
Analysis of Reaction Network Systems using
Tropical Geometry

Abstract. We discuss a novel analysis method for reaction network sys-
tems with polynomial or rational rate functions. This method is based
on computing tropical equilibrations defined by the equality of at least
two dominant monomials of opposite signs in the differential equations
of each dynamic variable. In algebraic geometry, the tropical equilibra-
tion problem is tantamount to finding tropical varieties, that are finite
intersections of tropical varieties. Tropical equilibrations with the same
set of dominant monomials define a branch or equivalence class. Minimal
branches are particularly interesting as they describe the simplest states
of the reaction network. We provide a method to compute the number
of minimal branches and to find representative tropical equilibrations for
each branch.

1 Introduction

Networks of chemical reactions are widely used in chemistry for modeling cataly-
sis, combustion, chemical reactors, or in biology as models of signaling, metabolism,
and gene regulation. Several mathematical methods were developed for analy-
sis of these models such as the study of multiplicity of steady state solutions
and detection of of bifurcations by stoichiometry analysis, deficiency theorems,
reversibility, permanency, etc. [1].

All these methods put emphasis on the number and the stability of the steady
states of chemical networks. Beyond steady states, metastable states defined as
regions of the phase space where the system has slow dynamics are also impor-
tant for understanding the behaviour of networks. For instance, low dimensional
inertial or invariant manifold gather slow degrees of freedom of the system and
are important for model reduction. Invariant manifolds can lose local stability,
which allow the trajectories to perform large phase space excursions before re-
turning in a different place on the same invariant manifold or on a different
one [2]. Such itinerancy phenomena are current in biological networks and it is
important to know how metastable states are connected.

We showed elsewhere that tropical geometry methods can be used to approx-
imate such invariant manifolds for systems of polynomial differential equations
[3–5]. The slowness of the dynamics on the invariant manifolds follows from
the compensation of dominant forces acting on the system, represented as dom-
inant monomials in the differential equations. We have called the equality of
dominant monomials tropical equilibration [4, 5]. Tropical equilibrations are dif-
ferent from steady states, because in tropically equilibrated systems one has
non-compensated weak forces that drive the system slowly, whereas at steady
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state net forces vanish. Furthermore, invariant manifolds can be roughly associ-
ated to metastable states because they are regions of phase space where systems
dynamics is relatively slower. In this paper we introduce methods to compute
tropical equilibrations and group them into branches that cover the metastable
states of the system. These branches of tropical equilibrations form a complex.
The zeroth homology group of this complex indicates the possible transitions
between the metastable states.

2 Definitions and settings

We consider biochemical networks described by mass action kinetics

dxi
dt

=
∑
j

kjSijx
αj , 1 ≤ i ≤ n, (1)

where kj > 0 are kinetic constants, Sij are the entries of the stoichiometric

matrix (uniformly bounded integers, |Sij | < s, s is small), αj = (αj1, . . . , α
j
n) are

multi-indices, and xαj = x
αj

1
1 . . . x

αj
n
n . We consider that αji are positive integers.

In the case of slow/fast systems with polynomial dynamics such as (1), the
slow invariant manifold is approximated by a system of polynomial equations for
the fast species. This crucial point allows us to find a connection with tropical
geometry. We introduce now the terminology of tropical geometry needed for
the presentation of our results, and refer to [6] for a comprehensive introduction
to this field.

Let f1, f2, . . . , fk be multivariate polynomials, fi ∈ C[x1, x2, . . . , xn], repre-
senting all or a part of the polynomials in the right hand side of (1).

Let us now consider that variables xi, i ∈ [1, n] are written as powers of a
small positive parameter ε, namely xi = x̄iε

ai , where x̄i has order zero (are
bounded, uniformly in ε). The orders ai indicate the order of magnitude of xi.
Because ε was chosen small, ai are lower for larger absolute values of xi. Fur-
thermore, the order of magnitude of monomials xα is given by the dot product
µ =< α,a >, where a = (a1, . . . , an). Again, smaller values of µ correspond to
monomials with larger absolute values. For each multivariate polynomial f we
define the tropical surface T (f) as the set of vectors a ∈ Rn such that the mini-
mum of < α,a > over all monomials in f is attained for at least two monomials
in f . In other words, f has at least two dominating monomials.

A tropical prevariety is defined as the intersection of a finite number of trop-
ical surfaces, namely T (f1, f2, . . . , fk) = ∩i∈[1,k]T (fi).

A tropical variety is the intersection of all tropical surfaces in the ideal I gen-
erated by the polynomials f1, f2, . . . , fk, T (I) = ∩f∈IT (f). The tropical variety
is within the tropical prevariety, but the reciprocal property is not always true.

