Circuit size lower bounds and \#SAT upper bounds through a general framework

Alexander Golovnev ${ }^{a b}$, Alexander Kulikov ${ }^{a,}$, Alexander Smal ${ }^{\text {a }}$, Suguru Tamakic

August 25, 2016

[^0]
Outline

Framework

Applications

Open problems

Outline

Framework

Applications

Open problems

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

Natural questions
-What is the smallest size of a circuit computing f ?

- How many satisfiable assignments a circuit has?

What was known

Lower bounds

- Shannon: almost all functions has circuits of size $\Omega\left(2^{n} / n\right)$.

What was known

Lower bounds

- Shannon: almost all functions has circuits of size $\Omega\left(2^{n} / n\right)$.
- Worst case lower bounds:
- $(3+1 / 86) n$ for B_{2} [Find, Golovnev, Hirsch, Kulikov].
- $5 n-o(n)$ for U_{2} [Iwama, Morizum].

What was known

Lower bounds

- Shannon: almost all functions has circuits of size $\Omega\left(2^{n} / n\right)$.
- Worst case lower bounds:
- $(3+1 / 86) n$ for B_{2} [Find, Golovnev, Hirsch, Kulikov].
- $5 n-o(n)$ for U_{2} [Iwama, Morizum].
- Average case lower bounds:
- 2.49n over B_{2} and 2.99n for U_{2} [Chen, Kabanets].

What was known

Lower bounds

- Shannon: almost all functions has circuits of size $\Omega\left(2^{n} / n\right)$.
- Worst case lower bounds:
- $(3+1 / 86) n$ for B_{2} [Find, Golovnev, Hirsch, Kulikov].
- $5 n-o(n)$ for U_{2} [Iwama, Morizum].
- Average case lower bounds:
- 2.49n over B_{2} and $2.99 n$ for U_{2} [Chen, Kabanets].

Upper bounds (\#SAT algorithms)

Faster than 2^{n} algorithms for circuits of size 2.49 n over B_{2} and $2.99 n$ for U_{2} [Chen, Kabanets].

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- Circuit size lower bound.

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- Circuit size lower bound.

Branching on substitutions

- Find substitution that eliminates many gates in all branches.
- \#SAT algorithm.

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- Circuit size lower bound.

Branching on substitutions

- Find substitution that eliminates many gates in all branches.
- \#SAT algorithm.
[Chen and Kabanets, 2014]
Branching case analysis can also be used to prove average case circuit lower bounds (correlation bounds).

Notation

- B_{2} is a full Boolean binary basis, $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$.
- $C_{\Omega}(f)$ the minimal size of a circuit over basis $\Omega \subseteq B_{2}$ computing function $f \in B_{n}$.

Notation

- B_{2} is a full Boolean binary basis, $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$.
- $C_{\Omega}(f)$ the minimal size of a circuit over basis $\Omega \subseteq B_{2}$ computing function $f \in B_{n}$.
- For functions $f, g \in B_{n}$, the correlation between them

$$
\begin{aligned}
& \operatorname{Cor}(f, g)=\left|\operatorname{Pr}_{x}[f(x)=g(x)]-\operatorname{Pr}_{x}[f(x) \neq g(x)]\right|= \\
& \quad|1-2 \underset{x}{\operatorname{Pr}}[f(x) \neq g(x)]| .
\end{aligned}
$$

Notation

- B_{2} is a full Boolean binary basis, $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$.
- $C_{\Omega}(f)$ the minimal size of a circuit over basis $\Omega \subseteq B_{2}$ computing function $f \in B_{n}$.
- For functions $f, g \in B_{n}$, the correlation between them

$$
\begin{aligned}
\operatorname{Cor}(f, g)=\left|\operatorname{Pr}_{x}[f(x)=g(x)]-\operatorname{Pr}_{x}[f(x) \neq g(x)]\right| & = \\
& |1-2 \underset{x}{\operatorname{Pr}}[f(x) \neq g(x)]| .
\end{aligned}
$$

- For $0 \leq \varepsilon \leq 1, C_{\Omega}(f, \varepsilon)$ is the minimal size of a circuit over $\Omega \subseteq B_{2}$ computing function g such that $\operatorname{Cor}(f, g) \geq \varepsilon$.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits \mathcal{C},
- a circuit complexity measure μ,
- a set of allowed substitutions \mathcal{S}.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits \mathcal{C},
- a circuit complexity measure μ,
- a set of allowed substitutions \mathcal{S}.

