
Circuit size lower bounds and #SAT upper
bounds through a general framework

Alexander Golovnevab, Alexander Kulikova,,
Alexander Smala, Suguru Tamakic

August 25, 2016

aSt. Petersburg Department of Steklov Institute of Mathematics of RAS
bNew York University
cKyoto University

Outline

Framework

Applications

Open problems

2

Outline

Framework

Applications

Open problems

3

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

x1 x2 x3
⊕

∧ ∨

∨ ⊕

∧

Natural questions

• What is the smallest size of a circuit computing f?
• How many satisfiable assignments a circuit has?

4

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

x1 x2 x3
⊕

∧ ∨

∨ ⊕

∧

Natural questions

• What is the smallest size of a circuit computing f?
• How many satisfiable assignments a circuit has?

4

What was known

Lower bounds

• Shannon: almost all functions has circuits of size Ω(2n/n).

• Worst case lower bounds:
• (3+ 1/86)n for B2 [Find, Golovnev, Hirsch, Kulikov].
• 5n− o(n) for U2 [Iwama, Morizum].

• Average case lower bounds:
• 2.49n over B2 and 2.99n for U2 [Chen, Kabanets].

Upper bounds (#SAT algorithms)
Faster than 2n algorithms for circuits of size 2.49n over B2 and
2.99n for U2 [Chen, Kabanets].

5

What was known

Lower bounds

• Shannon: almost all functions has circuits of size Ω(2n/n).
• Worst case lower bounds:

• (3+ 1/86)n for B2 [Find, Golovnev, Hirsch, Kulikov].
• 5n− o(n) for U2 [Iwama, Morizum].

• Average case lower bounds:
• 2.49n over B2 and 2.99n for U2 [Chen, Kabanets].

Upper bounds (#SAT algorithms)
Faster than 2n algorithms for circuits of size 2.49n over B2 and
2.99n for U2 [Chen, Kabanets].

5

What was known

Lower bounds

• Shannon: almost all functions has circuits of size Ω(2n/n).
• Worst case lower bounds:

• (3+ 1/86)n for B2 [Find, Golovnev, Hirsch, Kulikov].
• 5n− o(n) for U2 [Iwama, Morizum].

• Average case lower bounds:
• 2.49n over B2 and 2.99n for U2 [Chen, Kabanets].

Upper bounds (#SAT algorithms)
Faster than 2n algorithms for circuits of size 2.49n over B2 and
2.99n for U2 [Chen, Kabanets].

5

What was known

Lower bounds

• Shannon: almost all functions has circuits of size Ω(2n/n).
• Worst case lower bounds:

• (3+ 1/86)n for B2 [Find, Golovnev, Hirsch, Kulikov].
• 5n− o(n) for U2 [Iwama, Morizum].

• Average case lower bounds:
• 2.49n over B2 and 2.99n for U2 [Chen, Kabanets].

Upper bounds (#SAT algorithms)
Faster than 2n algorithms for circuits of size 2.49n over B2 and
2.99n for U2 [Chen, Kabanets].

5

Gate elimination and branching algorithms

Gate elimination

• Find substitution that eliminates many gates.
• Circuit size lower bound.

Branching on substitutions

• Find substitution that eliminates many gates
in all branches.

• #SAT algorithm.

[Chen and Kabanets, 2014]
Branching case analysis can also be used to prove average case
circuit lower bounds (correlation bounds).

6

Gate elimination and branching algorithms

Gate elimination

• Find substitution that eliminates many gates.
• Circuit size lower bound.

Branching on substitutions

• Find substitution that eliminates many gates
in all branches.

• #SAT algorithm.

[Chen and Kabanets, 2014]
Branching case analysis can also be used to prove average case
circuit lower bounds (correlation bounds).

6

Gate elimination and branching algorithms

Gate elimination

• Find substitution that eliminates many gates.
• Circuit size lower bound.

Branching on substitutions

• Find substitution that eliminates many gates
in all branches.

• #SAT algorithm.

[Chen and Kabanets, 2014]
Branching case analysis can also be used to prove average case
circuit lower bounds (correlation bounds). 6

Notation

• B2 is a full Boolean binary basis, U2 = B2 \ {⊕,≡}.
• CΩ(f) the minimal size of a circuit over basis Ω ⊆ B2
computing function f ∈ Bn.

• For functions f,g ∈ Bn, the correlation between them

Cor(f,g) =
∣∣∣Prx [f(x) = g(x)]− Pr

x
[f(x) ̸= g(x)]

∣∣∣ =∣∣∣1− 2 Prx [f(x) ̸= g(x)]
∣∣∣ .

