Circuit size lower bounds and #SAT upper bounds through a general framework

Alexander Golovnev^{ab}, Alexander Kulikov^{a,}, <u>Alexander Smal^a</u>, Suguru Tamaki^c

August 25, 2016

^aSt. Petersburg Department of Steklov Institute of Mathematics of RAS ^bNew York University ^cKyoto University

Applications

Open problems

Applications

Open problems

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

Natural questions

- What is the smallest size of a circuit computing *f*?
- How many satisfiable assignments a circuit has?

• Shannon: almost all functions has circuits of size $\Omega(2^n/n)$.

- Shannon: almost all functions has circuits of size $\Omega(2^n/n)$.
- Worst case lower bounds:
 - (3 + 1/86)n for B_2 [Find, Golovnev, Hirsch, Kulikov].
 - 5n o(n) for U_2 [Iwama, Morizum].

- Shannon: almost all functions has circuits of size $\Omega(2^n/n)$.
- Worst case lower bounds:
 - (3 + 1/86)n for B_2 [Find, Golovnev, Hirsch, Kulikov].
 - 5n o(n) for U_2 [Iwama, Morizum].
- Average case lower bounds:
 - 2.49*n* over B_2 and 2.99*n* for U_2 [Chen, Kabanets].

- Shannon: almost all functions has circuits of size $\Omega(2^n/n)$.
- Worst case lower bounds:
 - (3 + 1/86)n for B_2 [Find, Golovnev, Hirsch, Kulikov].
 - 5n o(n) for U_2 [Iwama, Morizum].
- Average case lower bounds:
 - 2.49*n* over B_2 and 2.99*n* for U_2 [Chen, Kabanets].

Upper bounds (#SAT algorithms)

Faster than 2^n algorithms for circuits of size 2.49*n* over B_2 and 2.99*n* for U_2 [Chen, Kabanets].

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- Circuit size lower bound.

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- · Circuit size lower bound.

Branching on substitutions

- Find substitution that eliminates many gates *in all branches.*
- #SAT algorithm.

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- Circuit size lower bound.

Branching on substitutions

- Find substitution that eliminates many gates *in all branches*.
- #SAT algorithm.

[Chen and Kabanets, 2014]

Branching case analysis can also be used to prove *average case circuit lower bounds* (*correlation bounds*).

Notation

- B_2 is a full Boolean binary basis, $U_2 = B_2 \setminus \{\oplus, \equiv\}$.
- $C_{\Omega}(f)$ the minimal size of a circuit over basis $\Omega \subseteq B_2$ computing function $f \in B_n$.

Notation

- B_2 is a full Boolean binary basis, $U_2 = B_2 \setminus \{\oplus, \equiv\}$.
- $C_{\Omega}(f)$ the minimal size of a circuit over basis $\Omega \subseteq B_2$ computing function $f \in B_n$.
- For functions $f, g \in B_n$, the correlation between them

$$\operatorname{Cor}(f,g) = \left| \Pr_{x}[f(x) = g(x)] - \Pr_{x}[f(x) \neq g(x)] \right| = \left| 1 - 2\Pr_{x}[f(x) \neq g(x)] \right|.$$

Notation

- B_2 is a full Boolean binary basis, $U_2 = B_2 \setminus \{\oplus, \equiv\}$.
- $C_{\Omega}(f)$ the minimal size of a circuit over basis $\Omega \subseteq B_2$ computing function $f \in B_n$.
- For functions $f, g \in B_n$, the correlation between them

$$\operatorname{Cor}(f,g) = \left| \Pr_{x}[f(x) = g(x)] - \Pr_{x}[f(x) \neq g(x)] \right| = \left| 1 - 2\Pr_{x}[f(x) \neq g(x)] \right|.$$

• For $0 \le \varepsilon \le 1$, $C_{\Omega}(f, \varepsilon)$ is the minimal size of a circuit over $\Omega \subseteq B_2$ computing function g such that $Cor(f, g) \ge \varepsilon$.

- 1. Fix parameters:
 - $\cdot\,$ a class of circuits \mathcal{C}_{r}
 - \cdot a circuit complexity measure μ ,
 - \cdot a set of allowed substitutions \mathcal{S} .

- 1. Fix parameters:
 - $\cdot\,$ a class of circuits \mathcal{C}_{r}
 - \cdot a circuit complexity measure μ ,
 - \cdot a set of allowed substitutions \mathcal{S} .
- 2. Case analysis: for any circuit $C \in C$ there is a substitution in S that reduces $\mu(C)$ by sufficient amount.

