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Abstract

We describe the basic notions and algorithm of the mixed boolean-algebraic solver being developed in the
Laboratory of Mathematical Logic of St.Petersburg Department of Steklov Institute of Mathematics. The
solver solves formulas of the propositional logic and checks boolean circuits for equivalence by translating
them into systems of equalities and disjunctions of equalities and solving these systems by means of derivation
rules together with traditional DPLL search.

The solver is implemented in C++. The implementation is flexible and allows to modify easily the rules
employed by the proof system and even the nature of derivation objects.
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Chapter 1

Introduction

The mixed boolean-algebraic solver solves the propositional satisfiability problem for formulas in conjunctive
normal form (optionally, it also checks boolean circuits for equivalence and checks their properties described
in a certain simple register-transfer level language). The original formula is transformed into a set of ob-
jects, which are either equalities or disjunctions of equalities. Then the solver executes a traditional DPLL
[Davis and Putnam, 1960, Davis et al., 1962] search combined with a bunch of rules that generate new ob-
jects. The objects are held in sets that have indices that allow to find, add, and remove objects quickly. A
log allows to undo changes before backtracking.

The main algorithm (Sect. 2.3) and the classification of derivation rules (Sect. 2.2) are implemented
(and described) in a way that enables to use them with deduction and modification objects of any nature.
However, the main idea of the mixed boolean-algebraic solver is the use of equalities. Accordingly, the
specific types of objects we use are described in Sect. 3.1, and the specific rules are given in Sect. 3.3. A
choice of the splitting heuristics is described in Sect. 3.4. The C++ and command-line interfaces are described
in Sect. 3.5. The numerical experimental data is given in Chap. 5.

The conclusion and advises for the usage or further development are given in Chap. 6.
The solver is implemented in the C++ programming language, and the minimum amount of details con-

cerning this implementation is given in the corresponding sections. The source code is quite flexible and
allows

• implementation of solvers based on different mixed boolean-algebraic proof systems, in particular,
solvers aimed at equivalence checking or verification of specific families of boolean circuits;

• implementation of solvers based on different (not mixed boolean-algebraic) objects;

• easy (even dynamic) replacement of data structures.

More implementation details are given in the source code and doxygen documentation.
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Chapter 2

Abstract concept

2.1 Concept of the solver

The mixed boolean-algebraic solver (basolver) accepts either a formula in CNF, or a pair of boolean circuits,
or a boolean circuit and a register-transfer level specification. It keeps a formula as a set of deduction objects;
in the present solver these are mixed boolean-algebraic clauses, which are disjunctions of polynomial equalities
in boolean variables. In addition to the set of deduction objects, we keep also a set of modification objects
(a.k.a. modifiers). Most modifiers match one of the following types:

x = 0, or x = 1, or x = y, or x = 1 − y ,

where x, y are boolean variables; it is safe to forget about a modifier after it has been applied to every
deduction object (until a satisfying assignment is to be generated). Another possible example of a modifier
is an equality that determines the value of a variable as a function of other variables x = f(y1, . . . , yn), where
x does not occur in deduction objects.

New objects are generated by means of derivation rules (described in Sect. 3.3). When a new object is
derived, it is considered as a deduction object. We have a special rule that determines whether a clause
(consisting of a single equality) deserves to become a modifier. All objects are stored in several sets in order
to keep the invariant that each rule is applied to each group of objects at most once.

It is quite possible that the rules have already been applied in all possible ways, but we have not found
neither a contradiction nor a satisfying assignment (the rules themselves do not form a complete set of
deduction rules). In this situation we do a regular DPLL-like splitting; namely, we split the search process
into two branches; in one of them we add a modifier x = 0 to the set of objects, and in the other branch we
add x = 1 to the set of objects. Then we consequently process these branches, just like any other DPLL-type
algorithm.

Similarly to all other DPLL-like solvers, we have a heuristic for choosing a literal (the specific one used
in the current version is described in Sect. 3.4). We also have a heuristic for restricting the power of our
rules in some nodes of the recursion tree (it is mentioned in Sect. 2.3, where the general abstract algorithm
is described).

2.2 Rules classification

Rules are implemented as C++ classes in the solver. The set of all rules except for the TransferRule is divided
into two types: simplification and generation rules. Generation rules construct new objects from existing
ones. Simplification rules are intended to replace existing deduction objects by new ones and to produce
new modifiers. A simplification rule never increases the number of deduction objects, while a generation rule
usually does. Due to this reason, simplification rules are called more often from the main algorithm. Both
classes SimplificationRule and GenerationRule have a descendant whose name is obtained by adding a
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prefix “Meta” to their name. The word “Meta” shows that a rule is in fact a list of several rules of one type.
The application of this rule to a group of objects consists of consecutive applications of all its internal rules
to this group. TransferRule is intended to divide newly produced objects into clauses and modifiers.

Below we describe the main interfaces of the rules used by basolver. By DedObjSet* and ModObjSet*

we denote pointers to DeductionObjectSet and ModificationObjectSet, respectively. All rules are applied
by means of their methods operator()(...). Each such method (except for TransferRule::operator())
accepts a set of type DedObjSet* as a first parameter. It is the set for which all generated objects are added.
Also, each rule is given a reference to the solver in the constructor. Some of the rules use this reference to
check whether restrictions of their application are satisfied.

• GenerationRule is intended to generate new objects from existing ones.

– operator()(DedObjSet* returned set, DedObjSet* new set, DedObjSet* old set)

Applies a rule to all possible groups of objects from new set and old set where at least one object is
from new set.

• SimplificationRule replaces its premises with new objects and/or generates new modifiers.

– operator()(DedObjSet* returned set, DedObjSet* new set, DedObjSet* old set,

bool new vs new)

– operator()(DedObjSet* returned set, ModObjSet* new set, ModObjSet* old set,

bool new vs new)

These two operators apply a rule to all possible groups of objects from new set and old set where at
least one object is from new set; if the flag new vs new is set to False, then also at least one premise
has to be from old set.

– operator()(DedObjSet* returned set, DedObjSet* ded set)

This operator simplifies ded set by means of itself; for example, the pure literal rule uses this interface
to remove literals that do not occur negated in a set; since such rules use some global properties of
variables which may not be extracted from any one set, in the algorithm we pass a list of several sets
instead of one ded set to this method.

• TransferRule

– operator()(DedObjSet* newset, DedObjSet* dset, ModObjSet* mset)

This operator is intended to move all objects from newset to either dset or mset according to the type
of this object; thus, after the application of this method newset becomes empty.

2.3 Algorithm

During the algorithm run the following invariants are maintained:

1. No rule can be applied to a specific group of objects more than once.

2. If a rule has chances to be applied to a group of objects with a non-trivial result (when a new object
is generated or an existing object is simplified), then it has to be applied to this group of objects or
objects that resulted from their simplification (unless one of these objects disappears completely).

3. If the input formula is unsatisfiable, then at every moment of the algorithm execution the set of all
deduction objects is unsatisfiable.
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4. When a new object is generated, the algorithm checks whether this object is a modifier. If yes, it
simplifies all existing objects by means of this modifier and puts it into the set Modifiers.

To satisfy the first two invariants at the preprocessing stage we apply the rules to the whole input sets,
while at the main cycle stage a rule is applied to a set of objects only in case one of this objects was created
at the previous iteration of the cycle.

Algorithm:

Input: Set F of deduction objects.
Output: Satisfying assignment for F , if any; False, otherwise.

Method.

1. Initializing steps:

Clauses = ∅.

Modifiers = ∅.

Clauses = NewObjects = NewClauses = ∅.

RecentClauses = clauses of F .

if RecentClauses contains modifiers, apply them and put them into Modifiers.

2. Main Cycle:

(a) do

i. do

A. MetaSimplificationRule(NewObjects, Clauses ∪ NewClauses ∪ RecentClauses);

B. MetaSimplificationRule(NewObjects, RecentClauses, NewClauses, false);

C. MetaSimplificationRule(NewObjects, RecentClauses, Clauses, true);

D. move all objects from RecentClauses to NewClauses;

E. move all objects from NewObjects to RecentClauses;

while RecentClauses 6= ∅.

ii. if the current depth of the search tree is equal to 1, 2, 4, . . . , 2k, . . .

A. MetaGenerationRule(NewObjects, NewClauses, Clauses);

B. move all objects from NewClauses to Clauses;

C. move all objects from NewObjects to RecentClauses;

while RecentClauses 6= ∅.

(b) if Clauses is empty, return satisfying assignment

(c) Select a variable x for splitting according to some heuristic. Split the current formula on this
variable (in one branch we simplify all objects by an equality x = 0 and put this equality to the
set Modifiers, in the other we do the same with x = 1) and recursively call for the Main Cycle
on both constructed formulas. If at least one of the recursive calls returns a satisfying assignment,
update this assignment (by processing modifiers from Modifiers) and return it; otherwise return
False.

9
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Chapter 3

Specific solver

3.1 Objects and notation

The basolver keeps its objects as sets of deduction objects (of type DeductionObject) and modification
objects (of type ModificationObject). A deduction object is a disjunction (clause) of several equalities
consisting of boolean variables (an element of such a disjunction is called SALiteral in the implementation).
A clause becomes a modifier in the following two cases: either it consists of a single equality of type x = {0, 1}
or x = {y, 1 − y}, where x, y are boolean variables (this condition is checked by a special rule called
TransferRule), or it is generated by either SingleOccurrenceRule or PureLiteralRule. Each time a
new modifier is generated, the solver simplifies all current objects by this modifier and moves it to the set
Modifiers.

Equalities (type Equality) have the form LHS=RHS, where LHS and RHS are polynomials (of type
Polynomial), that is, sums of monomials. Below we describe the invariants of these structures that need
to be satisfied for the program to work correctly. For example, a natural invariant for a class representing
polynomial is that is does not contain equal monomials.

A monomial (type Monomial) is a product of an integer coefficient and several boolean variables. Since
we have x2 = 1 for any boolean variable x, the set of variables of a monomial does not contain equal variables
(that is, it is truly a set, not a multiset). We use the following monomial ordering:

• two monomials are equal if they have equal sets of variables (but their coefficients may be different);

• if two monomials have different degrees, the one with smaller degree is smaller;

• if two monomials have equal degrees but different sets of variables we use the lexicographical order;
e.g., p1p2p6 is smaller than p1p3p4.

Equality invariants are given below. We say that an equality is normalized, if it satisfies all these
invariants.

• LHS contains only one monomial, the coefficient of this monomial is positive, and the monomial is not
a constant.

• LHS and RHS do not share equal monomials.

• The most common divisor of all monomial coefficients is 1.

• An equality cannot have the form a = −b + c + 2ab, where a, b, c are literals corresponding to
different variables (if it has such a form before normalization, it is transformed to the equivalent form
x = y + z−2yz, where the sets {a, b, c} and {x, y, z} are equal). We call this operation XOR-rewriting.

• LHS contains the minimal monomial among monomials with the minimal absolute value of coefficient.
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Each time a new object is generated, the solver does the following:

1. Brings a new object to a canonic form by means of StrongNormalizeRule:

x = 2P

x = 0 0 = P
,

x = l + 2P

x = l 0 = P
,

x = 1 + 2P

x = 1 0 = P
,

x = −y + 2S

x = y 0 = −y + S
,

0 = n −
∑i<n

i=1 mi +
∑

j mj

0 = 1
,

0 = n −
∑n

i=1 mi +
∑

j mj

mi = 1 mj = 0
,

where P is a polynomial, x, y are variables, n is a positive integer, mi, mj are non-constant monomials
with coefficient 1.

Also, if a new object contains less than four variables, this rule finds all its satisfying assignments and
creates an equality l = 1 or l1 = l2, where l, l1, and l2 are literals, if this equality holds for all these
assignments. For example, given an equality 2x = 2 − 2y + xy it produces an equality x = 1 − y.

2. Checks whether a (simplified) new object is a tautology or a contradiction.

3. If a (simplified) new object is a modifier, the solver simplifies all objects by means of this modifier.
(this is implemented in the class LiteralSubstitutionRule that is designed to simplify objects by
modifiers) and puts it into the set Modifiers.

Throughout the whole project we use P in front of the name of a class to denote a smart pointer type for
objects of that class. The smart pointers come from the Boost package, which we have used in the project.
Further information concerning the Boost classes and methods may be found at http://www.boost.org.

3.2 Basic C++ classes

Below we describe the main classes of basolver. Note that most classes have several invariants that need
to be satisfied for the basolver to work correctly. So, whenever you are modifying a method of a class do
not forget to check that your modification preserves all invariants of this class. See doxygen documentation
for invariants description. (Actually the doxygen documentation is more convenient to read as it contains
links to the detailed description of each class mentioned in the text).

For most classes we have abstract interfaces. This is done for easy substitution of implementations of an
interface. Thus, instantiations are made inside generators of basolver objects of specific implementations.
Usually interfaces are implemented in a class whose name is obtained by adding prefix “Simple” to the name
of an interface (notable exceptions are TypedEquality and BooleanEquality that are currently the only
implementations of Equality).

3.2.1 Algebraic classes

Algebraic classes are used to construct mixed boolean-algebraic extensions of logical classes.

• Coefficient is just an integer coefficient.

• Variable is what a typical boolean variable is.

• Monomial is a product of Coefficient and several variables (note that since we work with boolean
variables this product contains each variable at most once).

• Polynomial is a sum of monomials.

• Equality is an entity of the form poly1 = poly2, where poly1 and poly2 are polynomials (see also
Sect. 3.1).

• AlgebraicGenerator is a generator of algebraic objects of specific implementations.
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3.2.2 Logical classes

Logical classes represent mixed boolean-algebraic extensions of typical logical objects, such as a boolean
literal or a boolean clause.

• SALiteral is a mixed boolean-algebraic extension of a boolean literal. Currently, only an equality (of
type Equality) may be used as a SALiteral.

• SAClause is a mixed boolean-algebraic extension of a boolean clause. Thus, SAClause is a disjunction
of several SALiterals. For example, a boolean clause (x1 ∨ x2 ∨ x3) has the following representation
in the basolver: (x1 = 1 ∨ x2 = 1 ∨ x3 = 0) .

• LogicalGenerator is a generator of logical objects of specific implementations.

Note that we do not have a class corresponding to the notion of a CNF formula. We use sets
of objects instead (of template type ObjectSet, instantiating it to contain either DeductionObject or
ModificationObject).

3.2.3 Sets

Any object of the search space is considered either as a deduction object (of type DeductionObject) or
a modification object (of type ModificationObject). Modification objects are those by means of which
we simplify other objects. As modification objects we consider only equalities l = 0 and l1 = l2, where l,
l1, and l2 are literals and equalities generated by PureLiteralRule and SingleOccurrenceRule. These
objects are stored in sets which are respective localizations of the ObjectSet template. The standard
implementation we use is SimpleObjectSet which has several internal indices (such as, for example, ad-
jacency lists). These indices are kept in a special structure (SimpleObjectIndex). However, for certain
sets which do not require indices at all we use TrivialObjectSet — the simplest set possible with cheap
basic operations. Both sets allow for all typical set operations (such as getSize(), add(), clear()) and
also operations on iterators with sets (getBeginIteratorOnWholeSet(), getEndIteratorOnWholeSet(),
remove(PSimpleObjectIterator)). Note that all operations with iterators are in fact implemented in
indexing classes (SimpleObjectIndex).

The SimpleObjectSet on DeductionObject is called AdjDedObjSet. The SimpleObjectSet on
ModificationObject is called AdjModObjSet.

3.2.4 Indexing classes

These classes represent indices and iterators of basolver. Index is a structure for storing objects of a set
intended to quicker perform the operation of extracting objects that satisfy some predefined condition. For
example, when we want to assign the value 1 to a variable x in a formula, we only have to change objects
that contain x. The corresponding index (adjacency list) returns the necessary set of clauses, and we do not
need to traverse all clauses in the set. An iterator is an entity allowing to iterate conveniently on all selected
objects.

We have indices and iterators for several objects of the program (we use our own indices and iterators
for easier substitution of implementations; however, our structures are often just wrappers for standard C++

libraries indices and iterators).
The SimpleObjectSet class allows to take the following iterators:

• SimpleObjectSet::getBeginIteratorOnWholeSet() returns an iterator on the whole set;

• SimpleObjectSet::begin(Variable) returns an iterator on all objects of the set containing the vari-
able given as parameter;

• SimpleObjectSet::getLHSbegin(Variable) returns the begin iterator on all equalities of the set
whose left-hand side contains the given variable.
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• SimpleObjectSet::getBegin(TIndexType) returns the begin iterator on all equalities of the set that
belong to the index given as parameter. The enumerative type TIndexType corresponds mostly to
equality types (enumerative type TEqualityType) and is declared in src/basicobject/object.h.

See object types description for further information on the objects this index contains.
To create an iterator for the end of the corresponding list, use ...End... instead of ...Begin... in

each of the cases described above.

• SimpleObjectSet::getFirstObjectInVars(). This index is supported somewhat differently; its cur-
rent iterator is kept inside the indexing system. Use this method for getting the first object whose
variables are contained in the given three. Use SimpleObjectSet::nextObjectInVars() for travers-
ing the set of such objects, SimpleObjectSet::currentObjectInVars() for peeking at the current
object, and SimpleObjectSet::isLastObjectInVars() for testing whether you are at the end of the
list.

All these indices are supported in SimpleObjectSet and are not supported in TrivialObjectSet

(ObjectSet has an assertion against their use in the trivial implementation).

3.2.5 Backtracking classes

These classes are intended to undo modifications made during the proof search process. This is also
known as backtracking and used in all DPLL-like algorithms. The program has the class Log and
BooleanAlgebraicSolver has a member Log* myLog. This member contains all necessary information
needed to undo modifications.

To undo all modifications made after some moment of time one has to remember this moment of time
(this is implemented in the class Bookmark) and then (after applying modifications) take this moment to
the solver’s Log. However there are sets that do not require to be returned to the state of this moment (for
example, temporary sets). To indicate whether or not all modifications of a set have to be remembered in a
Log use the flag myWritesLog (access through getWriteLog() and setWriteLog(bool)).

3.2.6 Rules classes

These classes implement simplification and generation rules of the basolver. A simplification rule either
replaces deduction objects with new ones or generates new modifier. A generation rule produces new objects
from existing objects. Thus, a simplification rule never increases the number of deduction objects, while a
generation rule usually does. We also have a specific rule (TransferRule) which is intended to distinguish
deduction and modification objects. See Sect. 3.3 for specific rules description.

3.2.7 Main algorithm

The main algorithm is implemented as a BooleanAlgebraicSolver::solve() method (in file
src/general/mainalgorithm.cc). Rules can be added to meta-rules of the algorithm in the constructor
BooleanAlgebraicSolver::BooleanAlgebraicSolver(). See Sect. 2.3 for the main algorithm description.

3.3 Specific rules used by the solver

3.3.1 Notation

We use the following notation in the premises and conclusions of the rules described below:

• Zero in the left hand side of an equality means that it is not given in the normal form, while in any
other case it is supposed that the equality is normalized.

• Different lower-case letters mean literals of different variables if not explicitly stated otherwise.
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• We assume that all equalities that have only lower-case letters in their descriptions are weakly normal-
ized in the following sense: all equality invariants (described in Sect. 3.1) are true except XOR-rewriting.

We also freely use the terms odd part (resp. even part) of a polynomial. They mean the part of this
polynomial that contains its monomials with odd (resp. even) coefficients. When we want to indicate a
certain rule, we write the name of its class rather than the name of the rule itself; this makes explanations
more clear.

3.3.2 Equality types and rule applications

The implementation uses so-called equality types that help to save time on recognizing whether a given
equality has certain form (e.g. x = ab + ac − abc, where x, a, b, c are literals). Rules use equality types
to determine whether the given equality may be a premise. However, only basic types (namely x = ab,
x = a+ b− 2ab, and ab = 0, where x, a, b are literals) are guaranteed to be recognized, that is, if an equality
has this form, it has the corresponding type. Other types are given only to equalities that are produced
by the corresponding rule applications, and if an equality assumes a certain form after some other process
(like substituting a monomial with a polynomial or summing up two equalities), it may not be recognized
as having this form and, consequently, will not be subject to rules that accept these equalities as premises.

Not every rule requires typed equalities as input or produces typed equalities as output. In what follows
we mark premises that should be typed and results that are created as typed equalities with typed. If an
equality is not marked with typed, it has type Special.

Please refer to Sect. 3.6 for the tables that explain how different types may transfer into each other and
what symmetries should be taken into account while processing a typed equality.