2. Case analysis: for any circuit $\mathcal{C} \in \mathcal{C}$ there is a substitution in \mathcal{S} that reduces $\mu(C)$ by sufficient amount.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits \mathcal{C},
- a circuit complexity measure μ,
- a set of allowed substitutions \mathcal{S}.

2. Case analysis: for any circuit $\mathcal{C} \in \mathcal{C}$ there is a substitution in \mathcal{S} that reduces $\mu(C)$ by sufficient amount.
3. \#SAT upper bound: branching algorithm.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits \mathcal{C},
- a circuit complexity measure μ,
- a set of allowed substitutions \mathcal{S}.

2. Case analysis: for any circuit $C \in \mathcal{C}$ there is a substitution in \mathcal{S} that reduces $\mu(C)$ by sufficient amount.
3. \#SAT upper bound: branching algorithm.
4. Circuit size lower bounds for a function that survives under sufficiently many allowed substitutions.

Circuit complexity measures

We focus on the following two circuit complexity measures:

- $\mu(C)=s(C)+\alpha \cdot i(C)$ where $\alpha \geq 0$;

Circuit complexity measures

We focus on the following two circuit complexity measures:

- $\mu(C)=s(C)+\alpha \cdot i(C)$ where $\alpha \geq 0$;

- $\mu(C)=s(C)+\alpha \cdot i(C)-\sigma \cdot i_{1}(C)$ where $\alpha \geq 0, \sigma \leq 1$.

Sets of substitutions

1. Bit fixing substitutions: $\left\{x_{i} \leftarrow c\right\}$.
2. Projections: $\left\{x_{i} \leftarrow c, x_{i} \leftarrow x_{j} \oplus c\right\}$.
3. Affine substitutions: $\left\{x_{i} \leftarrow \bigoplus_{j \in J} x_{j} \oplus c\right\}$.
4. Quadratic substitutions: $\left\{x_{i} \leftarrow p: \operatorname{deg}(p) \leq 2\right\}$.

Sets of substitutions

1. Bit fixing substitutions: $\left\{x_{i} \leftarrow c\right\}$.
2. Projections: $\left\{x_{i} \leftarrow c, x_{i} \leftarrow x_{j} \oplus c\right\}$.
3. Affine substitutions: $\left\{x_{i} \leftarrow \bigoplus_{j \in J} x_{j} \oplus c\right\}$.
4. Quadratic substitutions: $\left\{x_{i} \leftarrow p: \operatorname{deg}(p) \leq 2\right\}$.

Dispersers and extractors

- (S, $n, r)$-disperser f survives after $n-r$ substitutions.
- $(\mathcal{S}, n, r, \varepsilon)$-extractor f survives after $n-r$ substitutions

$$
\left|\operatorname{Pr}_{x}\left[f_{\text {subst }}(x)=1\right]-1 / 2\right| \leq \varepsilon .
$$

- There are explicit constructions of dispersers and extractors allowing $n-o(n)$ substitutions except for quadratic substitutions.

Substitutions

Substitution replaces some variable by a function that is computed by some subcircuit of a given circuit.

Then we normalize the circuit removing trivialized gates.

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose k variables x_{1}, \ldots, x_{k}.
- Choose k functions f_{1}, \ldots, f_{k} computed by gates of C.

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose k variables x_{1}, \ldots, x_{k}.
- Choose k functions f_{1}, \ldots, f_{k} computed by gates of C.
- For all $c_{1}, \ldots, c_{k} \in\{0,1\}$ substitute $x_{1} \leftarrow f_{1} \oplus c_{1}, \ldots$, $x_{k} \leftarrow f_{k} \oplus C_{k}$ in C and call A on it.