• For 0 ≤ ε ≤ 1, CΩ(f, ε) is the minimal size of a circuit over
Ω ⊆ B2 computing function g such that Cor(f,g) ≥ ε.

7

Notation

• B2 is a full Boolean binary basis, U2 = B2 \ {⊕,≡}.
• CΩ(f) the minimal size of a circuit over basis Ω ⊆ B2
computing function f ∈ Bn.

• For functions f,g ∈ Bn, the correlation between them

Cor(f,g) =
∣∣∣Prx [f(x) = g(x)]− Pr

x
[f(x) ̸= g(x)]

∣∣∣ =∣∣∣1− 2 Prx [f(x) ̸= g(x)]
∣∣∣ .

• For 0 ≤ ε ≤ 1, CΩ(f, ε) is the minimal size of a circuit over
Ω ⊆ B2 computing function g such that Cor(f,g) ≥ ε.

7

Notation

• B2 is a full Boolean binary basis, U2 = B2 \ {⊕,≡}.
• CΩ(f) the minimal size of a circuit over basis Ω ⊆ B2
computing function f ∈ Bn.

• For functions f,g ∈ Bn, the correlation between them

Cor(f,g) =
∣∣∣Prx [f(x) = g(x)]− Pr

x
[f(x) ̸= g(x)]

∣∣∣ =∣∣∣1− 2 Prx [f(x) ̸= g(x)]
∣∣∣ .

• For 0 ≤ ε ≤ 1, CΩ(f, ε) is the minimal size of a circuit over
Ω ⊆ B2 computing function g such that Cor(f,g) ≥ ε.

7

Framework

A proof in the framework

1. Fix parameters:
• a class of circuits C,
• a circuit complexity measure µ,
• a set of allowed substitutions S .

2. Case analysis: for any circuit C ∈ C there is a substitution
in S that reduces µ(C) by sufficient amount.

3. #SAT upper bound: branching algorithm.
4. Circuit size lower bounds for a function that survives
under sufficiently many allowed substitutions.

8

Framework

A proof in the framework

1. Fix parameters:
• a class of circuits C,
• a circuit complexity measure µ,
• a set of allowed substitutions S .

2. Case analysis: for any circuit C ∈ C there is a substitution
in S that reduces µ(C) by sufficient amount.

3. #SAT upper bound: branching algorithm.
4. Circuit size lower bounds for a function that survives
under sufficiently many allowed substitutions.

8

Framework

A proof in the framework

1. Fix parameters:
• a class of circuits C,
• a circuit complexity measure µ,
• a set of allowed substitutions S .

2. Case analysis: for any circuit C ∈ C there is a substitution
in S that reduces µ(C) by sufficient amount.

3. #SAT upper bound: branching algorithm.

4. Circuit size lower bounds for a function that survives
under sufficiently many allowed substitutions.

8

Framework

A proof in the framework

1. Fix parameters:
• a class of circuits C,
• a circuit complexity measure µ,
• a set of allowed substitutions S .

2. Case analysis: for any circuit C ∈ C there is a substitution
in S that reduces µ(C) by sufficient amount.

3. #SAT upper bound: branching algorithm.
4. Circuit size lower bounds for a function that survives
under sufficiently many allowed substitutions.

8

Circuit complexity measures

We focus on the following two circuit complexity measures:

• µ(C) = s(C) + α · i(C) where α ≥ 0;
xi xj
∧ A

• µ(C) = s(C) + α · i(C)− σ · i1(C) where α ≥ 0, σ ≤ 1.

xi xj
∧ AB

C

xi xj
∧ AB
∨ C

D1 D2

xk

9

Circuit complexity measures

We focus on the following two circuit complexity measures:

• µ(C) = s(C) + α · i(C) where α ≥ 0;
xi xj
∧ A

• µ(C) = s(C) + α · i(C)− σ · i1(C) where α ≥ 0, σ ≤ 1.

xi xj
∧ AB

C

xi xj
∧ AB
∨ C

D1 D2

xk

9

Sets of substitutions

1. Bit fixing substitutions: {xi ← c}.
2. Projections: {xi ← c, xi ← xj ⊕ c}.
3. Affine substitutions: {xi ←

⊕
j∈J xj ⊕ c}.