3.3.3 Generation rules

A generation rule generates new objects from given object(s) or set(s). Usually, a generation rule does not
remove any of its premises. Almost all generation rules of basolver are particular cases of the following
General Substitution Rule:

0 = S 0 = −x + P

0 = S|x=P

This rule just substitutes a variable x by a polynomial P in an equality 0 = S (it is supposed that x does not
occur in P ). However, we cannot use this rule without restrictions as it produces too many objects. Therefore
we have several particular cases of this rule, which differ only by conditions that need to be satisfied by the
equalities 0 = S and 0 = −x+P . Below we list these “subrules” of the General Substitution Rule (the names
of the rules sometimes contain something like “XOR3”; this means “the XOR function of 3 literals”). By
the typedsuperscript we indicate that this equality has a certain type; if the type is not obvious, we mention
it in the description.

1. AND Substitution

Class: BackLinearization2Rule

Description:

0 = −x + yztyped 0 = −y + S

0 = −x + Sz
.

The rule is applied only if the sets of the solver do not contain equalities like 0 = z − ll′ and 0 =
−z + x + y − 2xy, and the second premise is linear, has an even coefficient, contains not more than 5
variables, and S does not contain y.

2. Summation — second part

Class: Summation2Rule
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Description:
0 = −x + a + bc − actyped 0 = a − b + S

0 = −x + a + cS

where x, a, b, c are literals. The rule is applied only in case the second premise is linear, has an even
coefficient, contains not more than 5 variables, and S does not contain b. First premise has the type
eqtYeqACpnAB.

3. OR3 generation

Class: OR3GenerationRule

Description:

0 = −d + abtyped 0 = −y + c + d − cdtyped

0 = −y + ab + c − abctyped
,

0 = −d + abtyped 0 = −y + ac + d − acdtyped

0 = −y + ac + ab − abctyped
,

0 = −d + ab + ac − abctyped 0 = −y + bc + d − bcdtyped

0 = −y + ab + ac + bc − 2abctyped
,

where some of the literals could be equal to each other (however, a 6= {b,¬b}, c 6= {d,¬d} in the first
part, b 6= {c,¬c} in the third part).

4. OR3 generation — second part

Class: OR3GenerationRule2

Description:
0 = −d + (1 − a)btyped 0 = −y + ac + d − acdtyped

0 = −y + ac + (1 − a)btyped
,

where some of the literals could be equal to each other (however, a 6= {b,¬b}).

5. Substitutions of 5 Variables to XOR — first part

Class: XOROR2Part1Rule

Description:
0 = −g + y − ywtyped 0 = −c + yg + zg − 2yzgtyped

0 = −c + y − wy − yz + yzwtyped
,

0 = −g + ywtyped 0 = −c + yg + zg − 2yzgtyped

0 = −c + wy − yzwtyped
.

Note that the types of the result of the two descriptions of this rule are identical (eqtZeqWXpVXm2WVX):
the visible difference stems from the different literal signs the two equalities employ.

The rule is restricted in the following way: if the --booth option is not given (proofs for the Booth
multipliers do not have this property), the rule may be applied only if at least one of the variables
of the second premise (the XOR-encoding equality) also occurs in an equality that has already been
deleted by SingleOccurrenceRule.

Remark 3.3.1. This rule has the following usage. During the process of proving equivalences between
two multipliers we occasionally run into the situation when two outputs of two full adders have been
proven equal, and their inputs as well. In this case, basolver rules would make the two equalities
describing the last XOR functions of these full adders identical, and they would be subsumed against each
other. This interferes with the normal inference. This rule provides an “intermediate” representation
for this XOR combined with the OR it is connected with, and thus allows to continue inference in the
correct way.

In addition, we have a few rules that do not match the form of General Substitution Rule. They
either somehow change the first premise before substituting a variable in it or somehow simplify the result.
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1. Partial XOR3 Linearization

Class: LinXorRule

Description:

v = xy + xz + yz − 2xyztyped 0 = −lw + lxly + lxlz − 2lxlyl
typed
z

0 = −v + xy + xz + yz − 2xyz + α(−lw + lxly + lxlz − 2lxlylz)
,

lt denotes a literal of a variable t ∈ {v, w, y, z, x}, the coefficient α ∈ {1,−1} is selected so that the
conclusion has degree 2.

2. Linearization for Functions of 2 Variables

Class: Linearization2Rule

Description:

0 = −x + abtyped y = a + b − 2abtyped

0 = −y + a + b − 2x
,

0 = −x + abtyped a = y + b − 2ybtyped

0 = −y + a + b − 2x
.

The rule does not apply if the variable corresponding to y occurs in exactly one equality (except for the
premise), and this equality encodes the representation y⊕z⊕t = const, where variables corresponding
to y, z, and t do not occur in boolean clauses.

The resulting equality has type Special.

3. Summation

Class: SummationRule

Description:
y = S y = T

0 = S − T
,

y = S u = y + T

0 = −u + S + T
.

The rule describes adding two equalities with canceling out a linear monomial. The following restric-
tions on the premises and the result currently apply:

(a) both premises consist of monomials of degree ≤ 2;

(b) coefficients of degree 2 monomials in both premises are even;

(c) the equality y = S is linear;

(d) the equalities y = T and u = y+T are either both linear or have degree 2 and contain a monomial
occurring in clauses of size ≥ 2 (that is, occurring in a boolean clause that has several literals);
this restriction is lifted if the result of the possible rule application is contradictory;

(e) in the equality u = y + T the monomial y is minimal among all monomials that do not occur in
clauses of size ≥ 2, while the monomial u occurs in a clause of size ≥ 2;

(f) all coefficients in the conclusion are not bigger then 2 in absolute value;

(g) if the conclusion is linear and does not contain even monomials then the number of variables in it
should be equal to the number of monomials in even parts of T and S, both even parts of T and
S are not empty;

(h) at least one of the premises must contain at least one monomial with an even coefficient;

(i) if the conclusion is linear and contains even monomials then monomials in the odd part of the
conclusion should not contain variables from even parts of T and S;

(j) if the conclusion is linear and contains even monomials then the size of even part should be equal
to sum of even part sizes of T and S;
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(k) if the right-hand side of the conclusion is linear and contains even monomials then the variable in
the left-hand side of the conclusion should not be from even parts of T and S;

(l) if the conclusion is linear then the sets of variables occurring in the even parts of T and S are
disjoint.

4. XOR Summation

Class: XorSummationRule

Description:

y = Styped y = T typed

0 = S − T typed
,

We currently have the following restrictions on the sums of monomials of S, T , and the result S − T :

(a) the result has degree 2;

(b) either both sums have degree 2, or one of the equalities is linear and the other has type eqt11m2;

(c) coefficients of the degree 2 monomials are even;

(d) each premise has type eqt11m2, eqtXORSum, eqtXORSumWithLin, or is linear and has type Special.

The first premise with type eqtXORSum or eqtXORSumWithLin and the premise with the greatest ID
(that is, the premise generated last) is removed. The result has the type eqtXORSum unless one of the
premises is linear or is already of type eqtXORSumWithLin; in the latter case the result also obtains
type eqtXORSumWithLin.

3.3.4 Simplification rules

A simplification rule either replaces input objects by new ones or generates new modifiers, thus, a simpli-
fication rule never increases the number of deduction objects. Simplification rules achieve that by deleting
some of their premises. We further denote by (kept) the premise that is not deleted after a simplification
rule has been applied.

1. Back And Substitution

Class: BackT2SubstitutionRule

Description:

a = xy + S c = lgtyped (kept)

0 = −a + S′
,

where l and g are literals of variables x and y, S and S′ are sums of monomials. The conclusion of the
rule does not contain the monomial xy with any coefficient. The first equality has degree 2 and type
Special. Otherwise, the rule does not apply.

2. Binary Clauses Processing

Class: BinaryClauseProcessingRule

Description: Processes the 2-CNF part of a formula by the following algorithm: if setting x = 1
makes the 2-CNF part unsatisfiable, we can assign x = 0 (see [del Val, 2000] for more details). Also,
replaces two clauses — (x ∨ y) and (x̄ ∨ ȳ) — by an equality x = 1 − y. (Note that a 2-clause (x ∨ y)
may be represented as x + y − xy = 1.)

3. Gates Equivalence

Class: implemented as a part of the GatesEquivalence2Rule class
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Description:
0 = S 0 = T

x = l 0 = S|x=l 0 = T |x=l

,

given that S + T may be rewritten as x + l − 2P , where S, T , and P are polynomials, x is a variable,
l is a literal or a constant 0 or 1. The rule is applied only in the case when either both input
equalities have the same type and this type is Special, eqtXeqAB, eqt11m2, eqtXeqABpACpBCm2ABC or
eqtBoothSubResult or one of them is of type Special and the other is of type eqtBoothSumResult.
If they have type Special, the rule is applied only if the sum of their degrees is equal to 3.

4. Equivalence of Even Parts

Class: implemented as a part of the GatesEquivalence2 class

Description:

0 = L + 2S (kept) 0 = L + 2T

0 = S − T
.

If at least one of the premises is linear, it should be kept. The polynomials S and T have degree
≤ 2. The rule does not apply if S and T are both literals (otherwise with some renaming of variables
of the input formula we may cancel out the carry bit sums of two circuits on the same level). The
rule does not apply if the odd part of S − T contains a monomial of degree 2 (otherwise the result of
LinearizationRule2 would remove its own premise). However, it should be applied in the latter case,
if the resulting equality looks like x = ab (has type eqtXeqAB).

5. Linearization for Functions of 3 Variables

Class: Linearization3Rule

Description:

y = a + b + c − 2ab − 2ac − 2bc + 4abctyped 0 = −x + ab + ac + bc − 2abctyped (kept)

0 = −y + a + b + c − 2x
,

a = y + b + c − 2yb − 2yc − 2bc + 4ybctyped 0 = −x + ab + ac + bc − 2abctyped (kept)

0 = −y + a + b + c − 2x
.

6. Monomial Substitution:

Class: MonomialSubstitution

Description:

0 = r + p · xy 0 = xy + αx + βy + γtyped (kept)

0 = r + p(−αx − βy − γ)
, (3.3.1)

where r and p are polynomials, x, y are variables, r does not contain xy, α, β, γ are integers and the
second premise is of type eqtABeq0.

7. Pure Literal

Class: PureLiteralRule

Description:

This rule acts as a classical pure literal rule: it assigns literals that occur only positively or only
negatively. Since it is unclear how to distinguish positive and negative occurrences in non-boolean
equalities, basolver applies this rule only if the variable in question does not occur in non-boolean
clauses.
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8. Single Occurrence

Class: SingleOccurrenceRule

Description:

Suppose that a variable occurs in only one clause in the whole formula.

This rule is aimed at removing such occurrences. If it encounters a variable that occurs in only one
clause, and this clause is a Boolean clause or an equality of type eqtXeqAB or eqt11m2, it moves that
clause to Modifiers. Basically, this is equivalent to removing the clause. The only difference is that
when basolver calculates a satisfying assignment, it uses modifiers from the Modifiers set to calculate
missing variables. Otherwise the resulting assignment would be incorrect or incomplete.

9. Functions Extraction

Class: CircuitFormTranslationRule

Description:

Input: Set of clauses.

(a) We assume that Subsumption, Binary Clauses Processing, have been already applied. For
each variable a in the clause list we find a clause (la, lb, lc) containing it.

(b) If list of clauses contains clauses (¬la,¬lb) and (¬la,¬lc) add to the set the normal form of
the following functional representation:

la = (¬lb) · (¬lc).

If x is a variable the functional representation of literal x is x, ¬x is 1 − x. Delete clauses
(la, lb, lc), (¬la,¬lb) and (¬la,¬lc).

(c) If list of clauses contains clauses (la, lb, lc), (la,¬lb,¬lc), (¬la, lb,¬lc) and (¬la,¬lb, lc), add to
the set the normal form of the following representation:

¬la = ¬lb + ¬lc − 2¬lb¬lc.

Delete clauses (la, lb, lc), (la,¬lb,¬lc), (¬la, lb,¬lc) and (¬la,¬lb, lc).

Output:

(a) boolean circuit representation in form of equalities o = f(i1, . . . , im). Here o is the sub-circuit
output, ij denote inputs, f is a polynomial of degree ≤ 2.

(b) unconverted clauses.

Remark 3.3.2. This is a primary rule for generating non-linear (namely, quadratic) equalities. It
extracts unary and binary functions from boolean 2- and 3-clauses.

10. Simple Subsumption

Class: SimpleSubsumptionRule

Description:

This rule performs the usual subsumption: delete from a set every SAClause that is a subset of another
SAClause.

3.3.5 Rules specific for Booth multipliers

Not all rules are used in all verification proofs. The following five rules are used only in proving correctness
of Booth multipliers (in our case, only simplified Booth so far). If used in every proof search, they would
clutter the solver with redundant equalities (with high degree and a lot of monomials in them), so these rules
are turned off by default. To turn these rules on, use the --booth command-line option. All these rules have
type GenerationRule except for the XOROR2Part3 rule.
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1. Back T2 Substitution

Class: BackT2SubstitutionRule

Description:

This rule is described in Subsect. 3.3.4. With --booth option it works differently: it is applied if the
first premise has type eqtBoothSubResult and in this case the first premise is not removed.

2. Substitution of Booth Numbers to Linear Sum

Class: BoothSubRule

Description:

0 = c − Styped 0 = T + αc

0 = T + αStyped
,

0 = c − Styped 0 = T + αctyped

0 = T + αStyped
,

where equality 0 = c − S is one of the following:

0 = −c + xz − xy + y − wy + 2xwy − yz + yzw − 2yzxw,

0 = −c − xy + y − wy + 2xwy, 0 = −c + y − wy − yz + yzw,

0 = T + αc is either a linear equality generated from Full Adder or an equality generated by this rule,
and v, w, y, z, x, are different literals.

To ensure that the rule does not generate excessive amounts of unnecessary equalities, the conclusion
of this rule contains a list of literals that should be deleted from this conclusion by the following
applications of this rule. This list is initialized with variables occurring in the linear representation of
a Full Adder, except for the deleted literal. As a result, the representations of negative numbers are
step by step substituted into the linear equalities that represent a Full Adder on the current level, and
then are summed up together.

We impose the following restrictions on this rule:

(a) the rule applies only if both objects have type eqtBoothSubResult or Special, or if the second
object is not of the type eqt11m2;

(b) if the first variables of the literals lists of the two premises differ, the second variables are 0, or the
second object has type eqtXeqAB, then the rule applies only if the literals lists of the odd parts
of both equalities have more than two variables in common;

(c) if the second object has type eqt11m2, and its degree 2 monomial occurs in the even part of the
first object, the rule does not apply;

(d) if the second object has type eqt11m2, it should be matched up only with such objects of type
eqtBoothSubResult2 or eqtBoothSubResult that have 0 as the second literal in their literal lists;

(e) do not apply the rule if one of the premises is of type eqtBoothSubResult with an empty literal
list;

(f) if both objects have type eqtBoothSubResult, and the second variables in their literal lists are
0, do not apply the rule;

(g) if one of the premises has type eqtBoothSubResult and the second premise has type Special or
eqtBoothSubResult, and the third literals in their literal lists are not 0, do not apply the rule;

(h) if S contains odd monomials, then the monomials in even part of T should not occur at the same
time in odd parts of S.

3. OR3 substitution to OR

Class: ORORRule

21



Description:

0 = −v + xyztyped 0 = −x + lstyped

0 = −v + yzlstyped

0 = −v + xyztyped 0 = −1 + x + lstyped

0 = −v + yz − yzlstyped

where v, x, y, z, l, s are different literals.

4. OR2 substitution to XOR3

Class: ORXOR3Rule

Description:

0 = −y + wvtyped s = x + y + w − 2xy − 2xw − 2yw + 4xywtyped

0 = −s + x + w − wv + 2xwv − 2xwtyped
,

0 = −y + wvtyped y = x + s + w − 2xs − 2xw − 2sw + 4xswtyped

0 = −s + x + w − wv + 2xwv − 2xwtyped
.

5. Substitution of 5 Variables to XOR — second part

Class: XOROR2Part2Rule

Description:

0 = −z + xytyped y = w + v − 2wvtyped

0 = −z + wx + vx − 2wvxtyped
,

0 = −z + xytyped v = w + y − 2wytyped

0 = −z + wx + vx − 2wvxtyped
,

0 = −g + x + y − yw + 2xwy − 2yxtyped 0 = −c + yg + zg − 2yzgtyped

0 = −c + xz − xy + y − wy + 2xwy − yz + yzw − 2yzxwtyped
,

0 = −x + g + y − yw + 2gwy − 2ygtyped 0 = −c + yg + zg − 2yzgtyped

0 = −c + xz − xy + y − wy + 2xwy − yz + yzw − 2yzxwtyped
.

6. Substitution of 5 Variables to XOR — third part

Class: XOROR2Part3Rule

Description:

0 = −g + x + y − yw + 2xwy − 2yxtyped 0 = −c + ygtyped (kept)

0 = −c − xy + y − wy + 2xwytyped
,

0 = −g + x + y − yw + 2xwy − 2yxtyped 0 = −c + yxtyped (kept)

0 = −c − gy + y − wy + 2gwytyped
.

Note that this is the only Booth-related rule that deletes its premise.

3.4 Splitting heuristic

In this section we deal with a basic question for all DPLL-like solvers: how to choose the next variable to
split on. Various heuristics have been suggested and tested during our project. We present here the final
version, which we hardly can back up theoretically, but rather have selected on the experimental basis.

In the present version of the solver we use the following heuristics for choosing a variable for splitting (a
smaller number in the list means a higher priority):

1. Never split by a variable that does not occur at all.
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2. Some derivation rules set priorities for the variables that occur in the conclusion and have not yet been
assigned with a priority. These priorities are further used by the following splitting heuristics.

Choose a variable with higher priority that is set by derivation rules. At the moment, the rules set:

• BackT2SubstitutionRule: −10 (the highest),

• Linearization3Rule: −1,

• GatesEquivalence2Rule (Equivalence of even parts): 1,

• GatesEquivalence2Rule (Gates equivalence): 10 (the lowest);

the default priority is 0, and, once set, the priority is not changed until a substitution of a modifier
x = y or x = 1 − y occurs, in which case the higher priority of x and y is chosen for x.

Let ck be the number of occurrences in boolean k-clauses, and c∗ be the number of occurrences in boolean
clauses. Obviously, the more often a variable occurs, the more desirable it is in general for splitting. We
have made experiments with different weights and came up with the following heuristics.

3. Choose a variable with the highest 4c2 + 2c3 + c∗.

4. Choose a variable with the highest c2.

5. Choose a variable with the highest c3.

6. Choose a variable with the highest c∗.

7. Further heuristics deal with the “basic blocks” of a proof — equalities of small types (eqtABeq0,
eqtXeqAB (AND), eqt11m2 (XOR)). A variable occurring in those more often is better to split on,
since it generates more modifiers after substitution (for example, if we substitute A = 0 into eqtXeqAB,
we get a modifier X = 0, and if we substitute A = 1 there, we get a modifier X = B, both being very
desirable outcomes).

Choose a variable with the highest number of occurrences in equalities of the type eqtABeq0.

8. Choose a variable with the highest number of occurrences in equalities of the type eqtXeqAB as the
first variable.

9. Choose a variable with the highest number of occurrences in equalities of the type eqtXeqAB as one of
the last two variables plus the number of occurrences in equalities of the type eqt11m2.

10. Choose a variable with the highest number of occurrences in equalities of the type Special with at
most 3 variables plus the number of occurrences in equalities of the type eqt124.

11. Choose a variable with the highest number of occurrences in equalities of all the above-mentioned types
(except for eqt124), where Special equalities with 2 variables are counted twice.

12. Choose a variable with the highest total number of occurrences.

Then the value to be examined first is determined based on the occurrences of the chosen variable. This
highly heuristic part is better read in the solver’s code (src/general/variablestatistics.cc).

3.5 Interfaces and command-line options

3.5.1 Command-line options

The command-line options of basolver are the following:
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• --equiv (flag, default=off) — may be given only with two input files; with this flag the solver checks
equivalence of the two input circuits: it produces a formula which is unsatisfiable if and only if the
two input circuits are equivalent and solves it; if two files are given with this flag the solver merges the
equalities stating that all corresponding inputs and outputs of two input circuits are equal and solves
the resulting set

• --booth (flag, default=off) — use special rules for for Booth multipliers (under development, currently
does not really help)

• --html (flag, default=off) — write html output

• --nosets (flag, default=off) — do not write most of the sets in html output (sets are printed only
before splittings)

3.5.2 Interfaces

Below we describe the main interfaces of basolver. All of them are declared in the file src/solve.h. One
can use this file together with the solver library, which can be made by typing
make solverlib

in the top-level directory.

