Querying and Embedding Compressed Texts

Yury Lifshits¹, Markus Lohrey²

¹Steklov Institute of Mathematics at St.Petersburg, yura@logic.pdmi.ras.ru

²Stuttgart University, lohrey@informatik.uni-stuttgart.de

> Stara Lesna August 2006

Subsequence Matching (Embedding)

INPUT: pattern **TEAM** and text [INTERNATIONAL SYMPOSIUM MFCS]

TASK: to check whether the text contains the pattern as a **subsequence** (i.e. gaps are allowed)

Subsequence Matching (Embedding)

INPUT: pattern **TEAM** and text INTERNATIONAL SYMPOSIUM MFCS

TASK: to check whether the text contains the pattern as a **subsequence** (i.e. gaps are allowed)

OUTPUT: Yes I N T E R N A T I ONAL SYMPOSIUM MFCS

Subsequence Matching (Embedding)

INPUT: pattern **TEAM** and text INTERNATIONAL SYMPOSIUM MFCS

TASK: to check whether the text contains the pattern as a **subsequence** (i.e. gaps are allowed)

OUTPUT: Yes

Problem for this talk:

Given a COMPRESSED text and a COMPRESSED pattern can we solve embedding faster than just "unpack-and-search"?

- New topic in computer science: algorithms for compressed texts
- Our problems and our results
- Some proof ideas

Part I

What are **compressed** texts?

Can we do something interesting **without unpacking**?

Yury Lifshits, Markus Lohrey (SPb-Stuttgart) Querying and Embedding Compressed Texts

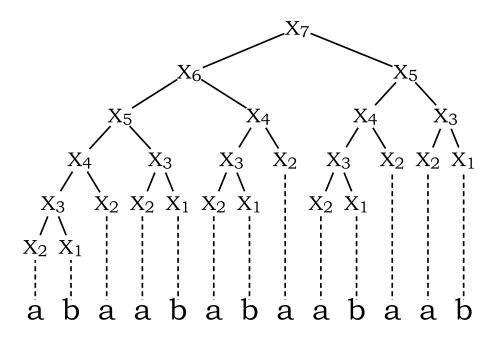
Straight-line Programs: Definition

Straight-line program (SLP) is a Context-free grammar generating **exactly one** string Two types of productions: $X_i \rightarrow a$ and $X_i \rightarrow X_p X_q$

Example

abaababaabaab

 $X_1 \rightarrow b$


$$X_2 \rightarrow a$$

$$X_3 \rightarrow X_2 X_1$$

$$X_4 \rightarrow X_3 X_2$$

$$egin{array}{c} X_5
ightarrow X_4 X_3 \ X_6
ightarrow X_5 X_4 \end{array}$$

$$X_7 \rightarrow X_6 X_5$$

Rytter, 2003: Consider the archive of size z obtained by LZ78,LZW or some dictionary-based compression method. Then we can in time O(z) convert it to SLP of size O(z) generating the same text.

Rytter, 2003: Consider the archive of size z obtained by LZ78,LZW or some dictionary-based compression method. Then we can in time O(z) convert it to SLP of size O(z) generating the same text.

Rytter, 2003: Consider the LZ77-compressed or RLE-compressed text T of original length n and the archive of size z. Then we can in time $O(z \log n)$ convert it to SLP of the size $O(z \log n)$ generating the same text.

Rytter, 2003: Consider the archive of size z obtained by LZ78,LZW or some dictionary-based compression method. Then we can in time O(z) convert it to SLP of size O(z) generating the same text.

Rytter, 2003: Consider the LZ77-compressed or RLE-compressed text T of original length n and the archive of size z. Then we can in time $O(z \log n)$ convert it to SLP of the size $O(z \log n)$ generating the same text.

In the following by compressed text we mean an SLP generating it

Why algorithms on compressed texts?

Answer for algorithms people:

- Might be faster than "unpack-and-search"
- Saving storing space and transmitting costs
- Many fields with highly compressible data: statistics (internet log files), automatically generated texts, message sequence charts for parallel programs

Answer for complexity people:

- Some problems are hard in worst case. But they might be easy for **compressible** inputs
- New complexity relations. Similar problems have different complexities on compressed inputs

Problems on SLP-generated texts

\exists poly algorithms:

GKPR'96 Equivalence **GKPR'96** Regular Language Membership **GKPR'96** Shortest Period L'06 Shortest Cover L'06 Fingerprint Table **GKPR'96** Fully Compressed Pattern Matching CGLM'06 Window Subsequence Matching

At least NP-hard:

L'06 Hamming distance Lohrey'04 Context-Free Language Membership BKLPR'02 Two-dimensional Compressed Pattern Matching

Part II

What are embedding and querying problems on compressed texts?

