additional challenge is that kinetic rates of biochemical networks have multi-
ple orders of magnitude. Signaling and metabolic reactions typically occur rapidly whereas regulatory
events involved in cellular growth or cell differentiation can take hours. These multiple time-scales lead
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to computational difficulties. Biochemical models are “stiff”, i.e., they involve “fast” and “slow” reaction
dynamics.

In this paper our goal is to state an algorithmic approach, which allows to obtain information about
possible kinds of large time dynamical behavior without relying on primitive brute-force methods that
do not scale to larger systems. In our approach the difficulties connected with “stiffness” become an
advantage, which helps to find different reductions to low dimensional dynamics by algebraico-topological
methods. The method (an algorithm) proposed here to describe different low dimensional reductions of
dynamics of large metabolic networks uses the following tools: i) graph theory and algebraic methods; ii)
theory of slow invariant manifolds; and iii) some special approximations.

Moreover, we shall show for an important class of systems of biochemical kinetics (let us denote this
class by C) that the dynamics of systems from C may be very complicated, even if nonlinearities involve
only quadratic terms. For a larger class of quadratic systems such a result was established by M. D.
Korzuchin [12], see also [19]. In particular, the Korzuchin theorem explains how the famous Belousov-
Zhabotinsky reaction can appear (for an overview on this topic see [19]). We prove a theorem which shows
that systems from this class C of large metabolic networks can exhibit a complicated dynamics. More
precisely, this result asserts that such networks can approximate any prescribed dynamics with arbitrary
given accuracy ε > 0, when the reagent number N is large enough and the kinetic rates are adjusted in
a special way. This result extends the Korzuchin theorem on systems, which involve a smaller number of
free parameters. We describe an algorithm of the realization of a given robust dynamics on infinite time
intervals. We refer to our method, which is a purely algebraic, as “shock testing”, since we make some
kinetic rates small and other much larger. Morever, by the shock method we prove a theorem that even a
fixed large quadratic kinetic system with N � 1 variables and random kinetic rates can simulate different
systems with n variables. In a sense, a random big system from our class C can simulate a number of low
dimensional ones belonging to C. An algorithm producing such simulations is simple and it can be easily
performed by genetic regulation mechanisms.

2. Model

We consider the following systems
dxi
dt

= −xiSi(x) +Ri(x), (2.1)

where x = (x1, . . . , xN )tr, xi are unknown reagent concentrations, and Ri are polynomials

Ri(x) =

N∑
j

Rijx
j, Rij ≥ 0, (2.2)

where j = col(j1, . . . , jN ) are multiindices, and xj = xj11 . . . xjNN . We suppose that the term Ri does not
involve a factor xi, i.e., ji = 0. Notice that the fundamental theorem of chemical kinetics [8, 19] states
that, if system (2.1) describes a chemical kinetics, then the coefficients Rij must be non-negative:

Rij ≥ 0. (2.3)

In real metabolic networks the terms Ri are quadratic and Si are linear functions having the form

Si(x) = ki +

N∑
j=1

Kijxj , (2.4)

where

ki > 0, Kij ≥ 0. (2.5)

33



“largemetabolic˙mmnp˙Version˙4” — 2012/4/2 — 15:55 — page 34 — #3i
i

i
i

i
i

i
i

Dima Grigoriev, Satya Swarup Samal, Sergey Vakulenko, Andreas Weber Large Metabolic Network Dynamics

Condition (2.5) helps to obtain estimates for solutions. In the book [19] it is shown that this condition
follows from fundamental ideas of chemical kinetics. We set the initial conditions

x(0) = φ. (2.6)

Equations (2.1) and (2.6) give us a Cauchy problem.
We say that the vector x is positive if it lies in the positive cone RN> = {x : xi > 0}. Let us show that

the Cauchy problem (2.1), (2.6) is well posed and that it defines a chemical kinetics.

Lemma 2.1. For positive φ the Cauchy problem (2.1), (2.6) has positive solutions x(t) on some open
interval (0, T (φ)). These solutions are unique. Therefore, problem (2.1), (2.6) defines a local semiflow in
the positive cone RN> .

As an example, we consider a system of equations describing an interaction of a noncoding RNA with
many mRNA’s (see [21]). Some ncRNA’s and especially miRNA’s have many (up to a few hundreds)
mRNA targets [1]. Direct experimental validations and reliable theoretical predictions of the targets
are difficult problems. The kinetic models including association of ncRNA with two mRNA’s and many
mRNA’s were analyzed in [18] and [21], respectively. In these works ncRNA’s have been considered as
global regulators. For m distinct mRNA’s the equations take the following form:

dNi
dt

= wi − kiNi − riNiN∗, (2.7)

dN∗
dt

= w − k∗N∗ −N∗
m∑
i=1

riNi, (2.8)

where Ni and N∗ are the mRNA and ncRNA populations, wi and u are the transcription rates, ki > 0
and k∗ > 0 are the degradation rate constants, and ri > 0 are association rate constants. Naturally, we
are looking for positive solutions assuming that Ni, N∗(0) > 0, since only such solutions have biological
meaning.

This system was studied numerically [21]. In the dynamics of this relatively simple system oscillations
do not appear. Indeed, it is easy to see that system (2.7), (2.8) defines a global dissipative strongly
monotone semiflow in a box Π ⊂ Rm+1

+ , which follows from the condition ri > 0. So this system has
convergent trajectories and to describe its large time behavior one has to find the equilibria only.

3. Decomposition

We seek for an integer n� N and a decomposition of variables x = (z, y), where

z ∈ RN−n> , y ∈ Rn> (3.1)

such that in new variables (z, y) the functions Si and Ri take a special form. Let us denote by Kz the set
of indices

Kz = {i1, i2, . . . , iN−n}, zl = xil ,

corresponding to the z-subspace, respectively, corresponding to the y-subspace

Ky = {j1, j2, . . . , jn}, yl = xjl .