• int* solveCNF(const int* const* const array)

Solves an input CNF formula given as array of clauses (a null-terminated array of null-terminated
arrays of literals). If the formula is satisfiable, returns a satisfying assignment (as a null-terminated
array of literals). Otherwise, returns NULL.

• int* solveCNF(const char* filename)

Reads a CNF formula given in DIMACS format from a given file and solves it. If the formula is
satisfiable, returns a satisfying assignment (as a null-terminated array of literals). Otherwise, returns
NULL.

• bool checkEquivalence(const char* filename1, const char* filename2)

Reads either two input circuits or a circuit and a specification given in either ISCAS or RTL format
and checks whether they are equivalent (creates a formula stating that on some input two input circuits
have different outputs). Returns true iff they are equivalent (note however that they are equivalent iff
the resulting formula is unsatisfiable!).

• bool solve(const char* filename1, const char* filename2)

Reads two input circuits given in either ISCAS or RTL format, adds equalities stating that their
inputs and outputs are equal, and solves the resulting formula. Returns true iff the resulting formula
is satisfiable.

3.6 Tables for equality types

3.6.1 How equality types are transferred into each other under assignments

1. Type eqtXeqAB, 0 = −d + ab:

(a) under d = 0: 0 = 0 + ab, type eqtABeq0, see table for eqtABeq0;

(b) under d = 1: a = 1, b = 1 (all modifiers of the kind x = 0 or x = y have type Special);

(c) under a = 0: d = 0;

(d) under a = 1: d = b;
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2. Type eqtXeqABC, 0 = −d + abc:

(a) under d = 0: 0 = abc, type Special;

(b) under d = 1: a = 1, b = 1, c = 1;

(c) under c = 0: d = 0;

(d) under c = 1: 0 = −d + ab, type eqtXeqAB, see table for eqtXeqAB;

3. Type eqtXeqABpACpBCm2ABC, 0 = −d + ab + ac + bc − 2abc:

(a) under d = 0: 0 = ab + ac + bc − 2abc, type Special;

(b) under d = 1: 0 = −1 + ab + ac + bc − 2abc, type Special;

(c) under c = 0: 0 = −d + ab, type eqtXeqAB, see table for eqtXeqAB;

(d) under c = 1: 0 = −d + a + b − ab, type eqtXeqAB, see table for eqtXeqAB;

4. Type eqt124, d = a + b + c − 2ab − 2ac − 2bc + 4abc:

(a) under d = 0: a = b + c − 2bc, type eqt11m2, see table for eqt11m2;

(b) under d = 1: a = 1 − b − c + 2bc, type eqt11m2, see table for eqt11m2;

5. Type eqtABeq0, 0 = ab:

(a) under a = 0: 0 = 0, a tautology;

(b) under a = 1: b = 0;

6. Type eqt11m2, d = a + b − 2ab:

(a) under d = 0: a = b;

(b) under d = 1: a = 1 − b;

7. Type eqtDeqABpACmABC, 0 = −d + ab + ac − abc:

(a) under d = 0: 0 = ab + ac − abc, type Special;

(b) under d = 1: a = 1, 0 = −1 + b + c − bc, type Special;

(c) under a = 0: d = 0;

(d) under a = 1: 0 = −d + b + c − bc, type eqtXeqAB, see table for eqtXeqAB;

(e) under b = 0: 0 = −d + ac, type eqtXeqAB, see table for eqtXeqAB;

(f) under b = 1: d = a;

8. Type eqtYeqACpDmACD, 0 = −d + ab + c − abc:

(a) under d = 0: 0 = ab + c − abc, type Special;

(b) under d = 1: 0 = −1 + ab + c − abc, type Special;

(c) under a = 0: d = c;

(d) under a = 1: 0 = −d + b + c − bc, type eqtXeqAB, see table for eqtXeqAB;

(e) under c = 0: 0 = −d + ab, type eqtXeqAB, see table for eqtXeqAB;

(f) under c = 1: d = c;

9. Type eqtYeqACpnAB, 0 = −y + ac + (1 − a)b.

(a) b = 0: 0 = −y + ac, type eqtXeqAB on literals y, a, c;

(b) a = 1 (resp. a = 0): y = c (resp. y = b);

25



(c) Other substitutions result in Special equalities.

10. Type eqtWeqXmXYZ: 0 = −w + x − xyz:

(a) x = 0: w = 0;

(b) y = 0 or z = 0: w = x;

(c) y = 1 (resp. z = 1): 0 = −w + x − xz (resp. 0 = −w + x − xy), type eqtXeqAB;

(d) Other substitutions result in Special equalities.

11. Type Special remains Special under all substitutions, unless it is recognized as one of the automat-
ically recognized types eqtXeqAB, eqt11m2, or eqtABeq0.

3.6.2 Symmetries inside equality types

The records in this table show that an equality may not change if some of its literals change places with
other literals. This should be taken into account in the rules. Besides, we show here the semantics of literal
numbers in different type (what numbers literals have — that is, var1 is the variable one would get if one
asked for getVar1(), var2 — for getVar2() and so on). We show only “pure” types that have literals (such
types as Special or BoothSubResult would be meaningless here).

1. Type eqtXeqAB is symmetrical under exchanging A and B; var1 = X, var2 = A, var3 = B.

2. Type eqtABeq0 is symmetrical under exchanging A and B; var1 = A, var2 = B.

3. Type eqt11m1 (0 = −x + a + b − ab) is symmetrical under exchanging a and b; var1 = x, var2 = a,
var3 = b.

4. Type eqt11m2 (0 = −x + a + b − 2ab) is symmetrical under exchanging all three variables. Besides,
only the overall parity of literal signs matters (all positive or two negative signs would result in the
same equality). var1 = x, var2 = a, var3 = b.

5. Type eqt124 (0 = −x + a + b + c − 2ab − 2ac − 2bc + 4abc) is symmetrical under permuting of all
four variables. Besides, only the overall parity of literal signs matters. var1 = x, var2 = a, var3 = b,
var4 = c.

6. Type eqtXeqABC is symmetrical under permuting A, B and C; var1 = X, var2 = A, var3 = B,
var4 = C.

7. Type eqtXeqABpACpBCm2ABC is symmetrical under permuting A, B and C; var1 = X, var2 = A,
var3 = B, var4 = C.

8. Type eqtDeqABpACmABC is symmetrical under exchanging B and C; var1 = D, var2 = A, var3 = B,
var4 = C.

9. Type eqtYeqACpDmACD is symmetrical under exchanging A and C; var1 = Y , var2 = A, var3 = C,
var4 = D.

10. Type eqtYeqACpnAB is symmetrical under exchanging B and C (note that the sign of A will change
altogether); var1 = Y , var2 = A, var3 = B, var4 = C.

11. Type eqtWeqXmXYZ is symmetrical under exchanging Y and Z; var1 = W , var2 = X, var3 = Y ,
var4 = Z.

12. Type eqtZeqWXpVXm2VWX is symmetrical under exchanging W and V ; var1 = Z, var2 = X, var3 = V ,
var4 = W .
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13. Type eqtSeqXpVnWm2XVnW is symmetrical under exchanging S and X; var1 = S, var2 = X, var3 = V ,
var4 = W .

14. Type eqtCeqWXYpnWnXY is symmetrical under exchanging W and X; var1 = C, var2 = W , var3 = X,
var4 = Y .

15. Type eqtCeqXZmXYpnWYnZp2WXYnZ is not symmetrical at all; var1 = C, var2 = W , var3 = X,
var4 = Y , var5 = Z.

16. Type eqtCeqYnWYxorZ is not symmetrical at all; var1 = C, var2 = W , var3 = Y , var4 = Z.

17. Type eqtVeqYZLS is symmetrical under permuting Y , Z, L, S; var1 = V , var2 = Y , var3 = Z,
var4 = L, var5 = S.

18. Type eqtVeqYZnotLS is symmetrical under exchanging Y and Z, and also L and S; var1 = V ,
var2 = Y , var3 = Z, var4 = L, var5 = S.
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Chapter 4

The idea behind the basolver proofs

4.1 Introduction

The idea behind our proofs is propositional inductive inference, i.e., proving formulas of propositional logic by
gradually maintaining some invariant instead of using the induction (which is very hard to automatize). For

example, one could prove that 32+31+ . . .+1 = 32·(32+1)
2 by gradually proving 1 = 1·(1+1)

2 , 2+1 = 2·(2+1)
2 ,

. . . , instead of proving the quantified formula n + . . . + 1 = n·(n+1)
2 and instantiating n = 32.

The solver we have created is designed to demonstrate this idea by proving and disproving equivalences
between boolean circuits (specifically multipliers). To achieve scalability, we have undertaken the search for
polynomial-sized proofs of equivalences between different circuits. After a “manual” proof had been found,
we tried to reformulate the proof as a sequence of applications of relatively simple rules, which we would
implement in the solver.

Thus, we were facing two challenges. First was to devise the proofs themselves, and the second was to
cut the proofs into rule applications in an appropriate way. On one hand, the rules should be simple and
straightforward. On the other hand, they should not be applicable too often, thus immersing the solver into
an endless sea of redundant rule applications. These requirements were usually contradictory. However, we
have successfully retained the balance — on many pairs of multipliers (but, unfortunately, not on the Booth
multipliers — see Sect. 4.6).

In this chapter we describe the manual proofs and the way they follow from our set of rules. We will also
describe the boolean CNF instances which correspond to different equivalence checking problems.

All these formulas have similar structure. Each consists of two descriptions of circuits whose equivalence
is to be proven. Besides, it also describes the fact that the outputs of these two circuits should be equal.
The latter part of the formula is very similar for different instances.

The basic idea behind all proofs is to think of some invariant (this thinking is of a creative nature and,
unfortunately, has to be left to human beings) and carry the invariant on inductively through all the steps
(levels of multipliers) up to the outputs, where it would deliver its coup de grace in proving the equivalence.
Let us make an example of this general framework — a most useful example, in fact.

One of the basic invariant that may be observed throughout all proofs presented in this section deals with
the sums of carry bits on corresponding levels of different multipliers (by a level we mean here roughly the
set of full adders implementing the summation of the result of the previous level with the next element of
the sum, which is usually the second input multiplied by the corresponding bit of the first input). Namely,
the sum of carry bits on a given level of one multiplier should be equal to the sum of carry bits on the same
level of any other multiplier. Note that this holds for all proofs, not only equivalence proofs of identical
multipliers.

Multipliers we consider contain full adders. A general technique that we use throughout all proofs is to
convert the boolean description of a full adder into the linear equality of the kind x+y+z−sum−2·carry = 0,
where x, y, and z are inputs of the full adder, sum is the result, and carry is the carry bit.
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One last remark. Many rules (including the rules necessary for the theoretical proof) may generate
equalities that are not important for the theoretical proof; thus, one should not attempt to find some
theoretical basis for each of the created equalities: some are just there because the rule could not be restricted
with 100% efficiency. One should rather follow the derivation in the theoretical proof, finding corresponding
equalities in the actual inference.

4.2 Checking two add-stepper multipliers for equivalence

In this section we provide the first and simplest polynomial-sized proof of equivalence of two circuits. We
concentrate on two simplest circuits — add-stepper multipliers (see Sect. A.1) — and prove that they are
equivalent. This proof opens the series of polynomial-sized proofs of equivalences between different circuits
that our proof system was designed for. Being the simplest one of all proofs, the proof in this subsection
makes no sense by itself: it checks the equivalence of two identical circuits. However, it provides a simple
(perhaps, the simplest possible) yet important example to illustrate the ideas that will be further employed
in all other proofs.

Note that basolver is able to prove equivalence not only of two add-stepper multipliers, but of any two
identical multipliers (at least, among those described in this document). The proofs all follow the same lines,
so we describe only this one in details.

Let us consider how our algorithm works on the formula encoding the equivalence of two add-stepper
multipliers. Such a formula has the following structure:

• the first part of the clauses encodes a simple add-stepper multiplier that multiplies two numbers:
X = {x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yN} having N + 1 bits (see Sect. A.1);

• the second part of the clauses encodes the very same multiplier with different variables — namely, we
take the first part and change index 1 to 2;

• the third part of the clauses encodes the fact that some two outputs are not equal (thus, the circuits are
equivalent iff the formula is unsatisfiable); to achieve that, this part introduces miter, which is equal to
1; for every pair of outputs {rij1, where i = 0 or j = N , tNN1}, and {rij2, where i = 0 or j = N , tNN2}
(for the first and the second circuits respectively) we add clauses that look like (0 ≤ i + j ≤ 2N + 1):

¬rij1 ∨ rij2 ∨ xouti+j

rij1 ∨ ¬rij2 ∨ xouti+j

rij1 ∨ rij2 ∨ ¬xouti+j

¬rij1 ∨ ¬rij2 ∨ ¬xouti+j







xouti+j = rij1 ⊕ rij2

¬tNN1 ∨ tNN2 ∨ xoutN+N+1

tNN1 ∨ ¬tNN2 ∨ xoutN+N+1

tNN1 ∨ tNN2 ∨ ¬xoutN+N+1

¬tNN1 ∨ ¬tNN2 ∨ ¬xoutN+N+1







xoutN+N+1 = tNN1 ⊕ tNN2

¬xout0 ∨ miter

...

¬xoutN+N+1 ∨ miter

¬miter ∨ xout0 ∨ . . . ∨ xoutN+N+1







miter = xout0 ∨ . . . ∨ xoutN+N+1

miter} miter = 1
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In this proof and further we add the subscript 1 to variables occurring in the first part of the formula
(variables that concern the first multiplier), and the subscript 2 to the variables occurring in the second part
of the formula.

To prove this formula we need the following rules:

• CircuitFormTranslationRule;

• GatesEquivalenceRule.

Let us follow, step by step, the algorithm’s run on this formula. In each of the following sections, we shall
thus illustrate how we get a polynomial-sized proof. The solver should not split on any variables during this
run: everything is done by the proof system rules.

1. A modifier miter = 1 will be recognized by TransferRule.

2. By the CircuitFormTranslationRule all clauses, except for clauses containing miter, will be trans-
formed into functional encodings of the gates (equalities written to the right of the clauses in the CNF
descriptions of multipliers).

3. The equality miter = 1 will be recognized as a modifier; equalities generated by
CircuitFormTranslationRule will be recognized as clauses.

4. Because of the miter = 1 equality, the following equalities will be deleted:

¬xout0 ∨ miter, 0 ≤ i ≤ 2N + 1, miter

from the Clauses set and the following clause:

¬miter ∨ xout0 ∨ . . . ∨ xoutN+N+1

will be substituted for
xout0 ∨ . . . ∨ xoutN+N+1;

5. The clause xout0 ∨ . . . ∨ xoutN+N+1 will be recognized as a clause;

6. The rule GatesEquivalenceRule generates the following objects that will be recognized as modifiers:

cij1 = cij2, i = 0..N, j = 1..N and ri01 = ri02, i = 0..N

using only equalities containing the bits of factors xi and yj , 0 ≤ i ≤ N , 0 ≤ j ≤ N ;

7. We prove the equality of outputs of cells with numbers (i, j) in different circuits: rij1 = rij2 and
tij1 = tij2. For the equality proof it is necessary to have equalities of the following two inputs of a
cell with number (i, j): ri+1,j−1,1 = ri+1,j−1,2 and ti−1,j,1 = ti−1,j,2 (or, for some cells, one of these
inputs).

After that, by GatesEquivalenceRule, we derive from the following equalities:

kij1 = cij2 + ri+1,j−1,2 − 2cij2ri+1,j−1,2, (4.2.1)

kij2 = cij2 + ri+1,j−1,2 − 2cij2ri+1,j−1,2, (4.2.2)

lij1 = cij2ri+1,j−1,2, (4.2.3)

lij2 = cij2ri+1,j−1,2, (4.2.4)

mij1 = ti−1,j,2ri+1,j−1,2, (4.2.5)

mij2 = ti−1,j,2ri+1,j−1,2, (4.2.6)

nij1 = ti−1,j,2cij2, (4.2.7)

nij2 = ti−1,j,2cij2, (4.2.8)
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the equalities kij1 = kij2, lij1 = lij2, mij1 = mij2, nij1 = nij2. When clauses containing variables kij1,
lij1, mij1, nij1, simplified by the above-mentioned equalities by modifiers, appear in the Clauses set,
the GatesEquivalenceRule will apply to them again, creating equalities rij1 = rij2 and eij1 = eij2.

After that, by GatesEquivalenceRule, we get the last necessary equality tij1 = tij2 from the equalities
tij1 = eij2 + nij2 − eij2nij2 and tij2 = eij2 + nij2 − eij2nij2.

8. After the equality rij1 = rij2, where i = 0 or j = N , appear in the Modifiers set, it will be substituted
by to the equality

xoutJ = rij1 + rij2 − 2rij1rij,2,

where i = 0 or j = N , i + j = J . As a result of the substitution, we get the equality xoutJ = 0 that
will afterwards be substituted to the clause

xoutJ ∨ . . . ∨ xoutN+N+1,

simplifying it up to
xoutJ+1 ∨ . . . ∨ xoutN+N+1.

9. At the end of the proof, the final equality

xoutN+N+1 = 0

will be substituted into the unit clause
xoutN+N+1,

thus arriving at the contradiction.

4.3 Checking a diagonal multiplier against an add-stepper multi-
plier

In this section we provide the proof in the proof system of our solver that checks the equivalence of two
multipliers: the simplest add-stepper multiplier (it usually serves us as a test circuit against which we test all
other circuits) and the diagonal multiplier (see Fig. A.1 for both of the circuits). This equivalence translates
into the following CNF formula:

• the first part of the clauses encodes a simple add-stepper multiplier that multiplies two numbers:
X = {x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yN} having N + 1 bits (see Sect. A.1);

• the second part of the clauses encodes a simple diagonal multiplier (see Sect. A.2) with the same inputs.

• the third part of the clauses encodes the fact that some two outputs are not equal (thus, the circuits are
equivalent iff the formula is unsatisfiable); to achieve that, this part introduces miter, which is equal to
1; for every pair of outputs {rij1, where i = 0 or j = N , tNN1}, and {rij2, where i = 0 or j = N , tNN2}
(for the first and the second circuits respectively) we add clauses that look like (0 ≤ i + j ≤ 2N + 1):

¬r0j1 ∨ r0j2 ∨ xoutj

r0j1 ∨ ¬r0j2 ∨ xoutj

r0j1 ∨ r0j2 ∨ ¬xoutj

¬r0j1 ∨ ¬r0j2 ∨ ¬xoutj







xouti+j = rij1 ⊕ rij2

¬ri+1N1 ∨ riN+1,2 ∨ xouti+N+1

ri+1N1 ∨ ¬riN+1,2 ∨ xouti+N+1

ri+1N1 ∨ riN+1,2 ∨ ¬xouti+N+1

¬ri+1N1 ∨ ¬riN+1,2 ∨ ¬xouti+N+1







xouti+N+1 = ri+1N1 ⊕ riN+1,2
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¬tNN1 ∨ tN−1N+1,2 ∨ xoutN+N+1

tNN1 ∨ ¬tN−1N+1,2 ∨ xoutN+N+1

tNN1 ∨ tN−1N+1,2 ∨ ¬xoutN+N+1

¬tNN1 ∨ ¬tN−1N+1,2 ∨ ¬xoutN+N+1







xoutN+N+1 = tNN1 ⊕ tN−1N+1,2

¬xout0 ∨ miter

...

¬xoutN+N+1 ∨ miter

¬miter ∨ xout0 ∨ . . . ∨ xoutN+N+1







miter = xout0 ∨ . . . ∨ xoutN+N+1

miter} miter = 1

To prove this formula we need the following rules:

• CircuitFormTranslationRule;

• OR3GenerationRule;

• XOR3GenerationRule;

• Linearization3Rule;

• Linearization2Rule;

• SummationRule;

• GatesEquivalenceRule;

Let us follow the algorithm through the proof:

1. A modifier miter = 1 will be recognized by TransferRule.

2. By CircuitFormTranslationRule all clauses, except for clauses containing miter, will be transformed
into functional encodings of the gates (equalities written to the right of the clauses in the CNF de-
scriptions of multipliers).

