
Optimal automatizable heuristic proof systems
Alexander V. Smal

St. Petersburg Department of Steklov Mathematical Institute,
Laboratory of Mathematical Logic
smal@logic.pdmi.ras.ru

Given a specific problem, does there exist the “fastest” algorithm for it? Does there exist
a proof system possessing the “shortest” proofs of the positive solutions to the problem?
Although the first result in this direction was obtained by Levin in 1970s, these important
questions are still open for most interesting languages, for example, the language of propo-
sitional tautologies.

1 Classical proof complexity
1.1 Proof systems

Cook and Reckhow introduced notion of a proof system in 1979.

Definition 1.1. Proof system for a language 𝐿 is a polynomial-time mapping of all strings
(“proofs”) onto “theorems” (elements of 𝐿). If 𝐿 = TAUT is the language of all proposi-
tional tautologies, the system is called a propositional proof system.

The existence of a polynomially bounded propositional proof system (that is, a system
that has a polynomial-size proof for every tautology) is equivalent to NP = co−NP. In the
context of polynomial boundedness a proof system can be equivalently viewed as a function
that given a formula and a “proof”, verifies in polynomial time that a formula is a tautology:
it must accept at least one “proof” for each tautology (completeness) and reject all proofs for
non-tautologies (soundness).

Resolution. There is a lot of proof systems that are studied in proof complexity. The most
well-known example of propositional proof systems is Resolution proof system. This proof
system is based on a resolution rule: let 𝐴 and 𝐵 be disjunctions of literals and 𝑥 be a propo-
sitional variable, then

𝐴 ∨ 𝑥, 𝐵 ∨ ¬𝑥

𝐴 ∨𝐵
.

It’s not hard to show that using the resolution rule one can deduce an empty clause from a
set of clauses iff this set is unsatisfiable. Given a formula Φ in DNF, a resolution proof for it is
a sequence of the resolution rule applications (it can also be a tree or a DAG) to clauses of
¬Φ (in CNF). It is proved by Haken in 1985 that some tautologies (e.g., pigeonhole principle)
have only exponentially long proofs in the Resolution proof system.

1.2 Optimal proof systems

How to compare two proof systems? Which proof system is the best one? To answer these
questions it is necessary to establish a partial order on a set of proof systems that reflects
shortest proofs.

Definition 1.2. One proof system Π𝑤 is simulated by another one Π𝑠 if the shortest proofs for
every tautology in Π𝑠 are at most polynomially longer than the shortest proofs in Π𝑤 . The
notion of 𝑝-simulation is similar, but requires also a polynomial-time computable function
for translating the proofs from Π𝑤 to Π𝑠.

Definition 1.3. A (𝑝-)optimal propositional proof system is one that (𝑝-)simulates all other
propositional proof systems.

The existence of an optimal (or 𝑝-optimal) proof system is a major open question for
many languages including TAUT. Optimality would imply 𝑝-optimality for any language
if and only if there is a 𝑝-optimal proof system for SAT. If an optimal system for TAUT

would exist, it would allow to reduce the NP vs. co−NP question to proving proof size
bounds for just one proof system. The existence of an optimal system for quantified Boolean
formulas would imply a complete language in NP ∩ co−NP. Unfortunately, no concise
widely believed conjectures (like NP ̸= co−NP) are known to imply the (non-)existence of
(𝑝-)optimal proof systems.

1.3 Acceptors and automatizable proof systems

Definition 1.4. An acceptor for language 𝐿 is a semidecision procedure, i.e., an algorithm that
answers 1 for 𝑥 ∈ 𝐿, and does not answer 1 for 𝑥 ̸∈ 𝐿. It is optimal if it takes for it at most
polynomially longer to stop on every 𝑥 ∈ 𝐿 than for any other correct algorithm on the same
𝑥. (Note that Levin showed that an optimal algorithm does exist for finding witnesses to
non-tautologies. However, it gives an optimal acceptor neither for TAUT nor for SAT.)

Definition 1.5. An automatizable proof system is one that has an automatization procedure
that given a tautology, outputs its proof of length polynomially bounded by the length of
the shortest proof in time bounded by a polynomial in the output length.

It is easy to see that such proof system can be easily turned into acceptor with the run-
ning time polynomially related to the proof size. Vice versa, an acceptor can be converted
into an automatizable proof system, where the proof is just the number of steps (written in
unary) that the acceptor makes before accepting its input. Thus, in the classical case there is
no difference between acceptors and automatizable proof systems.

2 Heuristic proof complexity
2.1 What does “heuristic” mean

Hirsch and Itsykson introduced heuristic acceptors and heuristic proof systems. Heuristic
algorithms are algorithms that make errors for a small amount of inputs. Similarly, heuristic
proof systems claim a small amount of wrong theorems.

What does “small amount” formally mean is defined with respect to a probability distri-
bution concentrated on non-theorems, and it is required that the probability of sampling a
non-theorem accepted by an algorithm or validated by a proof system is small.

Definition 2.1. A pair (𝐷, 𝐿) is called a distributional proving problem if 𝐷 is a collection of
probability distributions 𝐷𝑛 concentrated on 𝐿 ∩ {0, 1}𝑛.

In what follows Pr𝑥←𝐷𝑛 denotes the probability taken over 𝑥 from such distribution, while
Pr𝐴 denotes the probability taken over internal random coins used by algorithm 𝐴.