Assume that Si and Rj can be represented in the following form:

Ri(z, y) =

N∑
j

R̄ijy
j = Ti(y), i ∈ Kz, (3.2)
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Ri(z, y) =

N∑
j

N∑
k

R̃ijky
jzk, i ∈ Ky, (3.3)

Si(z, y) = mi +

n∑
j=1

Mijyj = Pi(y), i ∈ Kz, (3.4)

Si(z, y) = k̄i +

n∑
j=1

K̄ijyj +

N−n∑
j=1

K̃ijzj i ∈ Ky. (3.5)

One can suppose that y-variables are hubs in the networks, i.e., they participate in many reactions and
mediate them whereas z-variables are “satellites”. This structure is typical for many biochemical network
systems [15,20].

For quadratic systems (2.1) with linear Si of the form (2.4) and quadratic Ri such that

Ri(x) = ri +

N∑
i 6=j

R̄jxj +

N∑
k 6=i

N∑
l 6=i

R̄klxkxl (3.6)

this decomposition can be made by the vertex cover method (see below).

3.1. Systems with conservation laws

In many systems terms Ri(x) do not contain constant terms ri, but these systems have some linear
conservation laws ∑

sj

esjxj = Es, s = 1, . . . , NCL, (3.7)

where NCL is the number of conservation laws.
One can suggest two variants to handle these systems (a method that we state below, requires non-zero

ri).
a) First we make a separation into fast and slow variables. If the linear conservation laws involve fast

variables zj only, we choose some basis of linear independent variables zj . Then in new variables our
system reduces to a standard form, as above, with ri depending on Es.

b) We first choose a basis of linear independent variables x, and then we proceed to a system de-
composition on slow and fast components by a procedure connected with a vertex cover finding (see
below).

4. Reduction to shortened system by slow manifolds

In this subsection, our goal is to reduce the dynamics of a large system to a shortened y-dynamics. Notice
first that if the right hand sides of (2.1) can be transformed to the form (3.2)-(3.5), then we can simplify
the task of finding equilibria (note that for a general large system (2.1) it is a formidable problem).
Namely, we obtain

zi =
Ti(y)

Pi(y)
= Zi(y), (4.1)

where Ti and Pi are defined by (3.2) and (3.4), respectively. After we substitute Zi in equations for y:

yiSi(y, Z(y)) = Ri(y, Z(y)). (4.2)

The reduction of dynamics can be done under the following assumption:

Assumption (S). Assume that the kinetic coefficients involved in y -equations are small with respect
to kinetic coefficients ki involved in z-equations:

sup
i
|k̄i|+ sup

i,j
|K̄ij |+ sup

i,j
|K̃ij | < κ(m0), (4.3)
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where
m0 = min

j
mj .

Biologically this means that the dynamics of the y-variables is slow with respect to dynamics of the
remaining z-variables.

Lemma 4.1. Suppose assumption (S) holds. Consider the equations

dyi
dt

= −yiSi(y, Z(y)) +Ri(y, Z(y)) = Fi(y). (4.4)

Assume that (4.4) defines a global semiflow in an open bounded connected domain D ⊂ Rn with a smooth
boundary ∂D.

For sufficiently small κ there exists a locally invariant and locally attracting manifold Zn of dimension
n defined by

zi = Zi(y) + Z̃i(y, κ), y ∈ D, (4.5)

where
|Z̃i(·, κ)|C1(D) → 0 κ→ 0. (4.6)

The dynamics of system (2.1) restricted to Zn is defined by the equations

dyi
dt

= Fi(y) + F̃i(y, κ), (4.7)

where
|F̃i(·, κ)|C1(D) → 0 κ→ 0. (4.8)

Proof. The proof is standard and follows from Theorem 6.1.7 of [10].

Let us describe an algebraic procedure that allows us to construct more and more accurate approxi-
mations to the solutions of system (2.1). Let us write down this system in (z, y) variables as follows:

dzi
dt

= −ziZi(y) +Gi(y), (4.9)

dyi
dt

= κFi(y, z), (4.10)

where κ is a small parameter. According to the slaving principle [7] we can represent solutions of this
system in the following form

zi = z
(0)
i + κz

(1)
i + · · · ,

where the main term z
(0)
i is defined by z

(0)
i = Gi(y)Zi(y)−1. For the first correction z

(1)
i one has

dz
(1)
i

dt
= −z(1)

i Zi(y) +

n∑
j=1

∂z
(0)
i

∂yj
Fj(y, z

(0)(y)), (4.11)

that implies

z(1) =

n∑
j=1

∂z
(0)
i

∂yj
Fj(y, z

(0)(y)).

It is clear that this procedure can be continued and it gives us asymptotical series for the solution z. �

This last lemma shows that, under some assumptions, the dynamics of a global network (2.1) can be
reduced to n equations. In the coming section we describe the method of a dynamics control for this
shortened system.
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5. Control of slow dynamics

The main idea beyond the mathematical construction of this control is as follows. We adjust coefficients
that define an interaction between slow modes y and fast modes z. The number of these coefficients is
much bigger than the number of slow modes n. This fact allows us to apply some special approximations.

To simplify the further statement, let us consider the case when the polynomials Ti are linear functions
of y, i.e., deg(Ti) = 1. Therefore,

Ti(y) = τi +

n∑
j=1

Tijyj , i ∈ Kz. (5.1)

Then Zi are given by

Zi(y) =
τi +

∑n
j=1 Tijyj

mi +
∑n
j=1Mijyj

. (5.2)

Thus, for i ∈ Ky one has

Si(y) = k̄i +

n∑
j=1

K̄ijyj + Ei(y, K̃, T, τ), (5.3)

where

Ei(y, K̃, T, τ,m,M) =

N−n∑
j=1

K̃ijZj(y). (5.4)

We consider the field E(y) with components Ei in the domain D. Besides E, we consider more general
fields G(y) defined by

Gi(y, K̃, T, τ,m,M,C) = Ei(y, K̃, T, τ,m,M) + Ci (5.5)

depending on constants Ci. These constants can have any signs. A possibility to control E and thus S
by the parameters K̃, T, τ follows from the next assertion.