3. The equality miter = 1 will be recognized as a modifier; equalities generated by
CircuitFormTranslationRule will be recognized as clauses.

4. Because of the miter = 1 equality, the following clauses will be deleted:

¬xout0 ∨ miter, 0 ≤ i ≤ 2N + 1, miter

from the Clauses set and the following clause:

¬miter ∨ xout0 ∨ . . . ∨ xoutN+N+1

will be substituted for
xout0 ∨ . . . ∨ xoutN+N+1;

5. For each full adder (in both circuits) with three inputs1, OR3GenerationRule, XOR3GenerationRule,
and Linearization3Rule apply one after another and generate the following equalities:

0 = −rij + cij + r + t − 2tij , (4.3.1)

where r and t are inputs of the {ij}-th cell containing a full adder.

1Linearization2Rule takes care of full adders with two inputs.
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The actual inference goes as follows2:

0 = −kij + cij + r − 2cijr (original equality) (4.3.2)

0 = −rij + kij + t − 2kijt (original equality) (4.3.3)

0 = −lij + cijr (original equality) (4.3.4)

0 = −mij + cijt (original equality) (4.3.5)

0 = −nij + rt (original equality) (4.3.6)

0 = −eij + lij + mij − lijmij (original equality) (4.3.7)

0 = −tij + eij + nij − eijnij (original equality) (4.3.8)

0 = −rij + cij + t + r − 2cijt − 2cijr − 2rt + 4cijrt (from (4.3.2), (4.3.3) by XOR3GenerationRule)
(4.3.9)

0 = −eij + cijr + mij − cijrmij (from (4.3.4), (4.3.7) by OR3GenerationRule)
(4.3.10)

0 = −eij + cijr + cijt − cijrt (from (4.3.5), (4.3.10) by OR3GenerationRule)
(4.3.11)

0 = −tij + eij + rt − eijrt (from (4.3.6), (4.3.8) by OR3GenerationRule)
(4.3.12)

0 = −tij + cijt + cijr + rt − 2cijrt (from (4.3.11), (4.3.12) by OR3GenerationRule)
(4.3.13)

0 = −rij + cij + t + r − 2tij (from (4.3.9), (4.3.13) by Linearization3Rule)
(4.3.14)

6. The clause xout0 ∨ . . . ∨ xoutN+N+1 and equalities (4.3.1) are recognized as clauses.

7. Linearization2Rule generates an alternative representation for the full adders with two inputs:

0 = −rij + cij + s − 2tij . (4.3.15)

8. GatesEquivalenceRule generates the equalities 0 = −cij1 + cij2, i = 0..N, j = 1..N , 0 = −ri01 +
ri02, i = 0..N using one-equality clauses containing xi and yj , 0 ≤ i ≤ N , 0 ≤ j ≤ N .

9. Equalities generated by GatesEquivalenceRule are recognized as modifiers; equalities generated by
other rules are recognized as clauses.

10. Let us show how the invariants described in Sect. 4.1 apply to this case. The explanation given may
with necessary modifications be applied to every proof we have designed. We denote by trk the sum of
the carry bits tij1 on the k-th level of the first circuit (i+j = k); by TRk we denote the sum of the carry
bits tij2 on the k-th level of the second circuit (i + j = k). From the previous level (by the induction
hypothesis, so to say) we have trk = TRk. All equalities of the form (4.3.1) and (4.3.15) (note that in
the two latter equalities variables from 0 = −trk + TRk may occur as t or s) for the k-th level of each
of the circuits are summed up by SummationRule with the equalities 0 = −xoutk + pk + Pk − 2pkPk

(or 0 = xoutk − pk + Pk − 2xoutkPk, depending on the variable ordering) and 0 = −trk + TRk, thus
generating

0 = −xoutk + 2(pk − pkPk + trk+1 − TRk+1). (4.3.16)

From the latter equality StrongNormalizeRule generates a modifier xoutk = 0 and

0 = pk − pkPk + trk+1 − TRk+1. (4.3.17)

2equalities 0 = −kij + cij + r − 2cijr, 0 = −rij + kij + t − 2kijt and 0 = −rij + cij + t + r − 2cijt − 2cijr − 2rt + 4cijrt

may have different normal form — it depends on the order of the variables.
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Then, the modifier xoutk = 0 is substituted into 0 = −xoutk + pk + Pk − 2pkPk (or into 0 = xoutk −
pk +Pk −2xoutkPk, depending on the variable ordering), generating modifier 0 = −pk +Pk. The latter
modifier is substituted into (4.3.17) and takes part in obtaining the equality between carry bit sums
0 = −trk+1 + TRk+1 for the current level.

11. On the last iteration the following equality:

xoutN+N+1 = 0

will be substituted into the unit clause
xoutN+N+1,

thus arriving at the contradiction.

4.4 Checking a modified add-stepper multiplier against an add-
stepper multiplier

We provide here the handmade proof of this equivalence for two reasons. First, the proof illustrates the basic
principles of our techniques, and, second, the proof will be used as a component in the handmade proof of
the equivalence between simplified Booth and add-stepper multipliers. The equivalence of the two circuits
in question translates into the following CNF formula:

• the first part of the clauses encodes a modified add-stepper multiplier that multiplies two numbers:
X = {x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yN} having N + 1 bits (see Sect. A.3);

• the second part of the clauses encodes a simple add-stepper multiplier that multiplies two numbers:
X = {x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yN} having N + 1 bits (see Sect. A.1);

• the third part of the clauses encodes the fact that some two outputs are not equal (thus, the circuits
are equivalent iff the formula is unsatisfiable); to achieve that, this part introduces miter, which is
equal to 1;

¬pj1 ∨ pj2 ∨ xoutj

pj1 ∨ ¬pj2 ∨ xoutj

pj1 ∨ pj2 ∨ ¬xoutj

¬pj1 ∨ ¬pj2 ∨ ¬xoutj







xoutj = pj1 ⊕ pj2

¬xout0 ∨ miter

...

¬xout2N+1 ∨ miter

¬miter ∨ xout0 ∨ . . . ∨ xout2N+1







miter = xout0 ∨ . . . ∨ xout2N+1

miter} miter = 1

To prove this formula we need the following rules:

• CircuitFormTranslationRule;

• OR3GenerationRule;

• OR3GenerationRule2;

• XOR3GenerationRule;
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• BackLinearization2Rule;

• Linearization3Rule;

• Linearization2Rule;

• SummationRule;

• XorSummationRule2;

• SummationRule2;

• GatesEquivalenceRule;

To prove the equivalence of the two curcuits we show that our rules produce the following equation for
each full adder of each circuit:

r = r′ + t′ + c − 2t ,

where r and t are right and top outputs of a full adder, r′, t′ and c are its inputs, and also r′ and t′ are
outputs of some other full adders. We have already shown that this equality is generated for each full adder
of an add-stepper multiplier (it simply states that sum of inputs of a full adder is equal to the sum of its
right output and its top output multiplied by 2). Below we show that this equality is also generated for a
modified add-stepper multiplier.

Initially, we are given the following equalities:

k = x + r′ − 2xr′ (4.4.1)

o = k + s′ − 2kt′ (4.4.2)

l = xr′ (4.4.3)

m = xs′ (4.4.4)

n = r′s′ (4.4.5)

e = l + m − lm (4.4.6)

s = n + e − ne (4.4.7)

b = oy (4.4.8)

d = r′ − yr′ (4.4.9)

r = d + b − db (4.4.10)

As in the proof of equivalence of add-stepper and diagonal multipliers, the rules produce the following
equality:

o = x + r′ + s′ − 2s . (4.4.11)

Then, the inference goes as follows:

r = r′ + oy − yr′ (from (4.4.8), (4.4.9), (4.4.10) by OR3GenerationRule and OR3GenerationRule2)
(4.4.12)

r = xy + r′ + s′y − 2sy (from (4.4.12), (4.4.11) by SummationIIRule) (4.4.13)

r = c + r′ + s′y − 2sy (from (4.4.13), c = xy by BackT2SubstitutionRule) (4.4.14)

By induction hypothesis, we already have an equality t′ = s′y. From this equality and (4.4.14)
BackT2SubstitutionRule generates the following equality:

r = c + r′ + t′ − 2sy . (4.4.15)

Finally, GatesEquivalenceRule and Summation generate t = sy (which we will use on the next level)
and prove the equivalence of the right outputs of corresponding full adders in the two circuits.

By doing this, we will prove the equivalence of right outputs of all pairs of corresponding full adders in
the two circuits. It immediately implies the equivalence of the two circuits.
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4.5 Checking a simplified Wallace multiplier against an add-
stepper multiplier

By “simplified Wallace” we mean a multiplier with additions each making two numbers out of three numbers
in logarithmic time in parallel, these additions are organized in a logarithmic-depth tree — see Sect. A.4 for
details.

Just like we have done in the previous sections, we encode the equivalence problem into CNF as follows:

• the first part of the clauses encodes a simplified Wallace multiplier that multiplies two numbers: X =
{x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yN} having N + 1 bits (see Sect. A.4);

• the second part of the clauses encodes a simple add-stepper multiplier that multiplies two numbers:
X = {x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yN} having N + 1 bits (see Sect. A.1);

• the third part of the clauses encodes the fact that some two outputs are not equal (thus, the circuits are
equivalent iff the formula is unsatisfiable); to achieve that, this part introduces miter, which is equal to
1; for every similar pair of outputs pi∗ of the two circuits we add the following clauses (0 ≤ j ≤ 2N +1):

¬pj1 ∨ pj2 ∨ xoutj

pj1 ∨ ¬pj2 ∨ xoutj

pj1 ∨ pj2 ∨ ¬xoutj

¬pj1 ∨ ¬pj2 ∨ ¬xoutj







xoutj = pj1 ⊕ pj2

¬xout0 ∨ miter

...

¬xout2N+1 ∨ miter

¬miter ∨ xout0 ∨ . . . ∨ xout2N+1







miter = xout0 ∨ . . . ∨ xout2N+1

miter} miter = 1

We shall prove that our proof system suffices for this equivalence proof by showing that this proof has
the very same structure as the diagonal against add-stepper proof (described in Sect. 4.3). Suppose that the
multiplier has obtained as input X = {x0, . . . , xn} and Y = {y0, . . . , yn}. Let us define as the i-th level of
the circuit the set of full adders adding the products of input bits xkyl, k + l = i, and carry bits from level
i−1. A parallel simplified Wallace multiplier adds up the same numbers, obtained by bitwise multiplication,
as a simple add-stepper multiplier. The only difference is in the summation order. Thus, the i-th level of the
simplified Wallace multiplier adds up the same numbers as the i-th level of the simple add-stepper multiplier.
Therefore, the i-th output of the circuit is a XOR of all inputs on the i-th level, and the sum of the carry
bits fn the i-th level is equal to the sum of the carry bits of the add-stepper multiplier. In other words,
the multiplication process satisfies the same invariants that hold for the add-stepper against diagonal proof.
Therefore, the algorithm proving equivalence of add-stepper and diagonal multipliers also proves equivalence
of the pair in question (simplified Wallace multiplier versus add-stepper multiplier). This claim is supported
by practice: as soon as our solver had enough rules to solve add step against diagonal without splitting (by
the power of the proof system only), it was immediately able to solve simplified Wallace and add-stepper for
equivalence.

4.6 Checking a simplified Booth multiplier against an add-stepper
multiplier

In this section we consider how our algorithm is supposed to work on the formula that consists of two parts
(it really does work on 2-by-2 instances, but not further — see Sect. 4.7 for details).
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• The first part of the clauses describes a simplified Booth multiplier (see Sect. A.5) with inputs X =
{x0, . . . , xN} (N + 1 bits) and Y = {y0, . . . , yN} (N + 1 bits). This formula was described in the
previous section, and we keep that notation, only adding 1 to every index to distinguish between two
parts of the formula.

• The second part of the clauses describes a basic add-step multiplier with inputs X = {x0, . . . , xN}
(N +1 bits) and Y = {y0, . . . , yN} (N +1 bits). We keep the notation of Sect. A.1, adding 2 to every
index.

• The third part of the clauses encodes miter which is the OR of variables corresponding to the XOR’s of
results of the two circuits. The formula is satisfiable iff there is a bug, so we set miter to 1. Thus, for
every pair of similar outputs pi∗ we add the following clauses (0 ≤ j ≤ 2N + 1):

¬pj1 ∨ pj2 ∨ xoutj

pj1 ∨ ¬pj2 ∨ xoutj

pj1 ∨ pj2 ∨ ¬xoutj

¬pj1 ∨ ¬pj2 ∨ ¬xoutj







xoutj = pj1 ⊕ pj2

¬xout0 ∨ miter

...

¬xout2N+1 ∨ miter

¬miter ∨ xout0 ∨ . . . ∨ xout2N+1







miter = xout0 ∨ . . . ∨ xout2N+1

miter} miter = 1

To prove this formula we need the following rules:

• CircuitFormTranslationRule;

• OR3GenerationRule;

• OR3GenerationRule2;

• XOR3GenerationRule;

• ORXOR3Rule;

• XOROR2Part1Rule;

• XOROR2Part2Rule;

• XOROR2Part3Rule;

• ORORRule;

• BackT2SubstitutionRule;

• BoothSubRule;

• Linearization3Rule;

• Linearization2Rule;

• SummationRule;

• GatesEquivalenceRule;
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• StrongNormalizeRule;

In the simplified Booth multiplier the following numbers are summed up like in the usual add-stepper
multiplier: (

∑N+1
i=0 cij2

i) · 2j , 0 ≤ j ≤ N + 1, where

ci0 = −y0xi + y0(1 − wi−1 + 2xiwi−1),

cij = yj−1xi − yjxi + yj(1 − yj−1)(1 − wi−1 + 2xiwi−1), 1 ≤ j ≤ N,

ci,N+1 = yNxi,

cN+1,0 = yj(1 − wN ) + cN+1j−1 − 2yj(1 − wN )cN+1j−1,

cN+1,j = yj(1 − yj−1)(1 − wN ) + cN+1j−1 − 2yj(1 − yj−1)(1 − wN )cN+1j−1,

which result from the following initial clauses:

sj = yj + yj−1 − 2yjyj−1, (4.6.1)

vij = yj + xi − 2yjxi, (4.6.2)

ui−1j = wi−1yj , (4.6.3)

gij = vij + ui−1j − 2vijui−1j , (4.6.4)

cij = gijsj (4.6.5)

by the XOR3GenerationRule rule:

gij = yj + xi + ui−1j − 2yjxi − 2xiui−1j − 2yjui−1j + 4yjxiui−1j (4.6.2) and (4.6.4), (4.6.6)

ORXOR3Rule:

gij = yj + xi − wi−1yj − 2yjxi + 2xiwi−1yj (4.6.3) and (4.6.6), (4.6.7)

and XOROR2Rule (we also note the part of the rule which is used):

cij = gijyj + gijyj−1 − 2gijyjyj−1 (4.6.5) and (4.6.1), part 1,
cij = yj−1xi − yjxi + yj(1 − yj−1)(1 − wi−1 + 2xiwi−1) (4.6) and (4.6.7), part 3.

Similar to the above reasoning we get cij for the special cases i = N + 1, j = [0, N + 1].

In turn, the add-stepper multiplier adds up numbers (
∑N

i=0 Cij2
i) · 2j , 0 ≤ j ≤ N , where

Cij = xiyj

Just like in the proof of equivalence between add-stepper and diagonal multipliers, for both circuits we
derive by SummationRule that the output of the circuit on a given level3 is equal to the sum cij of carry bits
from the previous level minus the doubled sum of carry bits from this level:

l∑

j=0

cj,l−j + trl−1 − 2trl = pl. (4.6.8)

By BoothSubRule, all cij are substituted4 into (4.6.8), and we thus, by BoothSubRule, derive for the
simplified Booth multiplier5 the following:

− y0xl + y0(1 − wl−1 + 2xlwl−1)+

+
l∑

j=1

(yj−1xl−j − yjxl−j + yj(1 − yj−1)(1 − wl−j−1 + 2xl−jwl−j−1))) + trl−1 − 2trl = pl, (4.6.9)

3We prove here that outputs are equal for all levels l ≤ N ; for levels with l > N the proof is given further.
4The substitutions are carried out one by one, starting from the leftmost linear sum (with the cell cij with maximal i) on a

given level; see the description of BoothSubRule.
5Only for levels l ≤ N ; for l > N , the representation will be a little different, since we will need to consider bits representing

the sign of the input number.
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where pl is the lth output of the multiplier, trl−1 is the sum of carry bits from the previous level, and trl is
the sum of carry bits of the current level.

By the induction hypothesis,

trl−1 − y0(1 − wl−1) + y0xl−1 +

l−1∑

j=1

(yjxl−1−j − (1 − yj−1)yj(1 − wl−1−j)) = Trl−1,

where Trl−1 is the sum of the carry bits from the previous level in the add-stepper multiplier. Let us
substitute it into (4.6.9):

− y0xl + y0(1 − wl−1 + 2xlwl−1)+

+
l∑

j=1

(yj−1xl−j − yjxl−j + yj(1 − yj−1)(1 − wl−j−1 + 2xl−jwl−j−1)))+

+ (Trl−1 + y0(1 − wl−1) − y0xl−1 +

l−1∑

j=1

((1 − yj−1)yj(1 − wl−1−j) − yjxl−1−j))−

− 2trl = pl. (4.6.10)

We note that

1 − wi−1 + 2xiwi−1 + (1 − wi−1) = 2(1 − wi), 2x0 = 2(1 − w0) (4.6.11)

and rewrite the equality (4.6.10) (eliminating
∑l

j=1 yj−1xl−j −
∑l−1

j=0 yjxl−1−j which is zero):

−
l∑

j=0

yjxl−j + Trl−1 − 2(trl − y0(1 − wl) −
l∑

j=1

(1 − yj−1)yj(1 − wl−j)) = pl. (4.6.12)

Let us rewrite (4.6.12) in such a way that every yjxl−j would occur there positively6:

l∑

j=0

yjxl−j + Trl−1 − 2(trl − y0(1 − wl) + y0xl −
l∑

j=1

((1 − yj−1)yj(1 − wl−j) − yjxl−j)) = pl. (4.6.13)

For the add-stepper multiplier on level l we derive (by summing up with SummationRule from the linear
equalities of the alternative representation of the full adder)

l∑

j=0

Cj,l−j + Trl−1 − 2Trl = Pl, (4.6.14)

where Pl is the lth output of the multiplier, Trl−1 is the sum of carry bits from the previous level, and Trl

is the sum of carry bits from the current level.
We add (4.6.13) and (4.6.14) (by BoothSubRule) and apply BackT2SubstitutionRule (that allows to

substitute cij from the add-stepper multiplier, (4.6.14), instead of xiyj that were in the simplified Booth,
(4.6.13)), obtaining pl+Pl = 2S. Together with xoutl = pl⊕Pl this gives xoutl = 0, pl = 1−Pl. Substituting
the latter in the sum (4.6.13) and (4.6.14) generated the following equalities necessary for the next level of

proof: trl − y0(1 − wl) + y0xl +
∑l

j=1(yjxl−j − (1 − yj−1)yj(1 − wl−j)) = Trl.
We now turn to consider levels l ≥ n + 1. On these levels additional summands are needed to represent

negative numbers:
cij = yj(1 − yj−1)(1 − wn), i ≥ n + 1.

6by BackT2SubstitutionRule instead of yjxl−j every equality generated by BoothSubRule will contain Cj,l−j from the
add-stepper multiplier
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Since with i ≥ n+1 it is true that cij = ci+1j , in fact we add only one extra summand, which is equal to
the sum of carry bits (modulo 2) of the complementary code from the previous columns. The sum obtained
by our rules (obtained just like the sum (4.6.9), by applying BoothSubRule to the linear sum):

l−n∑

j=0

yj(1 − yj−1)(1 − wn)+

+

n∑

j=l−n+1

(yj−1xl−j − yjxl−j + yj(1 − yj−1)(1 − wl−j−1+

+ 2xl−jwl−j−1))) + trl−1 − 2trl = pl, (4.6.15)

where pl is the lth output of the multiplier, trl−1 is the sum of the carry bits from the previous level, and
trl is the sum of the carry bits from the current level. The inductive hypothesis looks like the following:

trl−1 +

l−n−1∑

j=0

(yjxn − yj(1 − wn)) +

n∑

j=l−n

(yjxl−1−j − (1 − yj−1)yj(1 − wl−1−j)) = Trl−1.