4. Quadratic substitutions: {xi ← p : deg(p) ≤ 2}.

Dispersers and extractors

• (S,n, r)-disperser f survives after n− r substitutions.
• (S,n, r, ε)-extractor f survives after n− r substitutions∣∣∣Prx [fsubst(x) = 1]− 1/2

∣∣∣ ≤ ε.

• There are explicit constructions of dispersers and
extractors allowing n− o(n) substitutions except for
quadratic substitutions.

10

Sets of substitutions

1. Bit fixing substitutions: {xi ← c}.
2. Projections: {xi ← c, xi ← xj ⊕ c}.
3. Affine substitutions: {xi ←

⊕
j∈J xj ⊕ c}.

4. Quadratic substitutions: {xi ← p : deg(p) ≤ 2}.

Dispersers and extractors

• (S,n, r)-disperser f survives after n− r substitutions.
• (S,n, r, ε)-extractor f survives after n− r substitutions∣∣∣Prx [fsubst(x) = 1]− 1/2

∣∣∣ ≤ ε.

• There are explicit constructions of dispersers and
extractors allowing n− o(n) substitutions except for
quadratic substitutions. 10

Substitutions

Substitution replaces some variable by a function that is
computed by some subcircuit of a given circuit.

xi

xj xk
⊕

⊕
xi ← xj ⊕ xk

xj xk
⊕

⊕

Then we normalize the circuit removing trivialized gates.

11

Splitting vectors

Consider one step of branching algorithm A on circuit C.

• Choose k variables x1, . . . , xk.
• Choose k functions f1, . . . , fk computed by gates of C.

• For all c1, . . . , ck ∈ {0, 1} substitute x1 ← f1 ⊕ c1, . . . ,
xk ← fk ⊕ ck in C and call A on it.

A(C)

A(C1) A(C2) · · · A(C2k)

• Vector v = (a1, . . . ,a2k) ∈ R2k is a splitting vector w.r.t.
measure µ if for all i ∈ [2k], µ(C)− µ(Ci) ≥ ai > 0.

12

Splitting vectors

Consider one step of branching algorithm A on circuit C.

• Choose k variables x1, . . . , xk.
• Choose k functions f1, . . . , fk computed by gates of C.
• For all c1, . . . , ck ∈ {0, 1} substitute x1 ← f1 ⊕ c1, . . . ,
xk ← fk ⊕ ck in C and call A on it.

A(C)

A(C1) A(C2) · · · A(C2k)

• Vector v = (a1, . . . ,a2k) ∈ R2k is a splitting vector w.r.t.
measure µ if for all i ∈ [2k], µ(C)− µ(Ci) ≥ ai > 0.

12

Splitting vectors

Consider one step of branching algorithm A on circuit C.

• Choose k variables x1, . . . , xk.
• Choose k functions f1, . . . , fk computed by gates of C.
• For all c1, . . . , ck ∈ {0, 1} substitute x1 ← f1 ⊕ c1, . . . ,
xk ← fk ⊕ ck in C and call A on it.

A(C)

A(C1) A(C2) · · · A(C2k)

• Vector v = (a1, . . . ,a2k) ∈ R2k is a splitting vector w.r.t.
measure µ if for all i ∈ [2k], µ(C)− µ(Ci) ≥ ai > 0.

12

Splitting numbers

For a splitting vector v = (a1, . . . ,a2k) the splitting number τ(v)
is the unique positive root of the equation∑

i∈[2k] x−ai = 1
(solution of T(n) = T(n− a1) + T(n− a2) + · · ·+ T(n− a2k)).

Properties

• If splitting number is at most τ then running time is
bounded by O∗(τµ(C)).

• Balanced splitting vectors (a,a) have better splitting
numbers than unbalanced (a+ b,a− b).

• 21/a = τ(a,a) < τ(a+ b,a− b) for 0 < b < a.

13

Splitting numbers

For a splitting vector v = (a1, . . . ,a2k) the splitting number τ(v)
is the unique positive root of the equation∑

i∈[2k] x−ai = 1
(solution of T(n) = T(n− a1) + T(n− a2) + · · ·+ T(n− a2k)).

Properties

• If splitting number is at most τ then running time is
bounded by O∗(τµ(C)).

• Balanced splitting vectors (a,a) have better splitting
numbers than unbalanced (a+ b,a− b).

• 21/a = τ(a,a) < τ(a+ b,a− b) for 0 < b < a.