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose k variables x_{1}, \ldots, x_{k}.
- Choose k functions f_{1}, \ldots, f_{k} computed by gates of C.
- For all $c_{1}, \ldots, c_{k} \in\{0,1\}$ substitute $x_{1} \leftarrow f_{1} \oplus c_{1}, \ldots$, $x_{k} \leftarrow f_{k} \oplus c_{k}$ in C and call A on it.

- Vector $v=\left(a_{1}, \ldots, a_{2^{k}}\right) \in \mathbb{R}^{2^{k}}$ is a splitting vector w.r.t. measure μ if for all $i \in\left[2^{k}\right], \mu(C)-\mu\left(C_{i}\right) \geq a_{i}>0$.

Splitting numbers

For a splitting vector $v=\left(a_{1}, \ldots, a_{2^{k}}\right)$ the splitting number $\tau(v)$ is the unique positive root of the equation $\sum_{i \in\left[2^{2}\right]} x^{-a_{i}}=1$ (solution of $T(n)=T\left(n-a_{1}\right)+T\left(n-a_{2}\right)+\cdots+T\left(n-a_{2^{k}}\right)$).

Splitting numbers

For a splitting vector $v=\left(a_{1}, \ldots, a_{2^{k}}\right)$ the splitting number $\tau(v)$ is the unique positive root of the equation $\sum_{i \in\left[2^{k}\right]} x^{-a_{i}}=1$ (solution of $T(n)=T\left(n-a_{1}\right)+T\left(n-a_{2}\right)+\cdots+T\left(n-a_{2^{k}}\right)$).

Properties

- If splitting number is at most τ then running time is bounded by $0^{*}\left(\tau^{\mu(C)}\right)$.
- Balanced splitting vectors (a, a) have better splitting numbers than unbalanced $(a+b, a-b)$.
- $2^{1 / a}=\tau(a, a)<\tau(a+b, a-b)$ for $0<b<a$.

Splitting

For a class of circuits Ω (e.g., $\Omega=B_{2}$ or $\Omega=U_{2}$), a set of substitutions \mathcal{S}, and a circuit complexity measure μ, we write

$$
\operatorname{Splitting}(\Omega, \mathcal{S}, \mu) \preceq\left\{v_{1}, \ldots, v_{m}\right\}
$$

as a shortcut for the following statement:

- For any normalized circuit C from the class Ω
- one can find in time poly $(|C|)$ a substitution from \mathcal{S} whose splitting vector w.r.t. measure μ belongs to $\left\{v_{1}, \ldots, v_{m}\right\}$
- or a substitution that trivializes the output gate of C.

Note: a substitution always trivializes at least one gate and eliminates at least one variable.

Main theorem

If Splitting $(\Omega, \mathcal{S}, \mu) \preceq\left\{v_{1}, \ldots, v_{m}\right\}$ and the longest splitting vector has length 2^{k}, then

1. There exists an algorithm solving \#SAT for circuits over Ω in time $O^{*}\left(\gamma^{\mu(C)}\right)$, where $\gamma=\max _{i \in[m]}\left\{\tau\left(v_{i}\right)\right\}$.
2. For (\mathcal{S}, n, r)-disperser f,

$$
\mu(f) \geq \beta_{w}\left(\left\{v_{i}\right\}\right) \cdot(r-k+1) .
$$

3. For $(\mathcal{S}, n, r, \varepsilon)$-extractor f,

$$
\mu(f, \delta) \geq \beta_{a}\left(\left\{v_{i}\right\}\right) \cdot r, \quad \delta=\varepsilon+\exp \left(-g\left(r,\left\{v_{i}\right\}\right)\right) .
$$

Weak limitation theorem

Iffor some \mathcal{S}, $\operatorname{Splitting}(\Omega, \mathcal{S}, s+\alpha i) \preceq\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)\right\}$, such that $\min _{i \in[m]} \max \left\{a_{i}, b_{i}\right\}=\omega(1)$ then \#SAT for circuits over bases Ω can be solved in time $O^{*}\left(2^{\circ(s)}\right)$.