Further proof is similar to the proof carried out on levels l ≤ n. We substitute the induction hypothesis
into (4.6.15), annihilate similar summands, and simplify it with (4.6.11). The resulting equality for the
simplified Booth multiplier couples with the equality of the same level for the add-stepper multiplier, thus
deriving that the outputs of two multipliers are equal and providing the induction hypothesis for the next
level.

4.7 Problems with the Booth and simplified Booth multipliers

As we have already mentioned, we first tried to “teach” the solver to solve for the equivalence between
simplified Booth and add-stepper multipliers. The automated proof was supposed to proceed along the lines
described in the previous section.

However, during the implementation we encountered a serious problem which we could not overcome.
The problem is that the proof provided has degree four (it extensively uses polynomials of degree four), and
in order to derive the contradiction these polynomials should be matching against each other. However, there
are too many of them, so as a result of the summation we obtain a vast amount of excessive, unnecessary
equalities (thousands and tens of thousands on very simple examples). This does not allow the solver to
finish in reasonable time.

To reach equilibrium between taking too long and not solving at all, we had to impose certain restrictions
on some of the generation rules in order for them to generate a reasonable number of objects. The restrictions,
unfortunately, may interfere with the theoretical proof, especially when different permutations of the variables
(and, consequently, different variable orderings) are given as input.

We made several attempts to subtly tune the Summation rule, so that it would sum up what is needed
and discard what is not needed. Unfortunately, these situations are very hard to distinguish (if at all possible
without knowing the history of the premises), so we made very little progress, succeeding only in proving
the equivalence of simplified Booth and add-stepper multipliers on two inputs for a given (natural) variable
ordering. On all bigger benchmarks the solver was overwhelmed by the number of clauses generated by
BoothSubRule (a rule designed specifically for the Booth multipliers). We failed to weaken this rule so that
it would generate a reasonable amount of objects while keeping its ability to generate the automated proof.
We even had to give up solvability on all permutations of the variables (there exist permutations where the
theoretical proof will not be generated by the solver) because the restrictions we might impose keeping all
permutations solvable would not permit us to solve even 2-by-2 multipliers for equivalence in reasonable time
(the rules would generate too many objects).

An interesting direction for further research would be to lower the degree of polynomials used in the
proof. If it were possible, we would derive the final result much easier. Unfortunately, we were not able to
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lower the degree theoretically. It is possible that with more effort the degree problem can be overcome —
the problem was finally solved for Booth multipliers on two inputs. However, a nontrivial research is needed
here.
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Chapter 5

Empirical data

As we said in Sect. 4.1, specific rules of our solver were designed for the verification of specific classes of
benchmarks. In this chapter we give the empirical results attained at such benchmarks and compare them
to the behavior of state-of-the-art SAT solvers1. For most our experiments we used a linux machine with a 1
GHz Intel Pentium-III processor (actually, the machine had two such processors, but this is not important,
because our solver does not use parallel processes). The random seeds used for generating multipliers on this
CPU are equal to the number of bits in each input. For our massive experiments with “tweaked” benchmarks
we used a 1.8 GHz Intel Pentium-IV machine. The random seeds used for generating multipliers on this
CPU are taken at random, the corresponding tables are sorted by CPU time.

The notation “X Y i” for a benchmark means “equivalence checking of i-bits multiplier X against
multiplier Y ”. The acronyms for multipliers are:

a — add-steper,

b — Booth,

d — diagonal,

ma — modified add-stepper,

p — parallel (simplified Wallace),

B2X — multiplier X with a bug for one pair of inputs (see Sect. 5.3).

The CPU time in given in seconds, this is the “user time” reported by the bash built-in command time.
For basolver we also give the number of generated objects and also the number of nodes if DPLL has been
used. For other solvers we give the number of nodes (for zchaff, minisat, and SatELite this is the figure
reported by the solver as the number of decisions). The acronym “DNS” means “did not start”: we usually
did not launch solvers on larger instances if they failed smaller similar instances.

5.1 Equivalence checking of (almost) identical circuits

At first glance, the problem of checking two identical circuits for equivalence is trivial, especially if one is
given two circuits with the same order of vertices so that there is no need even to solve the isomorphism
problem of the two directed acyclic graphs. However, if such problem is formulated as a boolean formula

1We used the following solvers:
berkmin, version 561, http://eigold.tripod.com/BerkMin.html ;
minisat, version 1.13, http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html ;
zchaff, version 2004.11.15, http://www.princeton.edu/~chaff/zchaff.html ;
SatELite, version 1.0, http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/SatELite.html .

43



benchmark basolver satelite minisat zchaff berkmin

time objects time nodes time nodes time nodes time nodes

a a 3 0 249 0 115 0 122 0 87 0 105
a a 4 0 524 0 518 0 428 0 376 0 367
a a 5 0 891 0 4293 0 2838 0 1810 0 1736
a a 6 1 1335 0 16322 0 13495 3 8787 0 8001
a a 7 2 1877 2 48171 4 44265 44 48738 7 27799
a a 8 3 2523 13 198660 28 155867 170 151489 78 103758
a a 9 4 3243 60 593067 111 406378 891 503765 736 381589
a a 10 7 4067 623 2939097 851 1872638 >3600 - >3600 -
a a 11 10 4977 >3600 - >3600 - >3600 - >3600 -
a a 12 14 5994 >3600 - >3600 - >3600 - >3600 -
a a 13 19 7091 DNS - DNS - DNS - DNS -
a a 14 27 8271 DNS - DNS - DNS - DNS -
a a 15 36 9552 DNS - DNS - DNS - DNS -
a a 16 48 10919 DNS - DNS - DNS - DNS -
a a 32 931 45387 DNS - DNS - DNS - DNS -
a a 44 3384 86688 DNS - DNS - DNS - DNS -
b b 3 0 894 0 103 0 105 0 125 0 147
b b 4 1 1449 0 717 0 633 0 798 0 736
b b 5 2 2226 0 3232 0 2185 0 2924 0 3560
b b 6 3 3162 1 14356 2 12110 5 12963 2 11029
b b 7 5 4279 5 59318 21 70340 94 94158 34 49556
b b 8 9 5554 33 243138 111 217784 1610 586797 427 243854
b b 9 13 7034 310 1164194 1083 1292327 >3600 - 3298 943271
b b 10 20 8566 1913 4721773 >3600 - >3600 - >3600 -
b b 11 29 10246 >3600 - >3600 - >3600 - >3600 -
b b 12 42 12393 >3600 - >3600 - >3600 - >3600 -
b b 13 59 14315 DNS - DNS - DNS - DNS -
b b 14 81 16533 DNS - DNS - DNS - DNS -
b b 15 111 19001 DNS - DNS - DNS - DNS -
b b 16 154 21318 DNS - DNS - DNS - DNS -
b b 32 2181 83653 DNS - DNS - DNS - DNS -
b b 36 3482 105880 DNS - DNS - DNS - DNS -

Table 5.1: Equivalence checking of identical multipliers

in conjunctive normal form (by replacing each gate with corresponding 2..4 boolean clauses and stating
that an OR of XORs of the pairs of outputs is equal to 1 — the so-called xor miter), it becomes hard for
contemporary SAT solvers. However, solving such CNFs does not make any problem to our solver, because
basolver is able to extract the circuits from boolean formulas (see Table 5.1). Note that all formulas
considered in our experiments were reshuffled similarly to how it was done at SAT Competitions2, i.e., the
order of variables and clauses and the signs of literals are taken at random.

Going slightly further, consider the same problem, but when one of the circuits has been slightly
“tweaked”, i.e., a randomly selected gate is replaced by a small circuit computing the same boolean function;
in our experiments we used the following circuits (note that we do not have special rules for dealing with

2www.satcompetition.org
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them):

x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y),

x ⊕ y = y ⊕ (x ∨ x),

x ⊕ y = ¬x ⊕ ¬y,

x ∨ y = ¬(x ∧ y),

x ∨ y = y ∨ (x ∧ y),

x ∨ y = (x ∧ y) ∨ (x ⊕ y),

x ∧ y = ¬(x ∨ y),

x ∧ y = y ∧ (x ∨ x),

x ∧ y = (x ∨ y) ∧ ¬(x ⊕ y),

¬x = ¬(x ∧ x),

¬x = ¬(x ∨ x),

¬x = x ⊕ (x ∨ ¬x),

id(x) = x ∧ x,

id(x) = x ∨ x,

id(x) = ¬¬x.

Of course, some of these “tweaks” appeared to be trivial and the corresponding benchmarks were solved by
basolver without splitting. Others required splitting, but in most cases the formulas have been successfully
solved, see Tables 5.2–5.3 for massive experiments with 12-bits multipliers (we do not provide any data for
other solvers, because none of them was able to solve benchmarks of this size in 2 minutes, which was the
time limit; actually, we believe that none of the solvers is able to solve them in an hour).

5.2 Equivalence of multipliers based on different algorithms

The main purpose of our solver was checking the equivalence of multipliers based on different algorithms.
While other contemporary SAT solvers are unable to solve such benchmarks for 12-bits circuits in less than
one hour, our solver was able to solve the problems for 32-bits multipliers, see Table 5.4.

Similarly to Sect. 5.1, if one of the circuits is slightly “tweaked”, our solver is frequently still able to
solve the equivalence checking problem (though the success rate is lower; it is a challenge to devise a good
splitting heuristic that would improve this behavior), see Tables 5.5–5.8.

5.3 Finding rare bugs

In the experiments above we were proving circuit equivalence, i.e., showing that the corresponding boolean
formulas are unsatisfiable. What if one of the circuits in the above examples has a bug? If one introduces a
“random” bug-like flipping the value of a gate, a circuit always certainly becomes completely unusable, and
the resulting boolean formula will have a lot of satisfying assignments. Therefore, such formulas are trivial
for contemporary SAT solvers.

However, if a bug appears rarely, the situation becomes quite different. (Unfortunately, it is difficult to
generate such buggy circuits automatically for testing.) We experimented with bugs that appear only for
one pair of inputs.The experimental data presented in Table 5.9 demonstrates that our solver is much better
in finding such rare bugs than other SAT solvers.
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benchmark basolver benchmark basolver benchmark basolver

time nodes objects time nodes objects time nodes objects

a a 12 (1) 6 1 5989 a a 12 (2) 7 1 5972 a a 12 (3) 7 1 5975
a a 12 (4) 7 1 5975 a a 12 (5) 7 1 5975 a a 12 (6) 7 1 5978
a a 12 (7) 7 1 5978 a a 12 (8) 7 1 5978 a a 12 (9) 7 1 5979
a a 12 (10) 7 1 5981 a a 12 (11) 7 1 5981 a a 12 (12) 7 1 5981
a a 12 (13) 7 1 5982 a a 12 (14) 7 1 5982 a a 12 (15) 7 1 5983
a a 12 (16) 7 1 5983 a a 12 (17) 7 1 5983 a a 12 (18) 7 1 5984
a a 12 (19) 7 1 5984 a a 12 (20) 7 1 5984 a a 12 (21) 7 1 5984
a a 12 (22) 7 1 5984 a a 12 (23) 7 1 5985 a a 12 (24) 7 1 5986
a a 12 (25) 7 1 5987 a a 12 (26) 7 1 5987 a a 12 (27) 7 1 5987
a a 12 (28) 7 1 5988 a a 12 (29) 7 1 5988 a a 12 (30) 7 1 5988
a a 12 (31) 7 1 5988 a a 12 (32) 7 1 5989 a a 12 (33) 7 1 5990
a a 12 (34) 7 1 5990 a a 12 (35) 7 1 5990 a a 12 (36) 7 1 5990
a a 12 (37) 7 1 5990 a a 12 (38) 7 1 5990 a a 12 (39) 7 1 5991
a a 12 (40) 7 1 5991 a a 12 (41) 7 1 5992 a a 12 (42) 7 1 5992
a a 12 (43) 7 1 5993 a a 12 (44) 7 1 5993 a a 12 (45) 7 1 5993
a a 12 (46) 7 1 5993 a a 12 (47) 7 1 5994 a a 12 (48) 7 1 5995
a a 12 (49) 7 1 5995 a a 12 (50) 7 1 5996 a a 12 (51) 7 1 5997
a a 12 (52) 7 1 5997 a a 12 (53) 7 1 6000 a a 12 (54) 7 1 6001
a a 12 (55) 7 1 6002 a a 12 (56) 7 1 6002 a a 12 (57) 7 1 6002
a a 12 (58) 7 1 6002 a a 12 (59) 7 1 6003 a a 12 (60) 7 1 6004
a a 12 (61) 7 1 6005 a a 12 (62) 7 1 6005 a a 12 (63) 7 1 6008
a a 12 (64) 7 1 6021 a a 12 (65) 7 1 6022 a a 12 (66) 7 1 6025
a a 12 (67) 7 1 6027 a a 12 (68) 7 1 7155 a a 12 (69) 7 1 7158
a a 12 (70) 8 1 7118 a a 12 (71) 8 1 7442 a a 12 (72) 8 1 8507
a a 12 (73) 8 1 8751 a a 12 (74) 8 3 7645 a a 12 (75) 8 3 7935
a a 12 (76) 9 1 7626 a a 12 (77) 9 3 8945 a a 12 (78) 9 3 9544
a a 12 (79) 9 3 9732 a a 12 (80) 9 3 10273 a a 12 (81) 9 3 15916
a a 12 (82) 10 1 9973 a a 12 (83) 10 3 10077 a a 12 (84) 11 3 11615
a a 12 (85) 11 3 11878 a a 12 (86) 11 3 12167 a a 12 (87) 12 3 12424
a a 12 (88) 12 3 13332 a a 12 (89) 12 3 13564 a a 12 (90) 13 3 14777
a a 12 (91) 13 3 15790 a a 12 (92) 14 3 16189 a a 12 (93) 14 3 16247
a a 12 (94) 14 3 16893 a a 12 (95) 15 3 18510 a a 12 (96) 15 3 18687
a a 12 (97) 16 3 19320 a a 12 (98) 16 3 19945 a a 12 (99) 16 3 20223
a a 12 (100) 16 3 20681

Table 5.2: Equivalence checking of almost identical add-steper multipliers
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benchmark basolver benchmark basolver benchmark basolver

time nodes objects time nodes objects time nodes objects

b b 12 (1) 23 1 12162 b b 12 (2) 24 1 12196 b b 12 (3) 24 1 12222
b b 12 (4) 24 1 12319 b b 12 (5) 24 1 12343 b b 12 (6) 24 1 12399
b b 12 (7) 25 1 11863 b b 12 (8) 25 1 11943 b b 12 (9) 25 1 11981
b b 12 (10) 25 1 12009 b b 12 (11) 25 1 12022 b b 12 (12) 25 1 12023
b b 12 (13) 25 1 12048 b b 12 (14) 25 1 12051 b b 12 (15) 25 1 12062
b b 12 (16) 25 1 12071 b b 12 (17) 25 1 12080 b b 12 (18) 25 1 12085
b b 12 (19) 25 1 12102 b b 12 (20) 25 1 12112 b b 12 (21) 25 1 12118
b b 12 (22) 25 1 12119 b b 12 (23) 25 1 12123 b b 12 (24) 25 1 12131
b b 12 (25) 25 1 12145 b b 12 (26) 25 1 12161 b b 12 (27) 25 1 12172
b b 12 (28) 25 1 12175 b b 12 (29) 25 1 12196 b b 12 (30) 25 1 12205
b b 12 (31) 25 1 12208 b b 12 (32) 25 1 12208 b b 12 (33) 25 1 12211
b b 12 (34) 25 1 12215 b b 12 (35) 25 1 12221 b b 12 (36) 25 1 12223
b b 12 (37) 25 1 12230 b b 12 (38) 25 1 12234 b b 12 (39) 25 1 12236
b b 12 (40) 25 1 12239 b b 12 (41) 25 1 12250 b b 12 (42) 25 1 12258
b b 12 (43) 25 1 12287 b b 12 (44) 25 1 12295 b b 12 (45) 25 1 12300
b b 12 (46) 25 1 12308 b b 12 (47) 25 1 12333 b b 12 (48) 25 1 12343
b b 12 (49) 25 1 12370 b b 12 (50) 25 1 12564 b b 12 (51) 26 1 12074
b b 12 (52) 26 1 12108 b b 12 (53) 26 1 12166 b b 12 (54) 26 1 12172
b b 12 (55) 26 1 12177 b b 12 (56) 26 1 12205 b b 12 (57) 26 1 12227
b b 12 (58) 26 1 12233 b b 12 (59) 26 1 12246 b b 12 (60) 27 1 12069
b b 12 (61) 27 1 12077 b b 12 (62) 27 1 12140 b b 12 (63) 27 1 12199
b b 12 (64) 27 1 12250 b b 12 (65) 27 1 12364 b b 12 (66) 27 1 12394
b b 12 (67) 28 1 12184 b b 12 (68) 28 1 12314 b b 12 (69) 29 1 12037
b b 12 (70) 41 1 18841 b b 12 (71) 44 1 20311 b b 12 (72) 44 1 23787
b b 12 (73) 45 1 24982 b b 12 (74) 45 1 26093 b b 12 (75) 46 1 19413
b b 12 (76) 46 1 21981 b b 12 (77) 48 1 22479 b b 12 (78) 50 1 23028
b b 12 (79) 53 3 23361 b b 12 (80) 53 3 23492 b b 12 (81) 57 3 28098
b b 12 (82) 58 3 27590 b b 12 (83) 60 3 22024 b b 12 (84) 63 3 28622
b b 12 (85) 71 3 31655 b b 12 (86) 74 3 24746 b b 12 (87) 75 5 56066
b b 12 (88) 76 3 27324 b b 12 (89) 85 3 42655 b b 12 (90) 85 3 48057
b b 12 (91) 91 3 28441 b b 12 (92) 102 3 32076 b b 12 (93) >120 - -
b b 12 (94) >120 - - b b 12 (95) >120 - - b b 12 (96) >120 - -
b b 12 (97) >120 - - b b 12 (98) >120 - - b b 12 (99) >120 - -
b b 12 (100) >120 - -

Table 5.3: Equivalence checking of almost identical Booth multipliers
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benchmark basolver satelite minisat zchaff berkmin

time objects time nodes time nodes time nodes time nodes

a d 3 0 336 0 124 0 104 0 97 0 82
a d 4 0 686 0 761 0 460 0 366 0 337
a d 5 1 1096 0 3319 0 2454 0 2016 0 1804
a d 6 3 1608 0 17700 0 13357 3 8440 0 7298
a d 7 5 2269 3 58653 4 49418 55 55901 9 31865
a d 8 9 3045 36 408307 34 220624 2703 729221 111 122219
a d 9 14 3896 180 1311700 257 859193 >3600 - 914 436860
a d 10 21 4844 1217 4857347 1904 3592679 >3600 - >3600 -
a d 11 33 5961 >3600 - >3600 - >3600 - >3600 -
a d 12 45 7051 >3600 - >3600 - >3600 - >3600 -
a d 13 59 8291 DNS - DNS - DNS - DNS -
a d 14 83 9630 DNS - DNS - DNS - DNS -
a d 15 108 11054 DNS - DNS - DNS - DNS -
a d 16 142 12679 DNS - DNS - DNS - DNS -
a d 32 2910 52117 DNS - DNS - DNS - DNS -
a ma 3 0 461 0 91 0 80 0 75 0 99
a ma 4 0 974 0 464 0 445 0 486 0 394
a ma 5 2 1741 0 2459 0 2090 0 2139 0 1861
a ma 6 3 2739 0 13022 0 8271 2 8501 0 8112
a ma 7 6 3889 2 43059 3 36937 32 43307 9 27634
a ma 8 10 5577 13 213300 22 114900 644 286185 141 138612
a ma 9 14 7483 79 752019 207 523838 >3600 - 826 422824
a ma 10 20 9291 317 1974776 957 1762697 >3600 - >3600 -
a ma 11 30 12123 2680 8018089 >3600 - >3600 - >3600 -
a ma 12 41 14490 >3600 - >3600 - >3600 - >3600 -
a ma 13 57 17613 DNS - DNS - DNS - DNS -
a ma 14 73 20569 DNS - DNS - DNS - DNS -
a ma 15 99 24746 DNS - DNS - DNS - DNS -
a ma 16 138 29847 DNS - DNS - DNS - DNS -
a ma 32 2413 167659 DNS - DNS - DNS - DNS -
a p 3 0 324 0 83 0 82 0 73 0 96
a p 4 0 682 0 558 0 452 0 490 0 389
a p 5 1 1145 0 2930 0 3048 0 1969 0 1910
a p 6 3 1676 0 16327 1 14837 3 8927 1 9202
a p 7 5 2380 4 74181 5 53974 67 62006 10 32187
a p 8 9 3150 35 377711 68 331299 >3600 - 153 140722
a p 9 15 3963 281 1587935 440 1305423 >3600 - 1817 623680
a p 10 23 5062 1671 6148344 >3600 - >3600 - >3600 -
a p 11 37 6158 >3600 - >3600 - >3600 - >3600 -
a p 12 49 7324 >3600 - >3600 - >3600 - >3600 -
a p 13 66 8649 DNS - DNS - DNS - DNS -
a p 14 90 10011 DNS - DNS - DNS - DNS -
a p 15 119 11546 DNS - DNS - DNS - DNS -
a p 16 158 13134 DNS - DNS - DNS - DNS -
a p 32 3116 53357 DNS - DNS - DNS - DNS -
d p 3 0 320 0 140 0 61 0 83 0 89
d p 4 0 687 0 423 0 360 0 469 0 327
d p 5 1 1136 0 3950 0 2438 0 1850 0 1655
d p 6 3 1833 0 15181 1 13712 3 8625 0 7375
d p 7 5 2464 4 73889 4 45919 51 54623 12 34944
d p 8 8 3276 30 335246 40 233217 2383 634325 143 131290
d p 9 13 4158 296 1744046 737 1994614 >3600 - 1798 630135
d p 10 20 5192 2203 7261321 2991 5182824 >3600 - >3600 -
d p 11 32 6460 >3600 - >3600 - >3600 - >3600 -
d p 12 42 7574 >3600 - >3600 - >3600 - >3600 -
d p 13 56 8863 DNS - DNS - DNS - DNS -
d p 14 76 10227 DNS - DNS - DNS - DNS -
d p 15 106 12013 DNS - DNS - DNS - DNS -
d p 16 134 13472 DNS - DNS - DNS - DNS -
d p 32 2605 55089 DNS - DNS - DNS - DNS -

