Circuit size lower bounds and #SAT upper
bounds through a general framework

Alexander Golovnev@?, Alexander Kulikov®,
Alexander Smal®, Suguru Tamaki¢

August 25, 2016

9St. Petersburg Department of Steklov Institute of Mathematics of RAS
PNew York University
“Kyoto University

Framework
Applications

Open problems

Framework

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

X1 X2 X3

|

{@
!@.@

Boolean circuits

Unbounded depth constant fan-in Boolean circuits.

X1 X2 X3

|

4@
m’a

@
Natural questions

- What is the smallest size of a circuit computing f?

- How many satisfiable assignments a circuit has?

What was known

Lower bounds

- Shannon: almost all functions has circuits of size Q(2"/n).

What was known

Lower bounds

- Shannon: almost all functions has circuits of size Q(2"/n).
- Worst case lower bounds:

- (3+1/86)n for B, [Find, Golovney, Hirsch, Kulikov].
- 5n — o(n) for U, [lwama, Morizum].

What was known

Lower bounds

- Shannon: almost all functions has circuits of size Q(2"/n).
- Worst case lower bounds:

- (3+1/86)n for B, [Find, Golovney, Hirsch, Kulikov].

- 5n — o(n) for U, [lwama, Morizum].
- Average case lower bounds:

- 2.49n over B, and 2.99n for U, [Chen, Kabanets].

What was known

Lower bounds

- Shannon: almost all functions has circuits of size Q(2"/n).
- Worst case lower bounds:

- (3+1/86)n for B, [Find, Golovney, Hirsch, Kulikov].

- 5n — o(n) for U, [lwama, Morizum].
- Average case lower bounds:

- 2.49n over B, and 2.99n for U, [Chen, Kabanets].

Upper bounds (#SAT algorithms)

Faster than 2" algorithms for circuits of size 2.49n over B, and
2.99n for U, [Chen, Kabanets].

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.
- Circuit size lower bound.

Gate elimination and branching algorithms

Gate elimination
- Find substitution that eliminates many gates.
- Circuit size lower bound.

Branching on substitutions

- Find substitution that eliminates many gates
in all branches.

- #SAT algorithm.

Gate elimination and branching algorithms

Gate elimination

- Find substitution that eliminates many gates.

- Circuit size lower bound.

Branching on substitutions

- Find substitution that eliminates many gates
in all branches.

- #SAT algorithm.

[Chen and Kabanets, 2014]

Branching case analysis can also be used to prove average case
circuit lower bounds (correlation bounds). 5

- By is a full Boolean binary basis, U, = B, \ {®,=}.

- Cq(f) the minimal size of a circuit over basis Q C B,
computing function f € Bj,.

- By is a full Boolean binary basis, U, = B, \ {®,=}.

- Cq(f) the minimal size of a circuit over basis Q C B,
computing function f € Bj,.

- For functions f, g € By, the correlation between them

Cor(f,9) = [Prifx) = g()] — Prifx) # 9(x)]| =
1= 2PrIfx) # 91|

- By is a full Boolean binary basis, U, = B, \ {®,=}.

- Cq(f) the minimal size of a circuit over basis Q C B,
computing function f € Bj,.

- For functions f, g € By, the correlation between them
cor(f, g) = [Prifix) = 9] - PrIfx) # g0x)]| =
1= 2PrIfx) # 91|

- For 0 <e <1, Cq(f,2) is the minimal size of a circuit over
Q C B, computing function g such that Cor(f, g) > e.

Framework

A proof in the framework

1. Fix parameters:
- a class of circuits C,
- a circuit complexity measure g,
- a set of allowed substitutions S.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits C,
- a circuit complexity measure g,
- a set of allowed substitutions S.

2. Case analysis: for any circuit C € C there is a substitution
in S that reduces u(C) by sufficient amount.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits C,
- a circuit complexity measure g,
- a set of allowed substitutions S.

2. Case analysis: for any circuit C € C there is a substitution
in S that reduces u(C) by sufficient amount.

3. #SAT upper bound: branching algorithm.

Framework

A proof in the framework

1. Fix parameters:

- a class of circuits C,
- a circuit complexity measure g,
- a set of allowed substitutions S.

2. Case analysis: for any circuit C € C there is a substitution
in S that reduces u(C) by sufficient amount.
3. #SAT upper bound: branching algorithm.

4. Circuit size lower bounds for a function that survives
under sufficiently many allowed substitutions.

Circuit complexity measures

We focus on the following two circuit complexity measures:

- 1(C) =s(C) + a-i(C) where a > 0;

Circuit complexity measures

We focus on the following two circuit complexity measures:

- 1(C) =s(C) + a-i(C) where a > 0;

- w(C)=s(C)+a-i(C)—o-ih(C)where a > 0,0 < 1.

Xi X
Xi X
o) E/A O Bo/xk 2\ e
¢ D D,

Sets of substitutions

1. Bit fixing substitutions: {x; < c}.

2. Projections: {X; <= ¢,X; - X; @ C}.

3. Affine substitutions: {X; + ;¢ X; & c}.

4. Quadratic substitutions: {xj < p: deg(p) < 2}.

10

Sets of substitutions

1. Bit fixing substitutions: {x; < c}.

2. Projections: {X; <= ¢,X; - X; @ C}.

3. Affine substitutions: {X; + ;¢ X; & c}.

4. Quadratic substitutions: {xj < p: deg(p) < 2}.

Dispersers and extractors

- (S, n,r)-disperser f survives after n — r substitutions.

- (S, n,r,e)-extractor f survives after n — r substitutions
Prifapsi(¥) = 11— 1/2| <.