2.2 Heuristic automatizer

Definition 2.2. A heuristic acceptor for distributional proving problem (𝐷, 𝐿) is a random-
ized algorithm 𝐴 with two inputs 𝑥 ∈ {0, 1}* and 𝑑 ∈ N that satisfies the following condi-
tions:

1. 𝐴 either outputs 1 or does not halt at all;

2. for every 𝑥 ∈ 𝐿 and 𝑑 ∈ N, 𝐴(𝑥, 𝑑) = 1;

3. for every 𝑛, 𝑑 ∈ N, Pr𝑟←𝐷𝑛

{︀
Pr𝐴{𝐴(𝑟, 𝑑) = 1} > 1

8

}︀
< 1

𝑑.

Remark. For recursively enumerable 𝐿, conditions 1 and 2 can be easily enforced at the
cost of a slight overhead in time by running 𝐿’s semidecision procedure in parallel.

Definition 2.3. The time spent by automatizer 𝐴 on input (𝑥, 𝑑) is defined as the median time

𝑡𝐴(𝑥, 𝑑) = min

{︂
𝑡 ∈ N

⃒⃒⃒⃒
Pr
𝐴
{𝐴(𝑥, 𝑑) stops in time at most 𝑡} ≥ 1

2

}︂
.

Definition 2.4. Automatizer 𝑆 simulates automatizer 𝑊 if there are polynomials 𝑝 and 𝑞

such that for every 𝑥 ∈ 𝐿 and 𝑑 ∈ N,

𝑡𝑆(𝑥, 𝑑) ≤ max
𝑑′≤𝑞(𝑑·|𝑥|)

𝑝(𝑡𝑊 (𝑥, 𝑑′) · |𝑥| · 𝑑).

Definition 2.5. An optimal automatizer is one that simulates every other automatizer.

Theorem 2.1 (optimal automatizer). Let (𝐷, 𝐿) be a distributional proving problem, where
𝐿 is recursively enumerable and 𝐷 is polynomial-time samplable, i.e., there is a polynomial-
time randomized Turing machine that given 1𝑛 on input outputs 𝑥 with probability 𝐷𝑛(𝑥)

for every 𝑥 ∈ {0, 1}𝑛. Then there exists an optimal automatizer for (𝐷, 𝐿).

2.3 Heuristic proof systems

Definition 2.6. Randomized Turing machine Π is a heuristic proof system for distributional
proving problem (𝐷, 𝐿) if it satisfies the following conditions.

1. The running time of Π(𝑥, 𝑤, 𝑑) is bounded by a polynomial in 𝑑, |𝑥|, and |𝑤|.

2. (Completeness) For every 𝑥 ∈ 𝐿 and every 𝑑 ∈ N, there exists a string 𝑤 such that
Pr{Π(𝑥, 𝑤, 𝑑) = 1} ≥ 1

2. Every such string 𝑤 is called a correct Π(𝑑)-proof of 𝑥.

3. (Soundness) Pr𝑥←𝐷𝑛{∃𝑤 : Pr{Π(𝑥, 𝑤, 𝑑) = 1} > 1
8} < 1

𝑑.

Definition 2.7. Heuristic proof system is automatizable if there is a randomized Turing ma-
chine 𝐴 satisfying the following conditions.

1. For every 𝑥 ∈ 𝐿 and every 𝑑 ∈ N, there is a polynomial 𝑝 such that

Pr
𝑤←𝐴(𝑥,𝑑)

{︀
|𝑤| ≤ 𝑝(𝑑 · |𝑥| · |𝑤*|) ∧ Pr{Π(𝑥, 𝑤, 𝑑) = 1} ≥ 1

4

}︀
≥ 1

4,

where 𝑤* is the shortest correct Π(𝑑)-proof of 𝑥.

2. The running time of 𝐴(𝑥, 𝑑) is bounded by a polynomial in |𝑥|, 𝑑, and the size of its own
output.

Remark. It is not required that the algorithm 𝐴 generates correct proofs. It suffices to gen-
erate “quasi-correct” (such that Pr{Π(𝑥, 𝑤, 𝑑) = 1} ≥ 1

4) with probability 1
4.

Definition 2.8. Heuristic proof system Π1 simulates heuristic proof system Π2 if there exist
polynomials 𝑝 and 𝑞 such that for every 𝑥 ∈ 𝐿, the shortest correct Π

(𝑑)
1 -proof of 𝑥 has size at

most
𝑝(𝑑 · |𝑥| · max

𝑑′≤𝑞(𝑑·|𝑥|)
{the size of the shortest correct Π

(𝑑′)
2 -proof of 𝑥}). (1)

Heuristic proof system Π1 𝑝-simulates heuristic proof system Π2 if Π1 simulates Π2 and there is
a polynomial-time (deterministic) algorithm that converts a Π

(𝑞(𝑑·|𝑥|))
2 -proof into a Π

(𝑑)
1 -proof

of size at most (1) such that the probability to accept a new proof is no smaller than the
probability to accept the original one.

Theorem 2.2. Automatizable heuristic proof systems are equivalent to heuristic automatiz-
ers, e.g.:

1. every such system defines a heuristic automatizer taking time at most polynomially
larger than the length of the shortest proof in the initial system;

2. every heuristic automatizer defines such a system that has proof of size at most poly-
nomially larger than the time spent by automatizer.

Corollary 2.1. There is an optimal automatizable heuristic proof system.

