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Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

x1 x2 x3
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Natural questions

• What is the smallest size of a circuit computing f?
• How many satisfiable assignments a circuit has?
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What was known

Lower bounds

• Shannon: almost all functions has circuits of size Ω(2n/n).

• Worst case lower bounds:
• (3+ 1/86)n for B2 [Find, Golovnev, Hirsch, Kulikov].
• 5n− o(n) for U2 [Iwama, Morizum].

• Average case lower bounds:
• 2.49n over B2 and 2.99n for U2 [Chen, Kabanets].

Upper bounds (#SAT algorithms)
Faster than 2n algorithms for circuits of size 2.49n over B2 and
2.99n for U2 [Chen, Kabanets].
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Gate elimination and branching algorithms

Gate elimination

• Find substitution that eliminates many gates.
• Circuit size lower bound.

Branching on substitutions

• Find substitution that eliminates many gates
in all branches.

• #SAT algorithm.

[Chen and Kabanets, 2014]
Branching case analysis can also be used to prove average case
circuit lower bounds (correlation bounds).
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Notation

• B2 is a full Boolean binary basis, U2 = B2 \ {⊕,≡}.
• CΩ(f) the minimal size of a circuit over basis Ω ⊆ B2
computing function f ∈ Bn.

• For functions f,g ∈ Bn, the correlation between them

Cor(f,g) =
∣∣∣Prx [f(x) = g(x)]− Pr

x
[f(x) ̸= g(x)]

∣∣∣ =∣∣∣1− 2 Prx [f(x) ̸= g(x)]
∣∣∣ .

• For 0 ≤ ε ≤ 1, CΩ(f, ε) is the minimal size of a circuit over
Ω ⊆ B2 computing function g such that Cor(f,g) ≥ ε.
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Framework

A proof in the framework

1. Fix parameters:
• a class of circuits C,
• a circuit complexity measure µ,
• a set of allowed substitutions S .

2. Case analysis: for any circuit C ∈ C there is a substitution
in S that reduces µ(C) by sufficient amount.

3. #SAT upper bound: branching algorithm.
4. Circuit size lower bounds for a function that survives
under sufficiently many allowed substitutions.
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Circuit complexity measures

We focus on the following two circuit complexity measures:

• µ(C) = s(C) + α · i(C) where α ≥ 0;
xi xj
∧ A

• µ(C) = s(C) + α · i(C)− σ · i1(C) where α ≥ 0, σ ≤ 1.

xi xj
∧ AB

C

xi xj
∧ AB
∨ C

D1 D2

xk
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Sets of substitutions

1. Bit fixing substitutions: {xi ← c}.
2. Projections: {xi ← c, xi ← xj ⊕ c}.
3. Affine substitutions: {xi ←

⊕
j∈J xj ⊕ c}.

4. Quadratic substitutions: {xi ← p : deg(p) ≤ 2}.

Dispersers and extractors

• (S,n, r)-disperser f survives after n− r substitutions.
• (S,n, r, ε)-extractor f survives after n− r substitutions∣∣∣Prx [fsubst(x) = 1]− 1/2

∣∣∣ ≤ ε.

• There are explicit constructions of dispersers and
extractors allowing n− o(n) substitutions except for
quadratic substitutions.
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Substitutions

Substitution replaces some variable by a function that is
computed by some subcircuit of a given circuit.

xi

xj xk
⊕

⊕
xi ← xj ⊕ xk

xj xk
⊕

⊕

Then we normalize the circuit removing trivialized gates.
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Splitting vectors

Consider one step of branching algorithm A on circuit C.

• Choose k variables x1, . . . , xk.
• Choose k functions f1, . . . , fk computed by gates of C.

• For all c1, . . . , ck ∈ {0, 1} substitute x1 ← f1 ⊕ c1, . . . ,
xk ← fk ⊕ ck in C and call A on it.

A(C)

A(C1) A(C2) · · · A(C2k)

• Vector v = (a1, . . . ,a2k) ∈ R2k is a splitting vector w.r.t.
measure µ if for all i ∈ [2k], µ(C)− µ(Ci) ≥ ai > 0.
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Splitting numbers

For a splitting vector v = (a1, . . . ,a2k) the splitting number τ(v)
is the unique positive root of the equation∑

i∈[2k] x−ai = 1
(solution of T(n) = T(n− a1) + T(n− a2) + · · ·+ T(n− a2k)).