Lemma 5.1. Let us fix an integer n > 0. Consider the set Gn of all vector fields G(y) defined by (5.5)
on a bounded open subdomain D ⊂ Rn for all possible values of N and all possible positive values of the
coefficients τi, K̃ij , Tij ,mp,Mpl, Ci where i, l = 1, . . . , n, j = 1, . . . , N − n and p = 1, . . . , N − n. This set
Gn is dense in the space of all smooth vector fields F enabled by C1-norm.

Proof. Step 1. The Fourier approximation and reduction to one dimensional case.
We can assume that D ⊂ Π, where Π = [0, 2π]n is a box. Then for each ε > 0 and a given smooth

field H(y) we can construct an approximation

Hi(y) =
∑

m∈M⊂Nn

H+
i,m cos(m · y) +H−i,m sin(m · y) (5.6)

such that
|Hi −Gi|C1(D) < ε. (5.7)

Here m is a multiindex, m = (m1, . . . ,mn), where mi ∈ N, M is finite subset of Nn and m · y =
m1y1 +m2y2 + . . .+mnyn. Relations (5.4)- (5.7) show that it is sufficient to approximate fields H of the
form

Hi(y) = Hi(qm), qm = m · y. (5.8)

�

Remark 5.2. For systems, which involve linear and quadratic terms only, we can use the following
elementary trick instead the Fourier decomposition. We can present the term yiyj with i 6= j as follows:

yiyj =
1

2
((yi + yj)

2 − y2
i − y2

j ). (5.9)
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Step 2. One-dimensional case.
The problem of approximation of fields (5.8) by Gi can be formulated as follows. Given ε > 0 and the

smooth function h(q) on some bounded interval [0, β], to find coefficients kj , C, ri, aj , bj , τj > 0 such that
the sum

g(q) = C +

N0∑
i=1

ki
τi + biq

ri + aiq
(5.10)

approximates the function h on [a, b]:

|g(·)− h(·)|C1[0,β]) < ε. (5.11)

Let us set bi = ai. Then we can transform (5.10) as follows:

g(q, γ, r, a, C ′) = C ′ + g̃(q), g̃ =

N0∑
i=1

γi
ri + aiq

, (5.12)

where

C ′ = C +

N0∑
i=1

ki, γi = ki(τi − ri).

There are possible different approaches resolving this approximation problem. We state two methods.
The first approach uses the Weierstrass theorem and polynomial approximations, and the second one is
a least square procedure.

Method 1. According to the Weierstrass theorem, linear combinations

R(q) = C ′ +

M∑
k=1

ck(1 + q)−k, (5.13)

where M is an arbitrary integer and ck are arbitrary coefficients, are dense in the space of all smooth
functions on [0, β] in the C1 norm.

Thus, it is sufficient to prove that functions Pk(q) = (1 + q)−k can be approximated, with an arbitrary
accuracy, by g defined by (5.12). We can prove it by an inductive procedure. It is clear that this fact
holds for k = 1. Assume this assertion holds for k = p. Let us prove it for k = p+ 1. We use the estimate

|(1 + q)−p−1 − cph((1 + q)−p − (1 + (q − h))−p)| < Cph,

that is valid on [0, β] for appropriate constants cp and Cp > 0. For small h this estimate gives the needed
approximation. Thus the lemma is proved.

Method 2. We can apply to this approximation problem the classical method of least squares. Let us
introduce the matrix A with the entries

Aij =

∫ 1

0

(ai + qj)
−1(aj + q)−1dq. (5.14)

Notice that
Aij = (a(i)− a(j)−1(log(ai + 1)/ai))− log(aj + 1)/aj)))

for i 6= j, and
Aii = a−1

i − (ai + 1)−1.

Let us define the vector B = (B1, . . . , Bn) by

Bi =

∫ 1

0

(ai + q)−1h(q)dq. (5.15)
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We solve the linear algebraic system

AX = B (5.16)

and the solution X gives the optimal approximation in the L2([0, β])-norm.
Let us now consider the second term in the right hand side of (4.4). We assume that Ri(y, z) are linear

in z:

Ri(y, z) = r̄i +

N−n∑
l=1

R̄ilzl. (5.17)

Then there holds a lemma analogous to the previous one. Let us consider the vector fields J with
components Ji defined by

Ji(y) = r̄i +

N−n∑
l=1

R̄ilZl(y). (5.18)

Lemma 5.3. Let us fix an integer n > 0. Consider the set Jn of all vector fields J(y) defined by (5.18)
on a bounded open subdomain D ⊂ Rn for all possible values of N and all possible positive values of the
coefficients r̄i, R̄ij , Tij ,mp,Mpl where i, l = 1, . . . , n, j = 1, . . . , N − n and p = 1, . . . , N − n. This set Jn
is dense in the space of all smooth vector fields F on D in the C1-norm.

The proof is the same as for Lemma 5.1.