- 1. Fix parameters:
 - $\cdot\,$ a class of circuits \mathcal{C}_{r}
 - \cdot a circuit complexity measure μ ,
 - $\cdot\,$ a set of allowed substitutions $\mathcal{S}.$
- 2. Case analysis: for any circuit $C \in C$ there is a substitution in S that reduces $\mu(C)$ by sufficient amount.
- 3. #SAT upper bound: branching algorithm.

- 1. Fix parameters:
 - $\cdot\,$ a class of circuits \mathcal{C}_{r}
 - \cdot a circuit complexity measure μ ,
 - $\cdot\,$ a set of allowed substitutions $\mathcal{S}.$
- 2. Case analysis: for any circuit $C \in C$ there is a substitution in S that reduces $\mu(C)$ by sufficient amount.
- 3. #SAT upper bound: branching algorithm.
- 4. Circuit size lower bounds for a function that survives under sufficiently many allowed substitutions.

We focus on the following two circuit complexity measures:

• $\mu(C) = s(C) + \alpha \cdot i(C)$ where $\alpha \ge 0$; $x_i \qquad x_j$

We focus on the following two circuit complexity measures:

• $\mu(C) = s(C) + \alpha \cdot i(C)$ where $\alpha \ge 0$;

• $\mu(C) = s(C) + \alpha \cdot i(C) - \sigma \cdot i_1(C)$ where $\alpha \ge 0, \sigma \le 1$.

Sets of substitutions

- 1. Bit fixing substitutions: $\{x_i \leftarrow c\}$.
- 2. Projections: $\{x_i \leftarrow c, x_i \leftarrow x_j \oplus c\}$.
- 3. Affine substitutions: $\{x_i \leftarrow \bigoplus_{j \in J} x_j \oplus c\}$.
- 4. Quadratic substitutions: $\{x_i \leftarrow p : \deg(p) \le 2\}$.

Sets of substitutions

- 1. Bit fixing substitutions: $\{x_i \leftarrow c\}$.
- 2. Projections: $\{x_i \leftarrow c, x_i \leftarrow x_j \oplus c\}$.
- 3. Affine substitutions: $\{x_i \leftarrow \bigoplus_{j \in J} x_j \oplus c\}$.
- 4. Quadratic substitutions: $\{x_i \leftarrow p : \deg(p) \le 2\}$.

Dispersers and extractors

- (S, n, r)-disperser f survives after n r substitutions.
- (S, n, r, ε) -extractor f survives after n r substitutions

$$\left|\Pr_{x}[f_{subst}(x)=1]-1/2\right|\leq\varepsilon.$$

• There are *explicit* constructions of dispersers and extractors allowing n - o(n) substitutions except for quadratic substitutions.

Substitution replaces some variable by a function that is computed by some subcircuit of a given circuit.

Then we normalize the circuit removing trivialized gates.

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose k variables x_1, \ldots, x_k .
- Choose k functions f_1, \ldots, f_k computed by gates of C.

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose k variables x_1, \ldots, x_k .
- Choose k functions f_1, \ldots, f_k computed by gates of C.
- For all $c_1, \ldots, c_k \in \{0, 1\}$ substitute $x_1 \leftarrow f_1 \oplus c_1, \ldots, x_k \leftarrow f_k \oplus c_k$ in *C* and call *A* on it.

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose k variables x_1, \ldots, x_k .
- Choose k functions f_1, \ldots, f_k computed by gates of C.
- For all $c_1, \ldots, c_k \in \{0, 1\}$ substitute $x_1 \leftarrow f_1 \oplus c_1, \ldots, x_k \leftarrow f_k \oplus c_k$ in *C* and call *A* on it.

• Vector $v = (a_1, \ldots, a_{2^k}) \in \mathbb{R}^{2^k}$ is a splitting vector w.r.t. measure μ if for all $i \in [2^k]$, $\mu(C) - \mu(C_i) \ge a_i > 0$.

For a splitting vector $v = (a_1, ..., a_{2^k})$ the splitting number $\tau(v)$ is the unique positive root of the equation $\sum_{i \in [2^k]} x^{-a_i} = 1$ (solution of $T(n) = T(n - a_1) + T(n - a_2) + \cdots + T(n - a_{2^k})$). For a splitting vector $v = (a_1, ..., a_{2^k})$ the splitting number $\tau(v)$ is the unique positive root of the equation $\sum_{i \in [2^k]} x^{-a_i} = 1$ (solution of $T(n) = T(n - a_1) + T(n - a_2) + \cdots + T(n - a_{2^k})$).

Properties

- If splitting number is at most τ then running time is bounded by $O^*(\tau^{\mu(C)})$.
- Balanced splitting vectors (a, a) have better splitting numbers than unbalanced (a + b, a b).
- $2^{1/a} = \tau(a, a) < \tau(a + b, a b)$ for 0 < b < a.