How computationally hard are they?

Yury Lifshits, Markus Lohrey (SPb-Stuttgart) Querying and Embedding Compressed Texts

MFCS'2006 10 / 18

Querying and Embedding Compressed Texts

Compressed Embedding Problem:

INPUT: Two SLPs generating strings T and P**OUTPUT:** YES if T contains P as a subsequence, otherwise NO

Compressed Embedding Problem:

INPUT: Two SLPs generating strings T and P**OUTPUT:** YES if T contains P as a subsequence, otherwise NO

Compressed Querying Problem: INPUT: A SLP generating string T, position i, character a**OUTPUT:** YES if $T_i = a$, otherwise NO

Compressed Embedding is Hard

GKPR'96 proved that **string matching** when both the text and the pattern are compressed has a polynomial algorithm.

Natural question: then what about subsequence matching?

Compressed Embedding is Hard

GKPR'96 proved that **string matching** when both the text and the pattern are compressed has a polynomial algorithm.

Natural question: then what about subsequence matching?

MAIN RESULT 1:

Compressed Embedding problem is NP-hard Compressed Embedding problem is co-NP-hard.

Compressed Embedding is Hard

GKPR'96 proved that **string matching** when both the text and the pattern are compressed has a polynomial algorithm.

Natural question: then what about subsequence matching?

MAIN RESULT 1:

Compressed Embedding problem is NP-hard Compressed Embedding problem is co-NP-hard. Compressed Embedding problem is Θ_2 -hard The most used operation on compressed texts is decompressing.

Natural question: can it be done efficiently by a parallel algorithm?

The most used operation on compressed texts is decompressing.

Natural question: can it be done efficiently by a parallel algorithm?

MAIN RESULT 2:

Compressed Querying problem is P-complete.

Part III

How to prove NP-hardness of Embedding?

How to prove co-NP-hardness of Embedding?

Yury Lifshits, Markus Lohrey (SPb-Stuttgart) Querying and Embedding Compressed Texts

MFCS'2006 14 / 18

Classical reduction:

- Take an NP-complete problem (Subset Sum)
- For every instance of Subset Sum construct two straight line programs such that

Embedding holds \Leftrightarrow Subset Sum has answer "Yes"

Lemma (Yes-No symmetry):

For every SLPs X and Y we can in polynomial time construct SLPs X' and Y' such that:

Embedding holds for X and Y \Leftrightarrow Embedding does not hold for X' and Y'

Lemma (Yes-No symmetry):

For every SLPs X and Y we can in polynomial time construct SLPs X' and Y' such that:

Embedding holds for X and Y \Leftrightarrow Embedding does not hold for X' and Y'

Corollary: NP-hardness implies co-NP-hardness

Summary

Main points:

- Compressed text = text generated by SLP
- \bullet For compressed texts querying is P-complete, embedding is $\Theta_2\text{-hard}$
- Method: reduction from subset sum problem, "yes-no" symmetry

Summary

Main points:

- Compressed text = text generated by SLP
- \bullet For compressed texts querying is P-complete, embedding is $\Theta_2\text{-hard}$
- Method: reduction from subset sum problem, "yes-no" symmetry

Open Problems:

- What is exact complexity of Compressed Embedding problem (we know that it is somewhere between Θ₂ and PSPACE)?
- To construct O(nm) algorithms for edit distance, where *n* is the length of T_1 and *m* is the **compressed size** of T_2

Last Slide

Yury Lifshits http://logic.pdmi.ras.ru/~yura/

Our relevant papers:

Yury Lifshits and Markus Lohrey Querying and Embedding Compressed Texts *MFCS'06*.

Yury Lifshits

Solving Classical String Problems on Compressed Texts preprint at Arxiv:cs.DS/0604058, 2006.

P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich Window Subsequence Problems for Compressed Texts *CSR'06.*

Markus Lohrey

Word Problems and Membership Problems on Compressed Words *ICALP'04*.

Last Slide

Yury Lifshits http://logic.pdmi.ras.ru/~yura/

Our relevant papers:

Yury Lifshits and Markus Lohrey Querying and Embedding Compressed Texts *MFCS'06*.

Yury Lifshits

Solving Classical String Problems on Compressed Texts preprint at Arxiv:cs.DS/0604058, 2006.

P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich Window Subsequence Problems for Compressed Texts *CSR'06*.

Markus Lohrey

Word Problems and Membership Problems on Compressed Words *ICALP'04*.

Thanks for attention!