5.1. Theorem on the complexity of the dynamics

Consider the following class of systems of chemical kinetics:

dxi
dt

= −xi(ki +

N∑
j=1

Kijxj) + ri +

N∑
j=1

Rijxj , (5.19)

where x = (x1, . . . , xN ) ∈ RN , i = 1, . . . , N and

ki > 0,Kij ≥ 0, ri > 0, Rij ≥ 0, Rii = 0. (5.20)

We refer this class as C. Under conditions (5.20) it is easy to show that the Cauchy problem for system
(5.19) defines a global semiflow in the positive cone RN>. In fact, the solutions of system (5.19) can be
estimated by

||x|| ≤ C(r, k) + ||x(0)|| exp(λmint),

where λmin is the maximal eigenvalue of the matrix T with entries Tij = −kiδij + Rij . If λmin < 0
then system (5.19) generates a dissipative semiflow because then the solutions are globally bounded as
t→ +∞:

x(t) ∈ Dδ, t > T0(x(0), δ),

where

Dδ = {x : 0 < xi < ri/ki + δ}

and δ > 0 is a arbitrary positive number. Furthermore, we use the method of realization of vector fields
[3] that implies the following assertion.

Consider vector fields Q(y) defined on a balll Bn ⊂ Rn> such that

|Q(y)|C1(Bn) < 1, Q(y) · n(y) < 0 y ∈ ∂Bn, (5.21)

where n is a outward normal vector at y to the boundary ∂Bn. Therefore, Q is directed inward Bn on
the boundary ∂Bn and equation dy/dt = Q(y) defines a global semiflow.
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Theorem 5.4. Consider the family St(P ) of semiflows defined by system (5.19) where the parameters P
are the number N and the non-negative coefficients ki,Kij , ri, Rij. Then this family generates dynamics,
maximally complex in the following sense. For any ε > 0 and a vector field Q satisfying (5.21) there
exists a choice of parameters P such that

(i) the corresponding semiflow St(P ) has a n-dimensional locally invariant and locally attracting man-
ifold Zn defined by a C1 smooth map x = Z(y), y ∈ Bn;

(ii) the semiflow St(P ) restricted to Zn is defined by

dy

dt
= Q(y) + Q̃(y), |Q̃(y)|C1(Bn) < ε. (5.22)

The dynamics defined by systems of class C can generate all possible (up to orbital topological equivalen-
cies) structurally stable dynamics, in particular, all hyperbolic dynamics.

Proof. Estimate (5.22) immediately follows from lemmas 4.1, 5.1 and 5.3, under appropriate choice of P .
The second assertion follows from the definition of structural stability and this estimate for sufficiently
small ε [16]. The assertion on hyperbolic dynamics follows from the structural stability (persistence) of
hyperbolic sets [16].

Let us make a brief comments in connection with fundamental Korzuchin’s theorem [12]. This result
asserts that any dynamics defined by a system of ordinary differential equations can be realized within
a bounded time interval by quadratic systems of chemical kinetics including only monomolecular and
bimolecular reactions. These systems are more complicated than systems (5.19) and have the form

dxi
dt

=

N∑
j=1

Aijxj +

N∑
j=1

Bijlxjxl, (5.23)

where Aij , Bijl satisfy some conditions of non-negativity [19]. Theorem 5.4 can be considered as an
extension of the Korzuchin theorem on the narrower class C of models of chemical kinetics. �

6. Checking existence of oscillations, bifurcations, and chaos

The method, described in the previous sections can meet difficulties for large n, since at the very beginning,
we can obtain the number of the Fourier coefficients being exponential in n. In fact, the setM can contain
an exponential number of multiindices m. It is a typical effect first described by R. Bellman and called
“curse of dimensionalit”. How to check then—by a really feasible algorithm—that a large metabolic
network can exhibit oscillations or, say, saddle-node bifurcations?

To avoid this curse we propose to use the fundamental idea of “normal forms”. We reduce system (4.4)
to a system of low dimension, which can exhibit these oscillation and bifurcation effects. For such smaller
system the information on equilibria and bifurcations can be obtained by symbolic computations.

For example, we would like to check that a large network exhibits time oscillating solutions. Simple
systems, which can demonstrate such a behavior, have the form [13]

dy1

dt
= a0 + a1y1 + a2y2 + a11y

2
1 + a12y1y2 + a22y

2 + κY1(y), (6.1)

dy2

dt
= b0 + b1y1 + b2y2 + b11y

2
1 + b12y1y2 + b22y

2
2 + κY2(y), (6.2)

where ai, bi, aij , bij ∈ R are coefficients, i, j = 1, 2, κ > 0 is a small parameter and Si, Y1, Y2 satisfy

|Yi(·)|C1(D) ≤ C1, κ > 0 y ∈ D. (6.3)

For κ = 0 the time behaviour of system (6.1),(6.2) is well studied. These equations can exhibit an
Andronov-Hopf bifurcation and limit cycles (for example, coexistence of 4 cycles) [13]. It is clear that
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this system also exhibits the saddle-node bifurcations since the normal form of this bifurcation is

dy1

dt
= a0 − a11y

2
1 , a11 > 0, (6.4)

dy2

dt
= −b0y2 +O(y2

2), b0 > 0. (6.5)

This bifurcation occurs, when a0 passes through 0, whereas b0, a11 are fixed.

To obtain chaos, we can try to reduce (4.4) to the Lorenz system, which demonstrates complicated
behavior, including global convergence of trajectories, Andronov-Hopf bifurcations, and chaos. In the
next section we describe an algorithm to find reductions to systems like (6.1), (6.2).

6.1. Algorithm

Input is given by a quadratic system

dxi
dt

= −xi(ki +

N∑
j=1

Kijxj) + ri +

N∑
j 6=i

Rijxj , (6.6)

where i = 1, . . . , N , and N can be large.

The goal of the algorithm is to reduce system (5.19) to a smaller system, which involves rational
nonlinearities, and find equilibria and Andronov-Hopf bifurcations for this system.

Below we state the algorithm, which is purely algebraic and use symbolic algebra. The proof of theorem
5.4 also gives an algorithm, however, it uses numerical approximations.