Splitting

For a class of circuits Ω (e.g., $\Omega = B_2$ or $\Omega = U_2$), a set of substitutions S, and a circuit complexity measure μ , we write

Splitting $(\Omega, S, \mu) \preceq \{v_1, \ldots, v_m\}$

as a shortcut for the following statement:

- + For any normalized circuit C from the class Ω
- one can find in time poly(|C|) a substitution from S whose splitting vector w.r.t. measure μ belongs to {v₁,..., v_m}
- or a substitution that trivializes the output gate of *C*.

Note: a substitution always trivializes at least one gate and eliminates at least one variable.

If Splitting $(\Omega, S, \mu) \preceq \{v_1, \dots, v_m\}$ and the longest splitting vector has length 2^k , then

- 1. There exists an algorithm solving #SAT for circuits over Ω in time $O^*(\gamma^{\mu(C)})$, where $\gamma = \max_{i \in [m]} \{\tau(v_i)\}$.
- 2. For (S, n, r)-disperser f,

$$\mu(f) \geq \beta_{W}(\{v_i\}) \cdot (r-k+1).$$

3. For (S, n, r, ε) -extractor f,

 $\mu(f,\delta) \geq \beta_a(\{v_i\}) \cdot r, \quad \delta = \varepsilon + \exp\left(-g(r,\{v_i\})\right).$

If for some S, Splitting $(\Omega, S, s + \alpha i) \preceq \{(a_1, b_1), \dots, (a_m, b_m)\}$, such that $\min_{i \in [m]} \max\{a_i, b_i\} = \omega(1)$ then #SAT for circuits over bases Ω can be solved in time $O^*(2^{o(s)})$.

Corollary

Due to the Sparsification Lemma such an algorithm even over the bases U_2 contradicts the Exponential Time Hypothesis.

Applications

Open problems

U₂: projections

Lemma

For $0 \leq \sigma \leq 1/2$,

Splitting(
$$U_2, \{x_i \leftarrow c, x_i \leftarrow x_j \oplus c\}, s + \alpha i - \sigma i_1 \} \preceq \{\ldots\}.$$

Corollary

 (2 - δ(ε))ⁿ #SAT algorithm for circuits of size (3.25 - ε)n.
C_{U2}(f) ≥ 3.5n - log^{O(1)}(n) for projections disperser f.
C_{U2}(f, δ) ≥ 3.25n - t for projections extractor f. Cor(f, C) is negligible for C of size 3.25n - ω(√n log n).

U₂: projections

There is only one case where projection $x_i \leftarrow x_j \oplus c$ is necessary (other cases are handled by bit fixing substitutions).

Let gates A and B compute Boolean functions $f_A(x_i, x_j) = (x_i \oplus a_A)(x_j \oplus b_A) \oplus c_A$ and $f_B(x_i, x_j) = (x_i \oplus a_B)(x_j \oplus b_B) \oplus c_B$ respectively.

- If $a_A = a_B$ ($b_A = b_B$) we assign $x_i \leftarrow a_A$ ($x_j \leftarrow b_A$).
- Otherwise, $x_i \leftarrow a_A \oplus x_i \oplus b_A \oplus 1$ makes A and B constant.

We get at least $(\alpha, 2\alpha)$ splitting vector.

B₂: quadratic substitutions

Lemma

For $0 \le \sigma \le 1/5$, Splitting($B_2, \{x_i \leftarrow p : \deg(p) \le 2\}, s + \alpha i - \sigma i_1$) $\preceq \{\dots\}$.

Corollary

- 1. $(2 \delta(\epsilon))^n$ #SAT algorithms for circuits of size $(2.6 \epsilon)n$.
- 2. $C_{B_2}(f) \ge 3n o(n)$ for quadratic disperser f.
- 3. $C_{B_2}(f, \delta) \ge 2.6n t$ for quadratic extractor f.

Cor(f, C) is negligible for any circuit C of size 2.6n - g(n) for some g(n) = o(n).

We can handle one of the cases in the case analysis differently.

We can handle one of the cases in the case analysis differently.

 $O((2 - \delta(\epsilon))^n)$ #SAT algorithm for circuits of size $(3 - \epsilon)n$.

We can handle one of the cases in the case analysis differently.

 $O((2 - \delta(\epsilon))^n)$ #SAT algorithm for circuits of size $(3 - \epsilon)n$.

This simplification changes the function computed by a circuit.

Applications

Open problems

- 1. Give an explicit construction of quadratic dispersers.
- 2. Adjust the framework to allow using natural simplification rules like replacing a xor gate fed by a 1-variable for both upper bounds and lower bounds.
- 3. Prove better limitation theorem.

Thanks for your attention!