- There are explicit constructions of dispersers and
extractors allowing n — o(n) substitutions except for

quadratic substitutions. o

Substitutions

Substitution replaces some variable by a function that is
computed by some subcircuit of a given circuit.

Then we normalize the circuit removing trivialized gates.

"

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose kvariables xq, ..., Xp.
- Choose k functions fi, ..., f, computed by gates of C.

12

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose kvariables xq, ..., Xp.
- Choose k functions fi, ..., f, computed by gates of C.

- Forall ¢q,...,cr € {0,1} substitute x; «+ f1 ® ¢3, .
Xp < fr@® cpin Cand call A on it.

ey

12

Splitting vectors

Consider one step of branching algorithm A on circuit C.

- Choose kvariables xq, ..., Xp.
- Choose k functions fi, ..., f, computed by gates of C.
- Forallcy,...,c, € {0,1} substitute x; < fi® cy, ...,

Xp < fr@® cpin Cand call A on it.

A(G) A(G) o A(Car)
- Vectorv = (aq,...,0x) € R?" is a splitting vector w.rt.

measure y if for all i € [2%], u(C) — w(C;) > a; > 0.

12

Splitting numbers

For a splitting vector v = (a4, ..., a,) the splitting number 7(v)
is the unique positive root of the equation Ziem X0 =1
(solution of T(n) =T(n —a1) + T(n — az2) + - - - + T(N — Q).

13

Splitting numbers

For a splitting vector v = (a4, ..., a,) the splitting number 7(v)
is the unique positive root of the equation Ziem X0 =1
(solution of T(n) =T(n —a1) + T(n — az2) + - - - + T(N — Q).

Properties

- If splitting number is at most 7 then running time is
bounded by 0*(7#(9)).

- Balanced splitting vectors (a, a) have better splitting
numbers than unbalanced (a + b,a — b).

. ZW/G:T(a,a)<T(a+b,a—b)for0<b<a.

13

Splitting

For a class of circuits Q (e.g, Q = B, or Q = U,), a set of
substitutions S, and a circuit complexity measure p, we write

Splitting(2, S, 1) X {v1,...,Vm}
as a shortcut for the following statement:

- For any normalized circuit C from the class Q

- one can find in time poly(|C|) a substitution from S whose
splitting vector w.r.t. measure u belongs to {v1,...,vm}

- or a substitution that trivializes the output gate of C.

Note: a substitution always trivializes at least one gate and
eliminates at least one variable.

14

If Splitting(Q2, S, 1) < {w1,...,vm} and the longest splitting
vector has length 2%, then

1.

There exists an algorithm solving #SAT for circuits over Q
in time O*(y*(9), where v = m[a>]<{7(v,-)}.
elm

. For (S, n,r)-disperser f,

p(f) = Bu({vi}) - (r =k +7).

. For (S, n,r,e)-extractor f,

p(f;0) = Ba({vit) -1, 0 =e+exp(=g(r,{vi}))-

15

Weak limitation theorem

If for some S, Splitting(2, S, s + i) < {(a4,b1),...,(am, bm)},
such that min;cm max{a;, bi} = w(1) then #SAT for circuits over
bases Q can be solved in time 0*(2°0)).

Corollary

Due to the Sparsification Lemma such an algorithm even over
the bases U, contradicts the Exponential Time Hypothesis.

Applications

U,: projections

Lemma

For0 <o <1/2,

Splitting(Uz, {Xj <= ¢, X <= X; @ c},s+ai —oh) X {...}.

Corollary

1. (2 —6(€))" #SAT algorithm for circuits of size (3.25 — e)n.
2. Cy,(f) > 3.5n— log®M)(n) for projections disperser f.
3. Cy,(f,d) > 3.25n — t for projections extractor f.

Cor(f, C) is negligible for C of size 3.25n — w(y/n logn).

U,: projections

There is only one case where projection X; <- x; @ C is
necessary (other cases are handled by bit fixing substitutions).

Let gates A and B compute Boolean functions
falxi,x;) = (x; © aa)(x; ® ba) © ca and
fa(xi,x;) = (X; © ag)(x; © bg) ® Cp respectively.

- Ifay =ag (bA = DB) we assign Xi < da (Xj — bA)
- Otherwise, X; <— as ® X; ® by ® 1 makes A and B constant.

We get at least («, 2«) splitting vector.
19

B,: quadratic substitutions

Lemma
For0 <o <1/5,
Splitting(By, {x; < p: deg(p) <2},s+ai—ocit) < {... }.

Corollary

1. (2 — &(€))" #SAT algorithms for circuits of size (2.6 — €)n.
2. Cg,(f) > 3n — o(n) for quadratic disperser f.
3. Cg,(f,d) > 2.6n — t for quadratic extractor f.

Cor(f, C) is negligible for any circuit C of size 2.6n — g(n)
for some g(n) = o(n).

20

B,: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

21

B,: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

Xi+ 0 simplif

O((2 — d(€))™) #SAT algorithm for circuits of size (3 — €)n.

21

B,: improving #SAT algorithm

We can handle one of the cases in the case analysis differently.

Xi+ 0 simplif

O((2 — d(€))™) #SAT algorithm for circuits of size (3 — €)n.

This simplification changes the function computed by a circuit.

21

Open problems

22

Open problems

1. Give an explicit construction of quadratic dispersers.

2. Adjust the framework to allow using natural simplification
rules like replacing a xor gate fed by a 1-variable for both
upper bounds and lower bounds.

3. Prove better limitation theorem.

23

Thanks for your attention!

	Framework
	Applications
	Open problems