Step 1: Vertex cover. We find a graph (V,E), where substances xi are vertices, therefore, V =
{1, 2, . . . , N}. The edge (i, j) ∈ E if and only if the both xi and xj involved in a quadratic term in the
right hand sides of the system (6.6).

The algorithm works if there is a vertex cover C = {i1, . . . im} for (V,E), which includes m ≥ n vertices
and m� N is not so large (we suppose that m ∈ (1, 50)). The problem of finding a minimal vertex cover
is a NP-complete problem (see [2, 5]). However, there exists a simple greedy 2-approximation algorithm
(see[2]), which finds a cover that contains ≤ 2m∗ vertices (if the best cover contains m∗ vertices). If such
a vertex cover exists, we make a decomposition x = (y, z) described and studied above. We denote

yk = xjk , k = 1, . . . ,m,

and zl, where l = 1, . . . , N − n will be all the rest of xi such that i 6= ik, k = 1, . . . ,m. System (6.6) takes
the form

dzi
dt

= −zi(k̃i +

m∑
j=1

K̃ijyj) + ri +

N−m∑
j 6=i

R̃ijzj +

m∑
j=1

R̄ijyj . (6.7)

where i = 1, 2, . . . , N −m,

dyj
dt

= −yi(k̄i +

m∑
j=1

M̃ijyj +

N−m∑
l=1

Sijzj) + ri +

N−m∑
l 6=j

Tijzj +

m∑
l 6=j

Pilyl. (6.8)

where j = 1, . . . ,m. Now we express z via y using (6.7) assuming that zi are fast and yj are slow. We
obtain zi = Zi(y), where Zi are rational functions. If R̃ij = 0, we have simple formulas for Zi:

Zi(y) =

∑m
j=1 R̄ijyj

k̃i +
∑m
j=1 K̃ijyj

. (6.9)
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Note that if we seek equilibria of (6.7), (6.8), then (6.9) is an exact relation. Substituting (6.9) into (6.8)
one has

dyj
dt

= −yi(k̄i +

m∑
j=1

M̃ijyj +

N−m∑
l=1

SijZj(y) + ri +

N−m∑
l 6=j

TijZj(y) +

m∑
l 6=j

Pilyl. (6.10)

We call these equations the vertex cover system. It is a reduction, which can be found in a Poly(N)
running time by symbolic methods.

Step 2
For example, we would like to check that the reduced system (6.6) exhibits an Andronov-Hopf bifur-

cation.
a) We seek an equilibrium yeq for the vertex cover system. Further, we use the Taylor series for the

right hand sides at yeq setting

w = y − yeq.

Then the vertex cover system takes the form

dwj
dt

= ξi(S, T ) +
m∑
j=1

ηij(S, T )wj +
∑
j=1

l=1∑
φijl(S, T )wjwl, (6.11)

where φijl, ηij and ξi are linear functions of Si′j′ , Ti′l′ .
b) By symbolic algebra [4], we can find a condition that system (6.10) admits an Andronov-Hopf

bifurcation in an explicit symbol form via ξ, φ, η, say

η11 < φ2 + 1.2. (6.12)

c) Then we substitute ξi(S, T ) and other expressions into (6.12) and obtain a condition for the existence
of Andronov-Hopf bifurcations.

7. Why networks are large?

Numerical realizations show some interesting results. Let us consider realizations of quadratic vector fields.
Then we can use identity (5.9) and the problem reduces to an approximation of quadratic polynomials

µ(q) = c1q+c2q
2 by sums g(q)X =

∑N0

i=1Xi(ai+q)−1 on some interval [0, β], where β > 0. It is clear that
without loss of generality one can set β = 1. Since the approximation problem is linear, we can consider
two cases: µ1 = q and µ2 = q2.

We have applied the method of least squares (the method 2). We set ai = iā, where i = 1, . . . , N0 and
N0 = 2, 3, 5. By a program in MATLAB2009 we have estimated the following quantities:

d0 = sup
q∈[0,1]

|µi − gX(q)|, d1 = sup
q∈[0,1]

|dµi
dq
− g′X(q)|,

and |X| = max |Xi|. In these relations, X = X(ā, N0) are optimal vectors that can be found by the
method of least squares by relations (5.14), (5.15) and (5.16). The quantities di give the approximation
precisions and X̄ gives an estimate of the maximum of the kinetic rates that involved in (y, z) interaction
(it is a force of the satellite action on the hubs). They depend on ā and N0. The number N0 can be
interpreted as a complexity of the network. The number ā estimates the magnitude of some kinetic rates.
These rates determine the action of a center on satellites.

We have found that one can obtain a good approximation for µ1 by N0 = 2, 3 and for µ2 by N0 = 3.
For µ1 = q and ā = 5, N0 = 3 it is found

d0 ≈ 0.002, d1 ≈ 0.024, X̄ ≈ 1220, (7.1)
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and for ā = 20, N0 = 3 it is found that

d0 ≈ 10−5, d1 ≈ 0.0015, X̄ ≈ 17000. (7.2)

Similar results can be obtained for µ2 = q2. We observe therefore that the approximation precision
increases when ā grows but, on the other hand, then the kinetic rates increase. To see this dependence
and obtain analytical results let us consider the case ā � 1. Some rough estimates based on method 2
then show (we omit technical details) that

di = O(ā)N
−1/2
0 , X̄ = O(ā3)N−1

0 . (7.3)

Thus, given a network of complexity N0, in order to obtain a prescribed dynamics of a network, it is
necessary to use either a strong action of the centers to the satellites, or from the satellites to the centers
(or both interactions should be strong). Note that in real applications the kinetic rates are bounded by
some constants and cannot become arbitrarily big. Therefore, the networks, which are flexible and show
different kinds of dynamics, should be complex (N0 � 1). Increasing N0 (which a polynomial function of
N , actually it is the connectivity of hubs, see [11]), we can conserve the same precision of approximation
of a required dynamics having restricted kinetic rates.