Table 5.4: Equivalence checking of pairs of different multipliers
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benchmark basolver benchmark basolver benchmark basolver

time nodes objects time nodes objects time nodes objects

a d 12 (1) 22 1 7011 a d 12 (2) 25 1 7053 a d 12 (3) 26 1 7026
a d 12 (4) 26 1 7029 a d 12 (5) 26 1 7035 a d 12 (6) 26 1 7040
a d 12 (7) 26 1 7061 a d 12 (8) 26 1 7068 a d 12 (9) 26 1 7077
a d 12 (10) 26 1 7096 a d 12 (11) 26 1 7153 a d 12 (12) 27 1 6991
a d 12 (13) 27 1 7002 a d 12 (14) 27 1 7002 a d 12 (15) 27 1 7009
a d 12 (16) 27 1 7015 a d 12 (17) 27 1 7019 a d 12 (18) 27 1 7022
a d 12 (19) 27 1 7026 a d 12 (20) 27 1 7029 a d 12 (21) 27 1 7030
a d 12 (22) 27 1 7030 a d 12 (23) 27 1 7035 a d 12 (24) 27 1 7038
a d 12 (25) 27 1 7047 a d 12 (26) 27 1 7058 a d 12 (27) 27 1 7068
a d 12 (28) 27 1 7107 a d 12 (29) 27 1 7110 a d 12 (30) 28 1 6988
a d 12 (31) 28 1 7001 a d 12 (32) 28 1 7008 a d 12 (33) 28 1 7016
a d 12 (34) 28 1 7019 a d 12 (35) 28 1 7019 a d 12 (36) 28 1 7019
a d 12 (37) 28 1 7036 a d 12 (38) 28 1 7049 a d 12 (39) 28 1 7061
a d 12 (40) 28 1 7062 a d 12 (41) 28 1 7063 a d 12 (42) 28 1 7064
a d 12 (43) 28 1 7070 a d 12 (44) 28 1 7071 a d 12 (45) 28 1 7077
a d 12 (46) 28 1 7081 a d 12 (47) 28 1 7081 a d 12 (48) 28 1 7086
a d 12 (49) 28 1 7093 a d 12 (50) 28 1 7112 a d 12 (51) 28 1 7115
a d 12 (52) 28 1 7151 a d 12 (53) 29 1 6976 a d 12 (54) 29 1 6981
a d 12 (55) 29 1 7014 a d 12 (56) 29 1 7018 a d 12 (57) 29 1 7064
a d 12 (58) 29 1 7078 a d 12 (59) 29 1 7079 a d 12 (60) 29 1 7087
a d 12 (61) 29 1 7091 a d 12 (62) 29 1 7093 a d 12 (63) 29 1 7094
a d 12 (64) 29 1 7109 a d 12 (65) 29 1 7120 a d 12 (66) 29 1 7135
a d 12 (67) 29 1 7139 a d 12 (68) 29 1 7184 a d 12 (69) 30 1 7041
a d 12 (70) 30 1 7106 a d 12 (71) 30 1 7143 a d 12 (72) 30 1 7147
a d 12 (73) 30 1 7170 a d 12 (74) 31 3 7522 a d 12 (75) 32 1 7246
a d 12 (76) 32 3 7618 a d 12 (77) 34 3 7687 a d 12 (78) 34 3 8766
a d 12 (79) 37 3 8828 a d 12 (80) 39 3 8855 a d 12 (81) 44 3 9112
a d 12 (82) 45 3 9289 a d 12 (83) 46 3 8108 a d 12 (84) >120 - -
a d 12 (85) >120 - - a d 12 (86) >120 - - a d 12 (87) >120 - -
a d 12 (88) >120 - - a d 12 (89) >120 - - a d 12 (90) >120 - -
a d 12 (91) >120 - - a d 12 (92) >120 - - a d 12 (93) >120 - -
a d 12 (94) >120 - - a d 12 (95) >120 - - a d 12 (96) >120 - -
a d 12 (97) >120 - - a d 12 (98) >120 - - a d 12 (99) >120 - -
a d 12 (100) >120 - -

Table 5.5: Equivalence checking of add-stepper multiplier against diagonal multiplier, with small random
“tweak” to the former one
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benchmark basolver benchmark basolver benchmark basolver

time nodes objects time nodes objects time nodes objects

a ma 12 (1) 26 1 14194 a ma 12 (2) 26 1 14422 a ma 12 (3) 27 1 14110
a ma 12 (4) 27 1 14187 a ma 12 (5) 27 1 14252 a ma 12 (6) 27 1 14353
a ma 12 (7) 27 1 14378 a ma 12 (8) 27 1 14489 a ma 12 (9) 27 1 14514
a ma 12 (10) 28 1 14146 a ma 12 (11) 28 1 14162 a ma 12 (12) 28 1 14194
a ma 12 (13) 28 1 14281 a ma 12 (14) 28 1 14310 a ma 12 (15) 28 1 14342
a ma 12 (16) 28 1 14375 a ma 12 (17) 28 1 14385 a ma 12 (18) 28 1 14403
a ma 12 (19) 28 1 14420 a ma 12 (20) 28 1 14482 a ma 12 (21) 28 1 14520
a ma 12 (22) 28 1 14530 a ma 12 (23) 28 1 14554 a ma 12 (24) 28 1 14559
a ma 12 (25) 28 1 14559 a ma 12 (26) 28 1 14602 a ma 12 (27) 28 1 14606
a ma 12 (28) 28 1 14620 a ma 12 (29) 28 1 14623 a ma 12 (30) 28 1 14643
a ma 12 (31) 28 1 14685 a ma 12 (32) 28 1 14708 a ma 12 (33) 28 1 14761
a ma 12 (34) 28 1 14794 a ma 12 (35) 28 1 14832 a ma 12 (36) 28 1 14863
a ma 12 (37) 29 1 14441 a ma 12 (38) 29 1 14507 a ma 12 (39) 29 1 14559
a ma 12 (40) 29 1 14583 a ma 12 (41) 29 1 14598 a ma 12 (42) 29 1 14631
a ma 12 (43) 29 1 14654 a ma 12 (44) 29 1 14671 a ma 12 (45) 29 1 14724
a ma 12 (46) 29 1 14758 a ma 12 (47) 29 1 14762 a ma 12 (48) 29 1 14767
a ma 12 (49) 29 1 14780 a ma 12 (50) 29 1 14786 a ma 12 (51) 29 1 14791
a ma 12 (52) 29 1 14825 a ma 12 (53) 29 1 14843 a ma 12 (54) 29 1 14878
a ma 12 (55) 29 1 14896 a ma 12 (56) 29 1 14905 a ma 12 (57) 29 1 14909
a ma 12 (58) 29 1 14931 a ma 12 (59) 29 1 14934 a ma 12 (60) 29 1 14942
a ma 12 (61) 29 1 14991 a ma 12 (62) 29 1 15006 a ma 12 (63) 29 1 15059
a ma 12 (64) 30 1 14345 a ma 12 (65) 30 1 14516 a ma 12 (66) 30 1 14597
a ma 12 (67) 30 1 14729 a ma 12 (68) 30 1 14746 a ma 12 (69) 30 1 14783
a ma 12 (70) 30 1 14867 a ma 12 (71) 30 1 14921 a ma 12 (72) 30 1 15239
a ma 12 (73) 30 1 15409 a ma 12 (74) 57 3 28146 a ma 12 (75) >120 - -
a ma 12 (76) >120 - - a ma 12 (77) >120 - - a ma 12 (78) >120 - -
a ma 12 (79) >120 - - a ma 12 (80) >120 - - a ma 12 (81) >120 - -
a ma 12 (82) >120 - - a ma 12 (83) >120 - - a ma 12 (84) >120 - -
a ma 12 (85) >120 - - a ma 12 (86) >120 - - a ma 12 (87) >120 - -
a ma 12 (88) >120 - - a ma 12 (89) >120 - - a ma 12 (90) >120 - -
a ma 12 (91) >120 - - a ma 12 (92) >120 - - a ma 12 (93) >120 - -
a ma 12 (94) >120 - - a ma 12 (95) >120 - - a ma 12 (96) >120 - -
a ma 12 (97) >120 - - a ma 12 (98) >120 - - a ma 12 (99) >120 - -
a ma 12 (100) >120 - -

Table 5.6: Equivalence checking of add-stepper multiplier against modified add-stepper multiplier, with small
random “tweak” to the former one
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benchmark basolver benchmark basolver benchmark basolver

time nodes objects time nodes objects time nodes objects

a p 12 (1) 28 1 7198 a p 12 (2) 28 1 7227 a p 12 (3) 28 1 7247
a p 12 (4) 28 1 7412 a p 12 (5) 29 1 7191 a p 12 (6) 29 1 7234
a p 12 (7) 29 1 7240 a p 12 (8) 29 1 7246 a p 12 (9) 29 1 7260
a p 12 (10) 29 1 7282 a p 12 (11) 29 1 7282 a p 12 (12) 29 1 7290
a p 12 (13) 29 1 7294 a p 12 (14) 29 1 7294 a p 12 (15) 29 1 7299
a p 12 (16) 29 1 7303 a p 12 (17) 29 1 7314 a p 12 (18) 29 1 7316
a p 12 (19) 29 1 7322 a p 12 (20) 29 1 7328 a p 12 (21) 29 1 7345
a p 12 (22) 29 1 7346 a p 12 (23) 30 1 7226 a p 12 (24) 30 1 7251
a p 12 (25) 30 1 7267 a p 12 (26) 30 1 7269 a p 12 (27) 30 1 7275
a p 12 (28) 30 1 7287 a p 12 (29) 30 1 7289 a p 12 (30) 30 1 7294
a p 12 (31) 30 1 7295 a p 12 (32) 30 1 7301 a p 12 (33) 30 1 7312
a p 12 (34) 30 1 7313 a p 12 (35) 30 1 7319 a p 12 (36) 30 1 7322
a p 12 (37) 30 1 7323 a p 12 (38) 30 1 7327 a p 12 (39) 30 1 7329
a p 12 (40) 30 1 7330 a p 12 (41) 30 1 7339 a p 12 (42) 30 1 7342
a p 12 (43) 30 1 7343 a p 12 (44) 30 1 7349 a p 12 (45) 31 1 7252
a p 12 (46) 31 1 7278 a p 12 (47) 31 1 7291 a p 12 (48) 31 1 7292
a p 12 (49) 31 1 7303 a p 12 (50) 31 1 7303 a p 12 (51) 31 1 7304
a p 12 (52) 31 1 7306 a p 12 (53) 31 1 7310 a p 12 (54) 31 1 7314
a p 12 (55) 31 1 7318 a p 12 (56) 31 1 7321 a p 12 (57) 31 1 7324
a p 12 (58) 31 1 7324 a p 12 (59) 31 1 7329 a p 12 (60) 31 1 7337
a p 12 (61) 31 1 7339 a p 12 (62) 31 1 7339 a p 12 (63) 31 1 7348
a p 12 (64) 31 1 7355 a p 12 (65) 31 1 7367 a p 12 (66) 31 1 7391
a p 12 (67) 31 1 7407 a p 12 (68) 31 1 7453 a p 12 (69) 32 1 7283
a p 12 (70) 32 1 7309 a p 12 (71) 32 1 7373 a p 12 (72) 32 1 7376
a p 12 (73) 32 1 7420 a p 12 (74) 32 1 7450 a p 12 (75) 33 1 7269
a p 12 (76) 33 1 7486 a p 12 (77) 36 1 7279 a p 12 (78) 37 3 7994
a p 12 (79) 39 3 8925 a p 12 (80) 41 3 9065 a p 12 (81) 44 3 8270
a p 12 (82) 47 3 8533 a p 12 (83) 48 3 9387 a p 12 (84) 50 3 8345
a p 12 (85) 53 3 9600 a p 12 (86) 57 85 37768 a p 12 (87) >120 - -
a p 12 (88) >120 - - a p 12 (89) >120 - - a p 12 (90) >120 - -
a p 12 (91) >120 - - a p 12 (92) >120 - - a p 12 (93) >120 - -
a p 12 (94) >120 - - a p 12 (95) >120 - - a p 12 (96) >120 - -
a p 12 (97) >120 - - a p 12 (98) >120 - - a p 12 (99) >120 - -
a p 12 (100) >120 - -

Table 5.7: Equivalence checking of add-stepper multiplier against simplified Wallace multiplier, with small
random “tweak” to the former one
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benchmark basolver benchmark basolver benchmark basolver

time nodes objects time nodes objects time nodes objects

d p 12 (1) 28 1 7429 d p 12 (2) 28 1 7435 d p 12 (3) 28 1 7501
d p 12 (4) 28 1 7683 d p 12 (5) 29 1 7318 d p 12 (6) 29 1 7462
d p 12 (7) 29 1 7466 d p 12 (8) 29 1 7470 d p 12 (9) 29 1 7475
d p 12 (10) 29 1 7489 d p 12 (11) 29 1 7498 d p 12 (12) 29 1 7498
d p 12 (13) 29 1 7511 d p 12 (14) 29 1 7515 d p 12 (15) 29 1 7518
d p 12 (16) 29 1 7528 d p 12 (17) 29 1 7569 d p 12 (18) 29 1 7610
d p 12 (19) 30 1 7424 d p 12 (20) 30 1 7449 d p 12 (21) 30 1 7456
d p 12 (22) 30 1 7459 d p 12 (23) 30 1 7479 d p 12 (24) 30 1 7481
d p 12 (25) 30 1 7482 d p 12 (26) 30 1 7484 d p 12 (27) 30 1 7491
d p 12 (28) 30 1 7494 d p 12 (29) 30 1 7537 d p 12 (30) 30 1 7544
d p 12 (31) 30 1 7549 d p 12 (32) 30 1 7550 d p 12 (33) 30 1 7563
d p 12 (34) 30 1 7576 d p 12 (35) 30 1 7576 d p 12 (36) 30 1 7582
d p 12 (37) 30 1 7587 d p 12 (38) 30 1 7589 d p 12 (39) 30 1 7598
d p 12 (40) 30 1 7650 d p 12 (41) 30 1 7650 d p 12 (42) 30 1 7650
d p 12 (43) 30 1 7653 d p 12 (44) 30 1 7680 d p 12 (45) 30 1 7702
d p 12 (46) 30 1 7732 d p 12 (47) 31 1 7496 d p 12 (48) 31 1 7506
d p 12 (49) 31 1 7520 d p 12 (50) 31 1 7532 d p 12 (51) 31 1 7533
d p 12 (52) 31 1 7551 d p 12 (53) 31 1 7567 d p 12 (54) 31 1 7570
d p 12 (55) 31 1 7579 d p 12 (56) 31 1 7583 d p 12 (57) 31 1 7584
d p 12 (58) 31 1 7589 d p 12 (59) 31 1 7591 d p 12 (60) 31 1 7617
d p 12 (61) 31 1 7632 d p 12 (62) 31 1 7635 d p 12 (63) 31 1 7648
d p 12 (64) 31 1 7649 d p 12 (65) 31 1 7659 d p 12 (66) 31 1 7694
d p 12 (67) 31 1 7700 d p 12 (68) 31 1 7702 d p 12 (69) 31 1 7766
d p 12 (70) 32 1 7635 d p 12 (71) 32 1 7635 d p 12 (72) 32 1 7641
d p 12 (73) 32 1 7641 d p 12 (74) 32 1 7727 d p 12 (75) 32 1 7797
d p 12 (76) 33 1 7694 d p 12 (77) 33 1 7696 d p 12 (78) 35 3 8082
d p 12 (79) 35 3 8126 d p 12 (80) 37 3 8128 d p 12 (81) 40 3 8446
d p 12 (82) 48 3 10106 d p 12 (83) 52 3 8798 d p 12 (84) 52 3 9042
d p 12 (85) 55 3 10217 d p 12 (86) >120 - - d p 12 (87) >120 - -
d p 12 (88) >120 - - d p 12 (89) >120 - - d p 12 (90) >120 - -
d p 12 (91) >120 - - d p 12 (92) >120 - - d p 12 (93) >120 - -
d p 12 (94) >120 - - d p 12 (95) >120 - - d p 12 (96) >120 - -
d p 12 (97) >120 - - d p 12 (98) >120 - - d p 12 (99) >120 - -
d p 12 (100) >120 - -

Table 5.8: Equivalence checking of diagonal multiplier against simplified Wallace multiplier, with small
random “tweak” to the former one
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benchmark basolver satelite minisat zchaff berkmin

time objects time nodes time nodes time nodes time nodes

B2a a 3 0 510 0 22 0 21 0 35 0 70
B2a a 4 0 1219 0 168 0 103 0 498 0 15
B2a a 5 1 2078 0 450 0 2262 0 1559 0 1557
B2a a 6 2 3176 0 6803 0 8170 2 8360 0 7140
B2a a 7 3 4584 2 50881 1 15869 32 39576 10 31946
B2a a 8 5 6155 1 24240 7 53819 292 200204 90 101899
B2a a 9 8 8066 0 7070 8 44146 473 340988 807 379677
B2a a 10 11 10240 79 445743 109 309858 >3600 - >3600 -
B2a a 11 16 12785 151 673136 2903 4065023 >3600 - >3600 -
B2a a 12 22 15086 0 3080 3600 3900253 >3600 - >3600 -
B2a a 13 28 18570 >3600 - >3600 - >3600 - >3600 -
B2a a 14 39 21288 DNS - DNS - DNS - DNS -
B2a a 15 49 24681 DNS - DNS - DNS - DNS -
B2a a 16 65 29149 DNS - DNS - DNS - DNS -
B2a a 32 1213 123184 DNS - DNS - DNS - DNS -
B2a a 40 3040 197397 DNS - DNS - DNS - DNS -
B2a d 3 0 1179 0 101 0 89 0 33 0 93
B2a d 4 1 2722 0 626 0 557 0 271 0 187
B2a d 5 2 4765 0 1240 0 2649 0 1919 0 297
B2a d 6 4 7359 0 7780 0 9086 0 4230 0 7206
B2a d 7 9 11629 0 14738 2 26332 3 8521 9 30631
B2a d 8 14 15481 17 228454 5 32545 >3600 - 145 139706
B2a d 9 23 21733 11 113868 23 91773 >3600 - 310 222249
B2a d 10 34 26545 22 153873 201 490029 0 2247 468 307970
B2a d 11 49 34246 2616 6738055 1520 2421106 >3600 - >3600 -
B2a d 12 72 42155 442 1131896 >3600 - >3600 - 3255 1170516
B2a d 13 96 50260 >3600 - >3600 - >3600 - >3600 -
B2a d 14 136 63230 DNS - DNS - DNS - DNS -
B2a d 15 178 70628 DNS - DNS - DNS - DNS -
B2a d 16 236 88771 DNS - DNS - DNS - DNS -
B2a d 28 2382 360712 DNS - DNS - DNS - DNS -
B2a ma 3 0 1709 0 31 0 47 0 72 0 39
B2a ma 4 1 3810 0 52 0 281 0 330 0 12
B2a ma 5 3 7353 0 434 0 619 0 1849 0 69
B2a ma 6 6 11719 0 10782 0 2036 0 1541 1 8161
B2a ma 7 11 18090 0 11657 0 2367 44 50786 10 30221
B2a ma 8 17 26016 1 15872 1 11170 797 357416 131 138169
B2a ma 9 25 34269 5 60172 1 8857 3177 956444 1113 496356
B2a ma 10 38 45219 18 141835 148 289116 >3600 - 1203 561467
B2a ma 11 53 59270 239 959855 1260 1628803 >3600 - 3288 1224246
B2a ma 12 73 73510 1379 3764141 3256 2888311 >3600 - >3600 -
B2a ma 13 102 90006 >3600 - >3600 - >3600 - >3600 -
B2a ma 14 126 104419 DNS - DNS - DNS - DNS -
B2a ma 15 169 126155 DNS - DNS - DNS - DNS -
B2a ma 16 232 158446 DNS - DNS - DNS - DNS -
B2a ma 24 1217 478186 DNS - DNS - DNS - DNS -
B2a ma 32 3372 1000347 DNS - DNS - DNS - DNS -
B2ma a 3 0 1459 0 101 0 58 0 80 0 42
B2ma a 4 1 3835 0 68 0 88 0 309 0 310
B2ma a 5 3 7048 0 332 0 1127 0 2069 0 1367
B2ma a 6 6 12015 0 7516 0 4243 0 2516 0 7152
B2ma a 7 9 16585 0 988 0 1017 34 46873 11 30259
B2ma a 8 16 25408 0 6215 0 6988 453 257358 134 126218
B2ma a 9 23 36445 2 31987 3 18636 484 324268 637 357764
B2ma a 10 31 44446 16 126163 102 190489 >3600 - 67 93221
B2ma a 11 45 58850 913 3075786 210 310059 >3600 - 2786 1076871
B2ma a 12 65 73958 >3600 - >3600 - >3600 - >3600 -
B2ma a 13 84 89440 >3600 - >3600 - >3600 - >3600 -
B2ma a 14 114 110610 DNS - DNS - DNS - DNS -
B2ma a 15 146 132484 DNS - DNS - DNS - DNS -
B2ma a 16 183 152995 DNS - DNS - DNS - DNS -
B2ma a 26 1313 595236 DNS - DNS - DNS - DNS -
B2ma a 32 3030 1008537 DNS - DNS - DNS - DNS -

Table 5.9: Equivalence checking of buggy multipliers with one faulty pair of inputs
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Chapter 6

Conclusion

We implemented a propositional solver based on a mixed boolean-algebraic strategy that combines DPLL
with algebraic inference rules.