13

Splitting

For a class of circuits Ω (e.g., Ω = B2 or Ω = U2), a set of
substitutions S , and a circuit complexity measure µ, we write

Splitting(Ω,S, µ) ⪯ {v1, . . . , vm}

as a shortcut for the following statement:

• For any normalized circuit C from the class Ω
• one can find in time poly(|C|) a substitution from S whose
splitting vector w.r.t. measure µ belongs to {v1, . . . , vm}

• or a substitution that trivializes the output gate of C.

Note: a substitution always trivializes at least one gate and
eliminates at least one variable.

14

Main theorem

If Splitting(Ω,S, µ) ⪯ {v1, . . . , vm} and the longest splitting
vector has length 2k, then

1. There exists an algorithm solving #SAT for circuits over Ω
in time O∗(γµ(C)), where γ = max

i∈[m]
{τ(vi)}.

2. For (S,n, r)-disperser f,

µ(f) ≥ βw({vi}) · (r− k+ 1).

3. For (S,n, r, ε)-extractor f,

µ (f, δ) ≥ βa({vi}) · r, δ = ε+ exp (−g(r, {vi})) .

15

Weak limitation theorem

If for some S , Splitting(Ω,S, s+ αi) ⪯ {(a1,b1), . . . , (am,bm)},
such that mini∈[m]max{ai,bi} = ω(1) then #SAT for circuits over
bases Ω can be solved in time O∗(2o(s)).

Corollary
Due to the Sparsification Lemma such an algorithm even over
the bases U2 contradicts the Exponential Time Hypothesis.

16

Outline

Framework

Applications

Open problems

17

U2: projections

Lemma

For 0 ≤ σ ≤ 1/2,

Splitting(U2, {xi ← c, xi ← xj ⊕ c}, s+ αi− σi1) ⪯ {. . .}.

Corollary

1. (2− δ(ϵ))n #SAT algorithm for circuits of size (3.25− ϵ)n.
2. CU2(f) ≥ 3.5n− logO(1)(n) for projections disperser f.
3. CU2(f, δ) ≥ 3.25n− t for projections extractor f.

Cor(f, C) is negligible for C of size 3.25n− ω(
√

n logn).

18

U2: projections

There is only one case where projection xi ← xj ⊕ c is
necessary (other cases are handled by bit fixing substitutions).

xi xj

A B

Let gates A and B compute Boolean functions
fA(xi, xj) = (xi ⊕ aA)(xj ⊕ bA)⊕ cA and
fB(xi, xj) = (xi ⊕ aB)(xj ⊕ bB)⊕ cB respectively.

• If aA = aB (bA = bB) we assign xi ← aA (xj ← bA).
• Otherwise, xi ← aA ⊕ xj ⊕ bA ⊕ 1 makes A and B constant.

We get at least (α, 2α) splitting vector.

19

B2: quadratic substitutions

Lemma
For 0 ≤ σ ≤ 1/5,
Splitting(B2, {xi ← p : deg(p) ≤ 2}, s+ αi− σi1) ⪯ {. . . }.

Corollary

1. (2− δ(ϵ))n #SAT algorithms for circuits of size (2.6− ϵ)n.
2. CB2(f) ≥ 3n− o(n) for quadratic disperser f.
3. CB2(f, δ) ≥ 2.6n− t for quadratic extractor f.

Cor(f, C) is negligible for any circuit C of size 2.6n− g(n)
for some g(n) = o(n).

20

B2: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

xi xj
∧A⊕B ⊕C

G

D E

xi ← 0

xj
⊕C

G

D E

simplify

x′j

G

D E

O((2− δ(ϵ))n) #SAT algorithm for circuits of size (3− ϵ)n.

This simplification changes the function computed by a circuit.

21

B2: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

xi xj
∧A⊕B ⊕C

G

D E

xi ← 0

xj
⊕C

G

D E

simplify

x′j

G

D E

O((2− δ(ϵ))n) #SAT algorithm for circuits of size (3− ϵ)n.

This simplification changes the function computed by a circuit.

21

B2: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

xi xj
∧A⊕B ⊕C

G

D E

xi ← 0

xj
⊕C

G

D E

simplify

x′j

G

D E

O((2− δ(ϵ))n) #SAT algorithm for circuits of size (3− ϵ)n.

This simplification changes the function computed by a circuit.

21

Outline

Framework

Applications

Open problems

22

Open problems

1. Give an explicit construction of quadratic dispersers.
2. Adjust the framework to allow using natural simplification
rules like replacing a xor gate fed by a 1-variable for both
upper bounds and lower bounds.

3. Prove better limitation theorem.

23

Thanks for your attention!

24

	Framework
	Applications
	Open problems