8. Shock testing for random systems

Let us consider system (5.19) assuming that N � 1 and coefficients Kij , and Rij are random. More
precisely, let each Kij , Rij and ri be distributed according to the normal laws N (b0, σ

2
0) N (b1, σ

2
1) and

N (b3, σ
2
3) , respectively, where bi, σi > 0. We assume that all Kij and Kkl are independent if (i, j) 6= (k, l),

and the same holds for Rij and ri. Moreover, all Kij , Rkl and ri are independent. Note that results of
this section are valid for all other distribution laws, if the corresponding densities ρ(x) are C2-smooth
and positive for x ≥ 0.

Together with a large random system (5.19) let us consider a smaller system of the same structure,
namely

dui
dt

= −ui(k̄i +

n∑
j=1

K̄ijuj) + r̄i +

n∑
j=1

R̄ijuj (8.1)

where i = 1, . . . , n. We assume that the dynamics generated by this system is dissipative, i.e., there is a
compact absorbing set D with open interior, which attracts all trajectories. Let us consider the realization
of (8.1) by (5.19). This realization can be found as follows. We can call it “realization by shock decay”,
since we sharply increase some decay constants ki.

We choose n indices S = {i1, . . . in} ⊂ IN = {1, . . . , N}. Let us introduce uk = xik , where k = 1, . . . , n.
So, we have a decomposition IN = S ∪ F , where F is a set of indices corresponding to fast variables.
Furthermore, let us take ki = a for all i 6= i1, i2, . . . in, where a is a large enough and ki = k̄i otherwise.
Then, by slow manifolds, we see that fast variables are defined by

xi = a−1(ri +
∑
j∈S

Rijxj) + a−2ηi(xi1 , . . . ., xin , a), i ∈ F, (8.2)

where ηi are smooth functions of slow variables bounded in C1(D)-norm for each compact domain D as
a→∞. We substitute these relations into eqs. (5.19) for slow components xi with i ∈ S. As a result, we
obtain system (8.1) with small perturbations

dui
dt

= −ui(k̄i +

n∑
j=1

K̄ijuj) + r̄i +

n∑
j=1

R̄ijuj + φi(u, a), (8.3)

where
K̄kl = Kikil , R̄kl = Rikil , k̄l = kil , r̄l = ril , (8.4)
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and φi(u, a) are smooth functions such that

|φi(u, a)|C1(D) < cD(N,n)a−1, (8.5)

for any compact domain D and some constant cD(N,n) > 0. If N � n then almost all systems (8.1) can
be represented in such a way. Let us formulate a lemma.

Lemma 8.1. Under the above assumptions, the probability P (N,n, ε) that system (5.19) realizes a given
short system (8.1) with accuracy ε can be estimated by

P (N,n, ε) > 1− (1− pn(ε))m, pn(ε) > C(n)ε2n2+n. (8.6)

where m is the integer closest to N/n.

Proof. We consider the following decompositions generated by the disjoint sets: S1 = {1, . . . , n}, S2 =
{n + 1, . . . , n}, . . . , Sm = {mn + 1, . . . ,mn + n}. Let us denote the sets MK̄,ε, MR̄,ε and Mr̄,ε of n × n
matrices X and the vectors y by

MK̄,ε = {X : |Xkl − K̄kl| < ε, k, l = 1, . . . , n},

MR̄,ε = {X : |Xkl − R̄kl| < ε k, l = 1, . . . , n},

and

Mr̄,ε = {y : |yk − r̄k| < ε k = 1, . . . , n}.

Let us now consider the sets Ts, s = 1, . . . ,m of triples consisting of n × n submatrices X of the
matrix K, submatrices Z of the matrix R and subvectors y of the vector r defined by Xkl = Kikil ,
Zkl = Kikil and yk = rik , where k → ik, k = 1, . . . , n is a map of indices associated with the set Ss,
where s = 1, . . . ,m. For any s the probability Pn(ε, s) that the corresponding set Ts intersects with MK̄,ε

does not depend on N and it admits the estimate Pn(ε, s) = 1− pn(ε), where pn > C(n)ε2n2+n. Since all
submatrices and vectors are independent, we obtain (8.6).

�

Combining this lemma and Theorem 5.4, we obtain the following main result.

Theorem 8.2. Consider the family St(P ) of semiflows defined by system (5.19) with random independent
parameters. Consider a vector field Q(y) defined on a ball Bn ⊂ Rn> and satisfying assumptions of
Theorem 5.4. For any ε > 0 let us denote by P (N,n, ε,Q) the probability that—as a result of some
“realization by shock decay” for an appropriate variable choice—the corresponding semiflow St(P ) satisfies
assertions (i) and (ii) of Theorem 5.4. Then this probability can be estimated by

P (N,n, ε,Q) > 1− (1− qn(ε,Q))m, qn(ε,Q) > 0, (8.7)

where m is the integer closest to N/n.

This means that the dynamics defined by a large random system of class C can generate a number of
possible structurally stable dynamics. Note, however, that it is difficult to give an explicit estimate for
qn(ε,Q).