We demonstrated that this strategy can produce automated proofs of equivalences between different
multipliers. However, a nontrivial effort of engineers is required for introducing a multiplier based on a new
idea to the framework: an invariant corresponding to a handmade proof must be formulated, and inference
rules for inductive maintaining of this invariant must be designed. Then, hopefully a computer is able
to compute the invariant for multiplier circuits of any reasonable number of bits and thus prove that two
multipliers are equivalent. We believe that the same strategy is applicable not only to equivalence checking,
but also to the verification of other properties of a circuit.

The solver has demonstrated a reasonably rigid behavior: when one of the circuits is slightly changed,
frequently, basolver is still able to solve the equivalence checking problem formulated as a CNF (despite
the invariant may be no longer satisfied). This works perfectly for almost identical multipliers (this may be
not a big deal if one looks at the circuits themselves, but contemporary CNF solvers are helplessly stuck on
such instances), and also works for many pairs of circuits similar to those for which we are able to prove
the equivalence without changes. The strategy here is to split by variables that resist to the straightforward
derivation. This behavior can be further improved if a more involved heuristic for choosing literals for
splitting is used.

The main problems with our “inductive” strategy emerge when the invariant has a high degree. For
example, a four-degree invariant for the equivalence between simplified Booth and add step multipliers did
not enable us to produce an automated proof of this equivalence. There are two possible directions for fighting
this problem: a more extensive use of disjunctions of equalities and switching from polynomial equalities to
polynomial inequalities. It is, however, unclear whether natural complications concerning strengthening the
proof system will permit a more efficient proof search. Another possible direction is an intelligent splitting
of a problem into subproblems which may lower the proof degree.

Our experiments on buggy circuits demonstrated that while our solver is able to find severe bugs that
make a circuit unusable (like an inverted gate, for example), it is much less efficient in it than general-purpose
SAT solvers. However, if a bug appears rarely (and thus the equivalence checking formula has few satisfying
assignments), the problem becomes easier for basolver.

The general advice following from our research is that research strategy can be very different depending
on what multipliers are being checked and how far are they one from the other. It may be reasonable to
implement a separate solver for each verification problem (for example, for a series of multiplier circuits
based on the same idea). The framework we have created is suitable for building various combinations of
rules and may serve as the basis for further elaborations on different circuit series. One such elaboration —
for the Booth multipliers — we have implemented ourselves.
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Appendix A: Circuit descriptions

A.1 Add-stepper multiplier

In this appendix we begin to describe formally the multipliers that we have provided equivalence proofs for.
The ultimate goal of each subsection is to provide a CNF formula that describes a certain multiplier.

We begin with two simplest multiplication schemes that are depicted on Fig. A.1

Each cell in the schemes stands for a standard multiplexer, as depicted on Fig. A.2.

In the following formula we encode the simplest add-stepper multiplier that multiplies two numbers:
X = {x0, . . . , xN} having N + 1 bits and Y = {y0, . . . , yM} consisting of M + 1 bits. To the right of each
block of clauses we write equalities that correspond to this block of clauses (this notation will be common
practice throughout this document).

1. The zeroth column is encoded by the following set of clauses:

x0 ∨ ¬r00

y0 ∨ ¬r00

r00 ∨ ¬x0 ∨ ¬y0







r00 = x0 ∧ y0

...

xN ∨ ¬rN0

y0 ∨ ¬rN0

rN0 ∨ ¬xN ∨ ¬y0







rN0 = xN ∧ y0

2. The lowest cell in each of the following columns (j = 1..M) is given as follows:

x0 ∨ ¬c0j

yj ∨ ¬c0j

c0j ∨ ¬x0 ∨ ¬yj







c0j = x0 ∧ yj

¬c0j ∨ r1j−1 ∨ r0j

c0j ∨ ¬r1j−1 ∨ r0j

c0j ∨ r1j−1 ∨ ¬r0j

¬c0j ∨ ¬r1j−1 ∨ ¬r0j







r0j = c0j ⊕ r1j−1

c0j ∨ ¬t0j

r1j−1 ∨ ¬t0j

t0j ∨ ¬c0j ∨ ¬r1j−1







t0j = c0j ∧ r1j−1
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Figure A.1: Two standard 4-bit multipliers. The picture is taken from [Bryant, Chen, 2001]. We corrected
a small typo in the article.
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Figure A.2: Cell consisting of an AND gate and a full adder.

3. The upper cell of the first column is given by the following set of clauses:

xN ∨ ¬cN1

y1 ∨ ¬cN1

cN1 ∨ ¬xN ∨ ¬y1







cN1 = xN ∧ y1

¬cN1 ∨ tN−1,1 ∨ rN1

cN1 ∨ ¬tN−1,1 ∨ rN1

cN1 ∨ tN−1,1 ∨ ¬rN1

¬cN1 ∨ ¬tN−1,1 ∨ ¬rN1







rN1 = cN1 ⊕ tN−1,1

cN1 ∨ ¬tN1

tN−1,1 ∨ ¬tN1

tN1 ∨ ¬cN1 ∨ ¬tN−1,1







tN1 = cN1 ∧ tN−1,1

4. The upper cells in the remaining columns (j = 1..M) may be encoded by the following sets of clauses:

xN ∨ ¬cNj

yj ∨ ¬cNj

cNj ∨ ¬xN ∨ ¬yj







cNj = xN ∧ yj
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¬cNj ∨ tN,j−1 ∨ kNj

cNj ∨ ¬tN,j−1 ∨ kNj

cNj ∨ tN,j−1 ∨ ¬kNj

¬cNj ∨ ¬tN,j−1 ∨ ¬kNj







kNj = cNj ⊕ tN,j−1

¬kNj ∨ tN−1,j ∨ rNj

kNj ∨ ¬tN−1,j ∨ rNj

kNj ∨ tN−1,j ∨ ¬rNj

¬kNj ∨ ¬tN−1,j ∨ ¬rNj







rNj = kNj ⊕ tN−1,j

cNj ∨ ¬lNj

tN,j−1 ∨ ¬lNj

lNj ∨ ¬cNj ∨ ¬tN,j−1







lNj = cNj ∧ tN,j−1

cNj ∨ ¬mNj

tN−1,j ∨ ¬mNj

mNj ∨ ¬cNj ∨ ¬tN−1,j







mNj = cNj ∧ tN−1,j

tN,j−1 ∨ ¬nNj

tN−1,j ∨ ¬nNj

nNj ∨ ¬tN,j−1 ∨ ¬tN−1,j







nNj = tN,j−1 ∧ tN−1,j

¬lNj ∨ eNj

¬mNj ∨ eNj

¬eNj ∨ lNj ∨ mNj







eNj = lNj ∨ mNj

¬nNj ∨ tNj

¬eNj ∨ tNj

¬tNj ∨ nNj ∨ eNj







tNj = nNj ∨ eNj

5. Finally, each of the remaining cells (corresponding to the pairs {i, j}i=1..N−1,j=1..M ) is given by the
following set of clauses:

xi ∨ ¬cij

yj ∨ ¬cij

cij ∨ ¬xi ∨ ¬yj







cij = xi ∧ yj

¬cij ∨ ri+1,j−1 ∨ kij

cij ∨ ¬ri+1,j−1 ∨ kij

cij ∨ ri+1,j−1 ∨ ¬kij

¬cij ∨ ¬ri+1,j−1 ∨ ¬kij







kij = cij ⊕ ri+1,j−1

¬kij ∨ ti−1,j ∨ rij

kij ∨ ¬ti−1,j ∨ rij

kij ∨ ti−1,j ∨ ¬rij

¬kij ∨ ¬ti−1,j ∨ ¬rij







rij = kij ⊕ ti−1,j

cij ∨ ¬lij

ri+1,j−1 ∨ ¬lij

lij ∨ ¬cij ∨ ¬ri+1,j−1







lij = cij ∧ ri+1,j−1
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cij ∨ ¬mij

ti−1,j ∨ ¬mij

mij ∨ ¬cij ∨ ¬ti−1,j







mij = cij ∧ ti−1,j

ri+1,j−1 ∨ ¬nij

ti−1,j ∨ ¬nij

nij ∨ ¬ri+1,j−1 ∨ ¬ti−1,j







nij = ri+1,j−1 ∧ ti−1,j

¬lij ∨ eij

¬mij ∨ eij

¬eij ∨ lij ∨ mij







eij = lij ∨ mij

¬nij ∨ tij

¬eij ∨ tij

¬tij ∨ nij ∨ eij







tij = nij ∨ eij

6. In the formula given above certain variables correspond to certain outputs of the circuit:

• r0j , 0 ≤ j ≤ M correspond to the first M + 1 outputs of the multiplier — pi, 0 ≤ i ≤ M ;

• riM , 1 ≤ i ≤ N correspond to the next N outputs of the multiplier — pi,M + 1 ≤ i ≤ M + N ;

• pM+N+1 corresponds to tNM .

7. We consider the case when one of the inputs consists of one bit as a special case. It should be treated
separately.

A.2 Diagonal multiplier

As one can see on Fig. A.1, the idea of a diagonal multiplier is greatly similar to the add-stepper multiplier;
the difference is in the way carry bits are propagated — they are propagated to the next level immediately,
which allows to go through each column in one step, eliminating the need in calculating lower bits of a
column in order to calculate upper bits.

A diagonal multiplier multiplying numbers X = {x0, . . . , xN} (N +1 bits) and Y = {y0, . . . , yM} (M +1
bits) may be encoded by the following formula:

1. The zeroth column is given by the following set of clauses:

x0 ∨ ¬r00

y0 ∨ ¬r00

r00 ∨ ¬x0 ∨ ¬y0







r00 = x0 ∧ y0

...

xN ∨ ¬rN0

y0 ∨ ¬rN0

rN0 ∨ ¬xN ∨ ¬y0







rN0 = xN ∧ y0

2. The uppermost cell in each of the following columns (j = 1..M) is encoded as follows:

xN ∨ ¬rNj

yj ∨ ¬rNj

rNj ∨ ¬xN ∨ ¬yj







rNj = xN ∧ yj
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3. The first column, except for the uppermost cell (i = 0..N − 1), is given by the following clauses:

xi ∨ ¬ci1

y1 ∨ ¬ci1

ci1 ∨ ¬xi ∨ ¬y1







ci1 = xi ∧ y1

¬ci1 ∨ ri+1,0 ∨ ri1

ci1 ∨ ¬ri+1,0 ∨ ri1

ci1 ∨ ri+1,0 ∨ ¬ri1

¬ci1 ∨ ¬ri+1,0 ∨ ¬ri1







ri1 = ci1 ⊕ ri+1,0

ci1 ∨ ¬ti1

ri+1,0 ∨ ¬ti1

ti1 ∨ ¬ci1 ∨ ¬ri+1,0







ti1 = ci1 ∧ ri+1,0

4. Finally, each of the rest of the cells (corresponding to the index pairs {i, j}i=0..N−1,j=2..M ) is encoded
by the following set of clauses:

xi ∨ ¬cij

yj ∨ ¬cij

cij ∨ ¬xi ∨ ¬yj







cij = xi ∧ yj

¬cij ∨ ri+1,j−1 ∨ kij

cij ∨ ¬ri+1,j−1 ∨ kij

cij ∨ ri+1,j−1 ∨ ¬kij

¬cij ∨ ¬ri+1,j−1 ∨ ¬kij







kij = cij ⊕ ri+1,j−1

¬kij ∨ ti,j−1 ∨ rij

kij ∨ ¬ti,j−1 ∨ rij

kij ∨ ti,j−1 ∨ ¬rij

¬kij ∨ ¬ti,j−1 ∨ ¬rij







rij = kij ⊕ ti,j−1

cij ∨ ¬lij

ri+1,j−1 ∨ ¬lij

lij ∨ ¬cij ∨ ¬ri+1,j−1







lij = cij ∧ ri+1,j−1

cij ∨ ¬mij

ti,j−1 ∨ ¬mij

mij ∨ ¬cij ∨ ¬ti,j−1







mij = cij ∧ ti,j−1

ri+1,j−1 ∨ ¬nij

ti,j−1 ∨ ¬nij

nij ∨ ¬ri+1,j−1 ∨ ¬ti,j−1







nij = ri+1,j−1 ∧ ti,j−1

¬lij ∨ eij

¬mij ∨ eij

¬eij ∨ lij ∨ mij







eij = lij ∨ mij

¬nij ∨ tij

¬eij ∨ tij

¬tij ∨ nij ∨ eij







tij = nij ∨ eij
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5. The last column (consisting of full adders — see Fig. A.1) is encoded by the following set of clauses
(1 ≤ h ≤ N − 1):

¬r1M ∨ t0M ∨ r0M+1

r1M ∨ ¬t0M ∨ r0M+1

r1M ∨ t0M ∨ ¬r0M+1

¬r1M ∨ ¬t0M ∨ ¬r0M+1







r0M+1 = r1M ⊕ t0M

r1M ∨ ¬t0M+1

t0M ∨ ¬t0M+1

t0M+1 ∨ ¬r1M ∨ ¬t0M







t0M+1 = r1M ∧ t0M

¬rh+1,M ∨ thM ∨ khM+1

rh+1,M ∨ ¬thM ∨ khM+1

rh+1,M ∨ thM ∨ ¬khM+1

¬rh+1,M ∨ ¬thM ∨ ¬khM+1







khM+1 = rh+1,M ⊕ thM

¬khM+1 ∨ th−1,M+1 ∨ rhM+1

khM+1 ∨ ¬th−1,M+1 ∨ rhM+1

khM+1 ∨ th−1,M+1 ∨ ¬rhM+1

¬khM+1 ∨ ¬th−1,M+1 ∨ ¬rhM+1







rhM+1 = khM+1 ⊕ th−1,M+1

rh+1,M ∨ ¬lhM+1

thM ∨ ¬lhM+1

lhM+1 ∨ ¬rh+1,M ∨ ¬thM







lhM+1 = rh+1,M ∧ thM

rh+1,M ∨ ¬mhM+1

th−1,M+1 ∨ ¬mhM+1

mhM+1 ∨ ¬rh+1,M ∨ ¬th−1,M+1







mhM+1 = rh+1,M ∧ th−1,M+1

thM ∨ ¬nhM+1

th−1,M+1 ∨ ¬nhM+1

nhM+1 ∨ ¬thM ∨ ¬th−1,M+1







nhM+1 = thM ∧ th−1,M+1

¬lhM+1 ∨ ehM+1

¬mhM+1 ∨ ehM+1

¬ehM+1 ∨ lhM+1 ∨ mhM+1







ehM+1 = lhM+1 ∨ mhM+1

¬nhM+1 ∨ thM+1

¬ehM+1 ∨ thM+1

¬thM+1 ∨ nhM+1 ∨ ehM+1







thM+1 = nhM+1 ∨ ehM+1

6. In the formula given above certain variables correspond to certain outputs of the circuit:

• r0j , 0 ≤ j ≤ M correspond to the first M + 1 outputs of the multiplier — pi, 0 ≤ i ≤ M ;

• rh,M+1, 0 ≤ h ≤ N−1 correspond to the next N outputs of the multiplier — pi,M+1 ≤ i ≤ M+N ;

• pM+N+1 corresponds to tN−1,M+1. r0j , 0 ≤ j ≤ M correspond to the first M + 1

7. We consider the case when one of the inputs consists of one bit as a special case. It should be treated
separately.
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Figure A.3: Optimized column of the add-stepper multiplier.

A.3 Modified add-stepper multiplier

Modified add-stepper multiplier is obtained from add-stepper multiplier by optimizing its columns (see
Fig. A.3). Namely, if the corresponding bit yj is equal to 0, then all carry bits from the previous column are
just transfered to the next level (without transferring through full adders). This idea is also used in Booth
multiplier.