Corollary

Due to the Sparsification Lemma such an algorithm even over the bases U_{2} contradicts the Exponential Time Hypothesis.

Outline

Framework

Applications

Open problems

U_{2} : projections

Lemma

For $0 \leq \sigma \leq 1 / 2$,

Splitting $\left(U_{2},\left\{x_{i} \leftarrow c, x_{i} \leftarrow x_{j} \oplus c\right\}, \mathrm{S}+\alpha i-\sigma i_{1}\right) \preceq\{\ldots\}$.

Corollary

1. $(2-\delta(\epsilon))^{n}$ \#SAT algorithm for circuits of size $(3.25-\epsilon) n$.
2. $C_{U_{2}}(f) \geq 3.5 n-\log ^{O(1)}(n)$ for projections disperser f.
3. $C_{U_{2}}(f, \delta) \geq 3.25 n-t$ for projections extractor f.
$\operatorname{Cor}(f, C)$ is negligible for C of size $3.25 n-\omega(\sqrt{n \log n})$.

U_{2} : projections

There is only one case where projection $x_{i} \leftarrow x_{j} \oplus c$ is necessary (other cases are handled by bit fixing substitutions).

Let gates A and B compute Boolean functions
$f_{A}\left(x_{i}, x_{j}\right)=\left(x_{i} \oplus a_{A}\right)\left(x_{j} \oplus b_{A}\right) \oplus c_{A}$ and
$f_{B}\left(x_{i}, x_{j}\right)=\left(x_{i} \oplus a_{B}\right)\left(x_{j} \oplus b_{B}\right) \oplus c_{B}$ respectively.

- If $a_{A}=a_{B}\left(b_{A}=b_{B}\right)$ we assign $x_{i} \leftarrow a_{A}\left(x_{j} \leftarrow b_{A}\right)$.
- Otherwise, $x_{i} \leftarrow a_{A} \oplus x_{j} \oplus b_{A} \oplus 1$ makes A and B constant.

We get at least ($\alpha, 2 \alpha$) splitting vector.

B_{2} : quadratic substitutions

Lemma

For $0 \leq \sigma \leq 1 / 5$,
Splitting $\left(B_{2},\left\{x_{i} \leftarrow p: \operatorname{deg}(p) \leq 2\right\}, s+\alpha i-\sigma i_{1}\right) \preceq\{\ldots\}$.
Corollary

1. $(2-\delta(\epsilon))^{n}$ \#SAT algorithms for circuits of size $(2.6-\epsilon) n$.
2. $C_{B_{2}}(f) \geq 3 n-o(n)$ for quadratic disperser f.
3. $C_{B_{2}}(f, \delta) \geq 2.6 n-t$ for quadratic extractor f.
$\operatorname{Cor}(f, C)$ is negligible for any circuit C of size $2.6 n-g(n)$ for some $g(n)=o(n)$.

B_{2} : improving \#SAT algorithm

We can handle one of the cases in the case analysis differently.

B_{2} : improving \#SAT algorithm

We can handle one of the cases in the case analysis differently.

$O\left((2-\delta(\epsilon))^{n}\right)$ \#SAT algorithm for circuits of size $(3-\epsilon) n$.

B_{2} : improving \#SAT algorithm

We can handle one of the cases in the case analysis differently.

$O\left((2-\delta(\epsilon))^{n}\right)$ \#SAT algorithm for circuits of size $(3-\epsilon) n$.

This simplification changes the function computed by a circuit.

Outline

Framework
\section*{Applications}

Open problems

Open problems

1. Give an explicit construction of quadratic dispersers.
2. Adjust the framework to allow using natural simplification rules like replacing a xor gate fed by a 1-variable for both upper bounds and lower bounds.
3. Prove better limitation theorem.

Thanks for your attention!

[^0]: ${ }^{a}$ St. Petersburg Department of Steklov Institute of Mathematics of RAS
 ${ }^{b}$ New York University
 ${ }^{\text {}}$ Kyoto University