9. Application to real biochemical systems

We consider a small and two larger two biochemical systems important in applications.
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9.1. Calcium oscillation model from [6]

9.1.1. Input System

This model explains the enzymatic transfer of calcium across cell membranes via CICR (“calcium induced
by calcium release”). The model consists of 4 chemical species and 6 reactions (eqs. (9.1)–(9.6) below),
where Si represent the chemical species and xi represent the corresponding concentrations, and kij are
the parameters (experimental rate constants):

0 k21−−−→ S1 (9.1)

S1 k12−−−−→ 0 (9.2)

S1 + S2 k43−−−−→ 2S1 (9.3)

S1 + S3 k65−−−−→ S4 (9.4)

S4 k56−−−−→ S1 + S3 (9.5)

S4 k76−−−−→ S2 + S3 (9.6)

The resulting system of differential equations with quadratic nonlinearities is given by the following
equations:

dx1/dt = −k12x1 + k21 + k43x1x2 + k56x4 − k65x1x3 (9.7)

dx2/dt = −k43x1x2 + k76x4 (9.8)

dx3/dt = k56x4 − k65x1x3 + k76x4 (9.9)

dx4/dt = −k56x4 + k65x1x3 − k76x4 (9.10)

There is a conservation law in this model, namely

x3 + x4 = c1, (9.11)

where c1 is a constant. We now handle the conservation law as described in Sect. 3.1(b). We eliminate
one variable (for example, x3). Then system (9.7)–(9.10) reduces to

dx1/dt = k43x1 x2 − k65 x1 (−x4 + c1 )− k12 x1 + k56 x4 + k21 , (9.12)

dx2/dt = −k43x1 x2 + k76 x4 , (9.13)

dx4/dt = k65x1 (−x4 + c1 )− k56 x4 − k76 x4 . (9.14)

Now we implement the steps mentioned in Sect.6.1 for eqs. (9.12)–(9.14).

9.1.2. Step 1

A monomial in x1, x2, . . . , xn is a product of form xa11 xa22 . . . xann where all the exponents a1,a2, . . . , an
are non negative integers. The total degree of this monomial is the sum a1 + a2 + . . .+ an. As the input
system is quadratic the monomials have degrees ≤ 2. The monomials of total degree 2 were used for the
vertex cover computation. To separate the monomials the right hand side of the system was factorised
into a symbolic matrix and a vector of monomials as shown below: k21 −c1 k65 − k12 k56 k43 k65

0 0 k76 −k43 0
0 c1 k65 −k56 − k76 0 −k65

 (9.15)

 1
x1
x4

x1 x2

 (9.16)
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The vertex cover of the undirected graph is computed by an greedy algorithm. We use the decompo-
sition

y = {x1}, z = {x2, x4}.

Let us consider the subsystem for z variables, i.e., equations for dx2/dt, dx4/dt:

dx2/dt = −k43x1 x2 + k76 x4 ,

dx4/dt = k65x1 (−x4 + c1 )− k56 x4 − k76 x4 .

We set dx2/dt, dx4/dt = 0, resolve these equations with respect to x2, x4 and find an equilibrum
x2(x1), x4(x1) :

{
x2 =

c1 k65 k76
k43 (k65 x1 + k56 + k76 )

, x4 =
k65 x1 c1

k65 x1 + k56 + k76

}
.

The vertex cover system is constructed as above for eq. (6.10), i.e., by substituting eq. (9.1.2) in eqs.
(9.12)–(9.14):

dx1/dt =
k76 k65 x1 c1

k65 x1 + k56 + k76
− k65 x1

(
− k65 x1 c1

k65 x1 + k56 + k76
+ c1

)
− k12 x1

+
k56 x1 c1 k65

k65 x1 + k56 + k76
+ k21 ,

dx2/dt = 0,

dx4/dt = k65 x1

(
− k65 x1 c1

k65 x1 + k56 + k76
+ c1

)
− k56 x1 c1 k65

k65 x1 + k56 + k76

− k76 k65 x1 c1
k65 x1 + k56 + k76

.

9.1.3. Step 2

Solving the vertex cover system for equilibrium with respect to y variables, finally we obtain an equilibrium

{
x1 =

k21
k12

}
. (9.17)

9.2. Model of ERK activation

9.2.1. Input System

This model investigates the extracellular signal-regulated kinase (ERK) signaling pathway by angiotensin
II type 1A receptor. This signaling pathway is involved in cell surface receptors and hence is regarded as a
drug target. Therefore, understanding such a pathway mechanism is a key problem. The model presented
in [9] consists of 18 chemical species and 26 chemical reactions. The model represented in Systems
Biology Markup Language (SBML) can be obtained from http://www.nature.com/msb/journal/v8/

n1/suppinfo/msb201222_S1.html#msb201222-s1. The corresponding system of differential equations
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from the SBML was computed using the PoCab system environment [17]. This model has the form

dx1/dt = −k10x1 − k18 x1 − k19 x11 x1 + k15 x14 + k16 x15 + k17 x16 + k23 x17

dx2/dt = −k1x2 x13 − k2 x2 x1 − k0 x2 + k6 x12

dx3/dt = −k5x3 x7 − k21 x3 x17 − k22 x3 x18 + k9 x8 + k25 x9

dx4/dt = −k3x12 x4 + k7 x5

dx5/dt = k3x12 x4 − k7 x5

dx6/dt = −k4x5 x6 + k8 x7

dx7/dt = k4x5 x6 − k8 x7

dx8/dt = k5x3 x7 − k9 x8

dx9/dt = k21x3 x17 + k22 x3 x18 − k25 x9

dx10/dt = −k11x10 x13 + k13 x14 + k15 x14

dx11/dt = −k12x11 x13 − k19 x11 x1 − k20 x11 x16

+k14x15 + k16 x15 + k23 x17 + k24 x18

dx12/dt = k1x2 x13 + k2 x2 x1 + k0 x2 − k6 x12

dx13/dt = k10x1 − k11 x10 x13 − k12 x11 x13 + k13 x14 + k14 x15

dx14/dt = k11x10 x13 − k13 x14 − k15 x14

dx15/dt = k12x11 x13 − k14 x15 − k16 x15

dx16/dt = k18x1 − k20 x11 x16 − k17 x16 + k24 x18

dx17/dt = k19x11 x1 − k23 x17

dx18/dt = k20x11 x16 − k24 x18

The model has 7 conservation laws:

x2 + x12 = C1, x1 + x13 + x14 + x15 + x17 + x16 + x18 = C2

x4 + x5 = C3, x6 + x7 = C4, x10 + x14 = C5

x11 + x15 + x17 + x18 = C6, x3 + x9 + x8 = C7

The conservations laws were taken into account and the pre-processing step was done analogously to the
previous example. The variables that were eliminated are x1, x2, x3, x4, x6, x10, x11. Therefore, the input
system becomes a 11 dimensional model.