A diagonal multiplier multiplying numbers X = {x0, . . . , xN} (N +1 bits) and Y = {y0, . . . , yM} (M +1
bits) may be encoded by the following formula:

0. For each variable yj , 0 ≤ j ≤ M we add the equality

yj ∨ aj

¬yj ∨ ¬aj

}

aj = ¬yj

1. The zeroth column is given by the following set of clauses:

x0 ∨ ¬o00

y0 ∨ ¬o00

o00 ∨ ¬x0 ∨ ¬y0







o00 = x0 ∧ y0

...

xN ∨ ¬oN0

y0 ∨ ¬oN0

oN0 ∨ ¬xN ∨ ¬y0







oN0 = xN ∧ y0
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2. The lowest cell in all further (j = 1..M) columns is given by:

¬x0 ∨ o1j−1 ∨ r0j

x0 ∨ ¬o1j−1 ∨ r0j

x0 ∨ o1j−1 ∨ ¬r0j

¬x0 ∨ ¬o1j−1 ∨ ¬r0j







r0j = x0 ⊕ o1j−1

x0 ∨ ¬t0j

o1j−1 ∨ ¬t0j

t0j ∨ ¬x0 ∨ ¬o1j−1







t0j = x0 ∧ o1j−1

r0j ∨ ¬b0j

yj ∨ ¬b0j

b0j ∨ ¬r0j ∨ ¬yj







b0j = r0j ∧ yj

o1j−1 ∨ ¬d0j

aj ∨ ¬d0j

d0j ∨ ¬o1j−1 ∨ ¬aj







d0j = o1j−1 ∧ aj

¬d0j ∨ o0j

¬b0j ∨ o0j

o0j ∨ d0j ∨ b0j







o0j = d0j ∨ b0j

3. The uppermost cell in the first column is encoded as:

¬xN ∨ tN−1,1 ∨ rN1

xN ∨ ¬tN−1,1 ∨ rN1

xN ∨ tN−1,1 ∨ ¬rN1

¬xN ∨ ¬tN−1,1 ∨ ¬rN1







rN1 = xN ⊕ tN−1,1

xN ∨ ¬tN1

tN−1,1 ∨ ¬tN1

tN1 ∨ ¬xN ∨ ¬tN−1,1







tN1 = xN ∧ tN−1,1

rN1 ∨ ¬oN1

y1 ∨ ¬oN1

oN1 ∨ ¬rN1 ∨ ¬y1







oN1 = tN1 ∧ y1

4. Let us encode all upper outputs in all columns except for the first column (1 ≤ j ≤ M):

tNj ∨ ¬oN+1j

yj ∨ ¬oN+1j

oN+1j ∨ ¬tNj ∨¬yj







oN+1j = tNj ∧ yj

5. All remaining cells (for the set of pairs {i, j}i=1..N,j=1..M \ {1, N}) are given by the following set of
clauses:

¬xi ∨ oi+1,j−1 ∨ kij

xi ∨ ¬oi+1,j−1 ∨ kij

xi ∨ oi+1,j−1 ∨ ¬kij

¬xi ∨ ¬oi+1,j−1 ∨ ¬kij







kij = xi ⊕ oi+1,j−1
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¬kij ∨ ti−1,j ∨ rij

kij ∨ ¬ti−1,j ∨ rij

kij ∨ ti−1,j ∨ ¬rij

¬kij ∨ ¬ti−1,j ∨ ¬rij







rij = kij ⊕ ti−1,j

xi ∨ ¬lij

oi+1,j−1 ∨ ¬lij

lij ∨ ¬xi ∨ ¬oi+1,j−1







lij = xi ∧ oi+1,j−1

xi ∨ ¬mij

ti−1,j ∨ ¬mij

mij ∨ ¬xi ∨ ¬ti−1,j







mij = xi ∧ ti−1,j

oi+1,j−1 ∨ ¬nij

ti−1,j ∨ ¬nij

nij ∨ ¬oi+1,j−1 ∨ ¬ti−1,j







nij = oi+1,j−1 ∧ ti−1,j

¬lij ∨ eij

¬mij ∨ eij

¬eij ∨ lij ∨ mij







eij = lij ∨ mij

¬nij ∨ tij

¬eij ∨ tij

¬tij ∨ nij ∨ eij







tij = nij ∨ eij

rij ∨ ¬bij

yj ∨ ¬bij

bij ∨ ¬rij ∨ ¬yj







bij = rij ∧ yj

oi+1,j−1 ∨ ¬dij

aj ∨ ¬dij

dij ∨ ¬oi+1,j−1 ∨ ¬aj







dij = oi+1,j−1 ∧ aj

¬dij ∨ oij

¬bij ∨ oij

oij ∨ dij ∨ bij







oij = dij ∨ bij

6. The first M + 1 outputs of the multiplier pi, 0 ≤ i ≤ M correspond to o0j , 0 ≤ j ≤ M , the next N + 1
outputs of the multiplier pi,M + 1 ≤ i ≤ M + N + 1 correspond to oiM , 1 ≤ i ≤ N + 1.

A.4 Simplified Wallace tree (parallel) multiplier

This kind of multiplier was first described in [Wallace, 1964]. The main idea of the suggested method is in
parallel addition of partial products (xi · Y ). The simplified1 Wallace multiplier adds n 2n-bit numbers in
parallel. Fig. A.4 shows the structure of a Wallace tree adder. CSA in the picture indicates a carry-save
adder having three multi-bit inputs and two multi-bit outputs.

Let us multiply X consisting of n + 1 bits by Y consisting of m + 1 bits. The multiplier’s circuit is
constructed by an inductive process, level by level, as follows:

1One could use parallel addition of the last two numbers to fully parallelize the multiplication; this is not the case for the
multiplier that we study here.
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Figure A.4: Wallace tree adder. The picture is taken from
http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

1. On the zeroth level we have the results of multiplying each of the bits xi by Y :

cij = xiyj , where 0 ≤ i ≤ n, 0 ≤ j ≤ m.

There are n + 1 of the bitwise products Ci.

2. Suppose that the numbers we need to sum up on a given level are written down as a list Sn. Let us
create a new list Sn+1, where for each triple of the numbers that were on places 3i, 3i + 1, 3i + 2 in
the Sn list we put into places 2i, 2i + 1 their parallel sum (we shall describe this notion below). The
remaining one or two numbers (that are left if the size of Sn is not divisible by 3) are simply pushed
through to the back of Sn+1.

3. A parallel summator works as follows. Let the original triple be A = {0, . . . , 0
︸ ︷︷ ︸

A0

, aA0+1, . . . , a|A|}, B =

{0, . . . , 0
︸ ︷︷ ︸

B0

, bB0+1, . . . , b|B|}, C = {0, . . . , 0
︸ ︷︷ ︸

C0

, cC0+1, . . . , c|C|}. We shall denote the output (two numbers)

by R = {0, . . . , 0
︸ ︷︷ ︸

R0

, rR0+1, . . . , r|R|} and T = {0, . . . , 0
︸ ︷︷ ︸

T0

, tT0+1, . . . , t|T |}, where R0 = min(A0, B0, C0), T0 =

min({A0, B0, C0}\min(A0, B0, C0))+1 (mean of the A0, B0, C0 increased by 1), |R| = max(|A|, |B|, |C|),
and |T | = min({|A|, |B|, |C|} \ min(|A|, |B|, |C|)) + 1 (mean of the |A|, |B|, |C| increased by 1).
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(a) Let A0 ≤ B0 ≤ C0 (otherwise we may rename the numbers) and min(|A|, |B|, |C|) > C0 (otherwise
we may make one number out of two). Then, for A0 ≤ j ≤ B0,

rj ∨ ¬aj

¬rj ∨ aj

}

rj = aj .

(b) For B0 ≤ j < C0 we should sum up two nonzero bits:

¬aj ∨ bj ∨ rj

aj ∨ ¬bj ∨ rj

aj ∨ bj ∨ ¬rj

¬aj ∨ ¬bj ∨ ¬rj







rj = aj ⊕ bj

aj ∨ ¬tj+1

bj ∨ ¬tj+1

tj+1 ∨ ¬aj ∨ ¬bj







tj+1 = aj ∧ bj .

(c) For C0 ≤ j < min(|A|, |B|, |C|) we sum up three bits:

¬aj ∨ bj ∨ kj

aj ∨ ¬bj ∨ kj

aj ∨ bj ∨ ¬kj

¬aj ∨ ¬bj ∨ ¬kj







kj = aj ⊕ bj

¬cj ∨ kj ∨ rj

cj ∨ ¬kj ∨ rj

cj ∨ kj ∨ ¬rj

¬cj ∨ ¬kj ∨ ¬rj







rj = cj ⊕ kj

aj ∨ ¬lj

bj ∨ ¬lj

lj ∨ ¬aj ∨ ¬bj







lj = aj ∧ bj

aj ∨ ¬lj

cj ∨ ¬lj

lj ∨ ¬aj ∨ ¬cj







mj = aj ∧ cj

cj ∨ ¬nj

bj ∨ ¬nj

nj ∨ ¬cj ∨ ¬bj







nj = cj ∧ bj

¬lj ∨ ej

¬mj ∨ ej

¬ej ∨ lj ∨ mj







ej = lj ∨ mj

¬nj ∨ tj+1

¬ej ∨ tj+1

¬tj+1 ∨ nj ∨ ej







tj+1 = nj ∨ ej .
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(d) Let |A| ≤ |B| ≤ |C| (otherwise we may rename the numbers again without loss of generality).
Then, for |A| ≤ j < |B|,

¬cj ∨ bj ∨ rj

cj ∨ ¬bj ∨ rj

cj ∨ bj ∨ ¬rj

¬cj ∨ ¬bj ∨ ¬rj







rj = cj ⊕ bj

cj ∨ ¬tj+1

bj ∨ ¬tj+1

tj+1 ∨ ¬cj ∨ ¬bj







tj+1 = cj ∧ bj .

(e) For |B| ≤ j < |C|:

rj ∨ ¬cj

¬rj ∨ cj

}

rj = cj .

4. If SN consists of two numbers, we add them by a simple summator. Let the input numbers be
A = {0, . . . , 0

︸ ︷︷ ︸

A0

, aA0+1, . . . , a|A|}, B = {0, . . . , 0
︸ ︷︷ ︸

B0

, bB0+1, . . . , b|B|}. We denote the output by R =

{0, . . . , 0
︸ ︷︷ ︸

R0

, rR0+1, . . . , r|R|}, where R0 = min(A0, B0), |R| = max(|A|, |B|) + 1 (let A0 ≤ B0, |A| ≤ |B|):

(a) For A0 ≤ j < B0:

rj ∨ ¬aj

¬rj ∨ aj

}

rj = aj

(b) For j = B0 (a somewhat special case):

¬aj ∨ bj ∨ rj

aj ∨ ¬bj ∨ rj

aj ∨ bj ∨ ¬rj

¬aj ∨ ¬bj ∨ ¬rj







rj = aj ⊕ bj

aj ∨ ¬tj+1

bj ∨ ¬tj+1

tj+1 ∨ ¬aj ∨ ¬bj







tj+1 = aj ∧ bj

(c) The usual summation with carry bits (for B0 < j < |A|):

¬aj ∨ bj ∨ kj

aj ∨ ¬bj ∨ kj

aj ∨ bj ∨ ¬kj

¬aj ∨ ¬bj ∨ ¬kj







kj = aj ⊕ bj

¬tj ∨ kj ∨ rj

tj ∨ ¬kj ∨ rj

tj ∨ kj ∨ ¬rj

¬tj ∨ ¬kj ∨ ¬rj







rj = tj ⊕ kj

aj ∨ ¬lj

bj ∨ ¬lj

lj ∨ ¬aj ∨ ¬bj







lj = aj ∧ bj
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aj ∨ ¬lj

tj ∨ ¬lj

lj ∨ ¬aj ∨ ¬tj







mj = aj ∧ tj

tj ∨ ¬nj

bj ∨ ¬nj

nj ∨ ¬tj ∨ ¬bj







nj = tj ∧ bj

¬lj ∨ ej

¬mj ∨ ej

¬ej ∨ lj ∨ mj







ej = lj ∨ mj

¬nj ∨ tj+1

¬ej ∨ tj+1

¬tj+1 ∨ nj ∨ ej







tj+1 = nj ∨ ej .

(d) For |A| < j ≤ |B|:
¬tj ∨ bj ∨ rj

tj ∨ ¬bj ∨ rj

tj ∨ bj ∨ ¬rj

¬tj ∨ ¬bj ∨ ¬rj







rj = tj ⊕ bj

tj ∨ ¬tj+1

bj ∨ ¬tj+1

tj+1 ∨ ¬tj ∨ ¬bj







tj+1 = tj ∧ bj

(e) The last cell, j = |B| + 1:

rj ∨ ¬tj

¬rj ∨ tj

}

rj = tj .

A.5 Booth and simplified Booth multipliers

The idea of the multiplication algorithm presented here dates back to [Booth, 1951]. We shall first present
the basic idea, and then describe two different implementations, one being a simplified version of another.

One of the basic ideas that lie behind Booth multipliers is a shortcut for the basic add-stepper circuit.
It is obvious that, if a certain bit of one of the factors is zero, multiplication by that bit may be greatly
simplified. As we have seen above, modified add-stepper circuits are based on this simple remark.

Booth’s another idea was to use a well-known trick (usually named after Abel) which allows to split a
sum into sum of differences of neighboring members. Then one may also add negative numbers represented
in the complementary code, where a negative n-bit number is represented as −x = 2n − x, so that the value
of a bit string A = a0 . . . an is calculated as value(A) = −an · 2n +

∑n−1
i=0 ai · 2

i. By Abel’s trick, we may
multiply two numbers X = x0x1 . . . xN−1 and Y = y0y1 . . . yN−1 by using the following relation:

X · Y = −Xy0 +

N−1∑

i=1

X(yi−1 − yi)2
i + XyN−12

N .

If two neighboring bits of Y are equal, we may step over one of the steps, as we did in modified add-step.
This scheme on average works faster than a regular add-stepper algorithm; in its worst-case situation, where
all neighboring bits are different (010101 . . . or 101010 . . .) it runs for just the same time as an add-step
multiplier.

Formally, this leads us to the following algorithm:
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Figure A.5: Part of the cell for the booth multiplier.

• Input: X = x0 . . . xN , Y = y0 . . . yM

• Algorithm: Calculate every member of the sum one by one (we set y−1 to be 0)

X · (y−1 − y0) · 2
0+

X · (y0 − y1) · 2
1+

. . .+

X · (yM−1 − yM ) · 2M =

X · (−yM · 2M +
M−1∑

i=0

yi · 2
i) =

X · value(Y )

• Output: C = X · value(Y )

As a boolean circuit acting as a Booth multiplier we take the following. We consider the circuit from
the previous section as the basic structure for the Booth circuit and substitute xi and yj for the schemes
depicted on Fig. A.5.

However, before proceeding to the Booth multiplier, we would have to face a simpler challenge: a multi-
plier which we called simplified Booth.

Simplified Booth multiplier differs from the original Booth multiplier in that it does not employ the
“modified” trick (which we described in the beginning of this section). The original Booth multiplier may
be obtained from the simplified Booth multiplier in the same way as we obtained modified add-stepper from
the original add-stepper multiplier.

This simplified circuit works in fact even slower than the original add-stepper algorithm (all its power is
driven away by not stepping over zero computations, and the constant overhead is larger). However, it is a
necessary step on our way to the original Booth multipliers, as a proof of equivalence between simplified Booth
and add-stepper would immediately (although somewhat messy, very technical and at present infeasible for
the solver, so we do not write it down here) yield an equivalence proof between original Booth and modified
add-step.

We now write down the clauses which constitute the boolean equivalent of the simplified Booth circuit.
Our description is divided into several part with respect to the function of different clauses in the formula.
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A circuit for representing negative numbers:

We add the following sets of clauses:

1. Clauses describing sj , 1 ≤ j ≤ M :

¬s0 ∨ y0

s0 ∨ ¬y0

}

s0 = y0

¬yj ∨ yj−1 ∨ sj

yj ∨ ¬yj−1 ∨ sj

yj ∨ yj−1 ∨ ¬sj

¬yj ∨ ¬yj−1 ∨ ¬rj







sj = yj ⊕ yj−1

¬sM+1 ∨ yM

sM+1 ∨ ¬yM

}

sM+1 = yM

2. Clauses describing negations of xi, 0 ≤ i ≤ N :

nxi ∨ xi

¬nxi ∨ ¬xi

}

nxi = ¬xi

3. Clauses describing ∧i
K=0¬xK , 1 ≤ i ≤ N :

¬w0 ∨ nx0

w0 ∨ ¬nx0

}

w0 = nx0

wi−1 ∨ ¬wi

nxi ∨ ¬wi

wi ∨ ¬wi−1 ∨ ¬nxi







wi = wi−1 ∧ nxi

4. Clauses defining variables gij , 1 ≤ i ≤ N , 0 ≤ j ≤ M :

¬g0j ∨ x0

g0j ∨ ¬x0

}

g0j = x0

¬yj ∨ xi ∨ vij

yj ∨ ¬xi ∨ vij

yj ∨ xi ∨ ¬vij

¬yj ∨ ¬xi ∨ ¬vij







vij = yj ⊕ xi

wi−1 ∨ ¬ui−1j

yj ∨ ¬ui−1j

ui−1j ∨ ¬wi−1 ∨ ¬yj







ui−1j = wi−1 ∧ yj

¬vij ∨ ui−1j ∨ gij

vij ∨ ¬ui−1j ∨ gij

vij ∨ ui−1j ∨ ¬gij

¬vij ∨ ¬ui−1j ∨ ¬gij







gij = vij ⊕ ui−1j

¬g0M+1 ∨ x0

g0M+1 ∨ ¬x0

}

g0M+1 = x0
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¬giM+1 ∨ xi

giM+1 ∨ ¬xi

}

giM+1 = xi

A circuit for a simple add-stepper multiplier2:

5. The zeroth column is defined by variables ri0, 0 ≤ i ≤ N :

gi0 ∨ ¬ri0

s0 ∨ ¬ri0

r00 ∨ ¬gi0 ∨ ¬s0







ri0 = gi0 ∧ s0

nwN ∨ wN

¬nwN ∨ ¬xN

}

nwN = ¬wN

nwN ∨ ¬rN0

y0 ∨ ¬rN0

rN0 ∨ ¬nwN ∨ ¬y0







rN0 = nwN ∧ y0

6. The lowest cell in each of the following columns (j = 1..M + 1) is defined as follows:

g0j ∨ ¬c0j

sj ∨ ¬c0j

c0j ∨ ¬g0j ∨ ¬sj







c0j = g0j ∧ sj

¬c0j ∨ r1j−1 ∨ r0j

c0j ∨ ¬r1j−1 ∨ r0j

c0j ∨ r1j−1 ∨ ¬r0j

¬c0j ∨ ¬r1j−1 ∨ ¬r0j







r0j = c0j ⊕ r1j−1

c0j ∨ ¬t0j

r1j−1 ∨ ¬t0j

t0j ∨ ¬c0j ∨ ¬r1j−1







t0j = c0j ∧ r1j−1

7. Upper cells in the remaning columns (j = 1..M + 1) are defined by the following clauses:

nwN ∨ ¬kN+1j

yj ∨ ¬kN+1j

kN+1j ∨ ¬nwN ∨ ¬yj







kN+1j = nwN ∧ yj

kN+1j ∨ ¬cN+1j

sj ∨ ¬cN+1j

cN+1j ∨ ¬kN+1j ∨ ¬sj







cN+1j = kN+1j ∧ sj

¬tN+1j ∨ cN+1j ∨ rN+1j−1

tN+1j ∨ ¬cN+1j ∨ rN+1j−1

tN+1j ∨ cN+1j ∨ ¬rN+1j−1

¬tN+1j ∨ ¬cN+1j ∨ ¬rN+1j−1







tN+1j = cN+1j ⊕ rN+1j−1

2in the simplified Booth its purpose is to add up gi · 2
i introduced in the previous item
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¬tN+1j ∨ tNj ∨ rN+1j

tN+1j ∨ ¬tNj ∨ rN+1j

tN+1j ∨ tNj ∨ ¬rN+1j

¬tN+1j ∨ ¬tNj ∨ ¬rNj







rN+1j = tN+1j ⊕ tNj

8. The rest of the cells (the rest of the set {i, j}i=0..N,j=0..M+1) is defined by the following sets of clauses:

gij ∨ ¬cij

sj ∨ ¬cij

cij ∨ ¬gij ∨ ¬sj







cij = gij ∧ sj

¬cij ∨ ri+1,j−1 ∨ kij

cij ∨ ¬ri+1,j−1 ∨ kij

cij ∨ ri+1,j−1 ∨ ¬kij

¬cij ∨ ¬ri+1,j−1 ∨ ¬kij







kij = cij ⊕ ri+1,j−1

¬kij ∨ ti−1,j ∨ rij

kij ∨ ¬ti−1,j ∨ rij

kij ∨ ti−1,j ∨ ¬rij

¬kij ∨ ¬ti−1,j ∨ ¬rij







rij = kij ⊕ ti−1,j

cij ∨ ¬lij

ri+1,j−1 ∨ ¬lij

lij ∨ ¬cij ∨ ¬ri+1,j−1







lij = cij ∧ ri+1,j−1

cij ∨ ¬mij

ti−1,j ∨ ¬mij

mij ∨ ¬cij ∨ ¬ti−1,j







mij = cij ∧ ti−1,j

ri+1,j−1 ∨ ¬nij

ti−1,j ∨ ¬nij

nij ∨ ¬ri+1,j−1 ∨ ¬ti−1,j







nij = ri+1,j−1 ∧ ti−1,j

¬lij ∨ eij

¬mij ∨ eij

¬eij ∨ lij ∨ mij







eij = lij ∨ mij

¬nij ∨ tij

¬eij ∨ tij

¬tij ∨ nij ∨ eij







tij = nij ∨ eij

9. r0j , 0 ≤ j ≤ M + 1 correspond to the first M + 2 outputs of the simplified Booth multilplier, pi, 0 ≤
i ≤ M + 1. riM+1, 1 ≤ i ≤ N corresponding to the next N outputs of the circuit.

10. We treat the case where one of the factors is a one-bit number as a special one and do not consider it
here.
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