Properties

• If splitting number is at most τ then running time is
bounded by O∗(τµ(C)).

• Balanced splitting vectors (a,a) have better splitting
numbers than unbalanced (a+ b,a− b).

• 21/a = τ(a,a) < τ(a+ b,a− b) for 0 < b < a.
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Splitting

For a class of circuits Ω (e.g., Ω = B2 or Ω = U2), a set of
substitutions S , and a circuit complexity measure µ, we write

Splitting(Ω,S, µ) ⪯ {v1, . . . , vm}

as a shortcut for the following statement:

• For any normalized circuit C from the class Ω
• one can find in time poly(|C|) a substitution from S whose
splitting vector w.r.t. measure µ belongs to {v1, . . . , vm}

• or a substitution that trivializes the output gate of C.

Note: a substitution always trivializes at least one gate and
eliminates at least one variable.
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Main theorem

If Splitting(Ω,S, µ) ⪯ {v1, . . . , vm} and the longest splitting
vector has length 2k, then

1. There exists an algorithm solving #SAT for circuits over Ω
in time O∗(γµ(C)), where γ = max

i∈[m]
{τ(vi)}.

2. For (S,n, r)-disperser f,

µ(f) ≥ βw({vi}) · (r− k+ 1).

3. For (S,n, r, ε)-extractor f,

µ (f, δ) ≥ βa({vi}) · r, δ = ε+ exp (−g(r, {vi})) .

15



Weak limitation theorem

If for some S , Splitting(Ω,S, s+ αi) ⪯ {(a1,b1), . . . , (am,bm)},
such that mini∈[m]max{ai,bi} = ω(1) then #SAT for circuits over
bases Ω can be solved in time O∗(2o(s)).

Corollary
Due to the Sparsification Lemma such an algorithm even over
the bases U2 contradicts the Exponential Time Hypothesis.
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U2: projections

Lemma

For 0 ≤ σ ≤ 1/2,

Splitting(U2, {xi ← c, xi ← xj ⊕ c}, s+ αi− σi1) ⪯ {. . .}.

Corollary

1. (2− δ(ϵ))n #SAT algorithm for circuits of size (3.25− ϵ)n.
2. CU2(f) ≥ 3.5n− logO(1)(n) for projections disperser f.
3. CU2(f, δ) ≥ 3.25n− t for projections extractor f.

Cor(f, C) is negligible for C of size 3.25n− ω(
√

n logn).
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U2: projections

There is only one case where projection xi ← xj ⊕ c is
necessary (other cases are handled by bit fixing substitutions).

xi xj

A B

Let gates A and B compute Boolean functions
fA(xi, xj) = (xi ⊕ aA)(xj ⊕ bA)⊕ cA and
fB(xi, xj) = (xi ⊕ aB)(xj ⊕ bB)⊕ cB respectively.

• If aA = aB (bA = bB) we assign xi ← aA (xj ← bA).
• Otherwise, xi ← aA ⊕ xj ⊕ bA ⊕ 1 makes A and B constant.

We get at least (α, 2α) splitting vector.
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B2: quadratic substitutions

Lemma
For 0 ≤ σ ≤ 1/5,
Splitting(B2, {xi ← p : deg(p) ≤ 2}, s+ αi− σi1) ⪯ {. . . }.

Corollary

1. (2− δ(ϵ))n #SAT algorithms for circuits of size (2.6− ϵ)n.
2. CB2(f) ≥ 3n− o(n) for quadratic disperser f.
3. CB2(f, δ) ≥ 2.6n− t for quadratic extractor f.

Cor(f, C) is negligible for any circuit C of size 2.6n− g(n)
for some g(n) = o(n).

20



B2: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

xi xj
∧A⊕B ⊕C

G

D E

xi ← 0

xj
⊕C

G

D E

simplify

x′j

G

D E

O((2− δ(ϵ))n) #SAT algorithm for circuits of size (3− ϵ)n.

This simplification changes the function computed by a circuit.
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Open problems

1. Give an explicit construction of quadratic dispersers.
2. Adjust the framework to allow using natural simplification
rules like replacing a xor gate fed by a 1-variable for both
upper bounds and lower bounds.

3. Prove better limitation theorem.
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Thanks for your attention!
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