9.2.2. Step 1 and Step 2

The vertex cover from the 11 dimensional model is computed as in the previous example and variables
are decomposed into y and z variables as shown below:

y = {x7, x12, x13, x15, x17, x18}
z = {x5, x8, x9, x14, x16}

The z sub-system consists of equations for x5, x8, x9, x14, x16 and these equations are solved with
respect to z variables. The resulting rational functions as well as the vertex cover system is constructed
similarly to the previous example. We fail to solve the vertex cover system with respect to y variables
in symbolic form using the computer algebra system Maple, since its solver didn’t find solutions in 2000
seconds of computation time. To overcome this difficulty, we have used the numeric values of parameters
and conservation law constants from [9]. Finally, the following single equilibrium is obtained:

{x7 = 0.04184, x12 = 0.01184, x13 = 0.00022, x15 = 0.00270,

x17 = 0.0000091, x18 = 0.00189} .
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9.3. Model of MAPK cascade

9.3.1. Input System

We consider the polynomial equation system of single layer Mitogen-activated protein kinase cascade
system (MAPK) from [22]. The model is a well studied biological network that displays the property of
multistationarity i.e. more than one steady state solution for fixed parameters and conservation constants.
Such properties are also well documented in cell cycle and signal transduction networks in biology. Below,
we show that the multistationarity of given nine dimensional MAPK cascade system is preserved in the
vertex cover system with a dimension of just two.

The input system is given below

dx1/dt = −k1x1 x2 + k12 x9 + k2 x3

dx2/dt = −k1x1 x2 − k4 x2 x4 + k2 x3 + k3 x3 + k5 x5 + k6 x5

dx3/dt = k1x1 x2 − k2 x3 − k3 x3

dx4/dt = −k10x4 x7 − k4 x2 x4 + k11 x9 + k3 x3 + k5 x5 + k9 x8

dx5/dt = k4x2 x4 − k5 x5 − k6 x5

dx6/dt = −k7x6 x7 + k6 x5 + k8 x8

dx7/dt = −k10x4 x7 − k7 x6 x7 + k11 x9 + k12 x9 + k8 x8 + k9 x8

dx8/dt = k7x6 x7 − k8 x8 − k9 x8

dx9/dt = k10x4 x7 − k11 x9 − k12 x9

The model has three conservation laws:

x2 + x3 + x5 = C1

x7 + x8 + x9 = C2

x1 + x3 + x4 + x5 + x6 + x8 + x9 = C3

9.3.2. Step 1 and Step 2

The conservation laws were handled as per Sect. 3.1(a). The vertex cover from the 9 dimensional model
is computed as in the previous example and variables are decomposed into y and z variables as shown
below

y = {x2, x7}
z = {x1, x3, x4, x5, x6, x8, x9}

The z sub-system consists of equations for x1, x3, x4, x5, x6, x8, x9 and these equations are solved with
respect to z variables along with the conservation law for z sub-system (i.e., x1 + x3 + x4 + x5 + x6 +
x8 + x9 − C3). The resulting rational functions as well as the vertex cover system is constructed similar
to the previous example. We could solve for the symbolic solution using Maple resulting in five solutions
(the expressions are not presented due to space constraints). The solutions converted to float using the
parameters values and conservation constants obtained from [22] are as follows:

x2 = 0.4118, x7 = 0.0097

x2 = 0.4260, x7 = 0.0136

x2 = 1.1584, x7 = 0.7460

x2 = −3.1805, x7 = −9.6338

x2 = 32.0989, x7 = −16.0470
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The vertex cover system has 3 positive biologically interesting solutions consistent with experimental
findings of multistationarity in the original MAPK cascade system.

10. Conclusion and discussion

In this paper, we have considered a class of systems of differential equations with quadratic nonlinearities
modelling biochemical networks. We have presented algorithms, which allow to describe low dimensional
reductions of dynamics of these systems. These algorithms need no numerical integration of stiff systems
and include the following ingredients: i) algebraic methods to find so-called vertex covers; ii) the theory
of slow invariant manifolds; and iii) some special approximations. Moreover, we have shown, for some
important class of systems of biochemical kinetics, that the large time behavior of a large network may
be very complicated. In a sense, any given dynamics can be realized, within arbitrarily small precision, by
a sufficiently large network. The second theorem asserts that even a fixed large quadratic kinetic system
with N � 1 variables and random kinetic rates can simulate different smaller systems with n � N
variables. In a sense, a random big system from our class can simulate a number of low dimensional ones
belonging to the same class. This set of low dimensional dynamics can correspond to adaptive reactions of
the organism. An algorithm producing such simulations is simple and it can be easily performed by gene
control. Namely, this gene control can modify some kinetic rate coefficients describing reagent decays.
This increase of the decay rates turns off the corresponding reagents. The rest reagents perform a needed
low dimensional dynamics.

As it was noticed in a famous textbook on biochemistry [14], the metabolisms of mammals and
mushrooms are wonderfully similar. Even the number of reagents involved in the human and the yeast
metabolisms do not differ very dramatically and have the same order. The results of this paper possibly
shed a light on this wonderful phenomenon. In fact, one can assume that evolution could use any random
metabolic network. According to our results, this network can perform any dynamical adaptive answer
under appropriate gene control.
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