For our purposes, we slightly modify the classical notion of tropical preva-
riety. A tropical equilibration is defined as a vector a ∈ Rn such that < α,a >
attains its minimum at least twice for monomials of different signs, for each poly-
nomial in the system f1, f2, . . . , fk. Thus, tropical equilibrations are subsets of
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the tropical prevariety. Our sign condition is needed because we are interested in
approximating real positive solutions of polynomial systems (the sum of several
dominant monomials of the same sign have no real strictly positive roots).

3 Branches of tropical equilibrations

For chemical reaction networks with multiple timescales it is reasonable to con-
sider that kinetic parameters have different orders of magnitudes.

We therefore assume that parameters of the kinetic models (1) can be written
as

kj = k̄jε
γj . (2)

The exponents γj are considered to be integer. For instance, the following ap-
proximation produces integer exponents:

γj = round(log(kj)/ log(ε)), (3)

where round stands for the closest integer (with half-integers rounded to even
numbers). Without rounding to the closest integer, changing the parameter ε
should not introduce variations in the output of our method. Indeed, the tropical
prevariety is independent on the choice of ε.

Of course, kinetic parameters are fixed. In contrast, species orders vary in
the concentration space and have to be calculated as solutions to the tropical
equilibration problem. To this aim, the network dynamics is first described by a
rescaled ODE system

dx̄i
dt

=
∑
j

εµj−ai k̄jSijx̄
αj , (4)

where

µj(a) = γj + 〈a,αj〉, (5)

and 〈, 〉 stands for the dot product.
The r.h.s. of each equation in (4) is a sum of multivariate monomials in

the concentrations. The orders µj indicate how large are these monomials, in
absolute value. A monomial of order µj dominates another monomial of order
µj′ if µj < µj′ .

The tropical equilibration problem consists in finding a vector a such that

min
j,Sij>0

(γj + 〈a,αj〉) = min
j,Sij<0

(γj + 〈a,αj〉) (6)

The solutions of this system have a geometrical interpretation. Let us define
the extended order vectors ae = (1,a) ∈ Rn+1 and extended exponent vectors
αej = (γj ,αj) ∈ Zn+1. Let us consider the equality µj = µj′ . This represents

the equation of a n dimensional hyperplane of Rn+1, orthogonal to the vector
αj

e −αj′e:
〈ae,αje〉 = 〈ae,αj′e〉, (7)



4

where 〈, 〉 is the dot product in Rn+1. We will see in the next section that
the minimality condition on the exponents µj implies that the normal vectors
αj

e −αj′e are edges of the so-called Newton polytope [7, 8].
For each equation i, let us define

Mi(a) = argmin
j

(µj(a), Sij > 0) = argmin
j

(µj(a), Sij < 0), (8)

in other words Mi denote the set of monomials having the same minimal expo-
nent µi.

We call tropically truncated system the system obtained by pruning the sys-
tem (4), i.e. by keeping only the dominating monomials.

dx̄i
dt

= εµi−ai(
∑

j∈Mi(a)

k̄jνjix̄
αj ), (9)

The tropical truncated system is uniquely determined by the index sets
Mi(a), therefore by the tropical equilibration a. Reciprocally, two tropical equili-
brations can have the same index sets Mi(a) and truncated systems. We say that
two tropical equilibrations a1, a2 are equivalent iff Mi(a1) = Mi(a2), for all i.
Equivalence classes of tropical equilibrations are called branches. A branch with
an index set Mi is minimal if there is no other branch with an index set M ′i
such that M ′i ⊂ Mi for all i where the inclusion is strict for at least one i.
Because for each index i, the relation (7) defines a hyperplane, the tropical equi-
libration branches are on intersections of n such hyperplanes. Infinite branches
correspond to non-transversal intersections and minimal branches correspond to
hyperplanes of maximal dimension.

4 Algorithm

4.1 Pre-processing

We consider examples with polynomial vector field. The kinetic parameters of
the equation system are scaled based on Eq. (2).

4.2 Newton polytope and edge filtering

For each equation and species i, we define a Newton polytope Ni, that is the
convex hull of the set of points αej such that νji 6= 0 and also including together
with all the points the half-line emanating from these points in the positive ε
direction. This is the Newton polytope of the polynomial in right hand side of
Eq.(4), with the scaling parameter ε considered as a new variable.

As explained in Section ?? the tropical equilibrations correspond to vectors
ae = (1,a) ∈ Rn+1 satisfying the optimality condition of Definition ??. This
condition is satisfied automatically on hyperplanes orthogonal to edges of New-
ton polytope connecting vertices αej′ , α

e
j′′ satisfying the opposite sign condition.
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Therefore, a subset of edges from Newton polytope is selected based on the fil-
tering criteria which tells that the vertices belonging to an edge should be from
opposite sign monomials as explained in Eq.(10).

E(P ) = {{v1, v2} ⊆
(
V
2

)
| conv(v1, v2) ∈ F1(P )

∧ sign(v1)× sign(v2) = −1}, (10)

where vi is the vertex of the polytope and V is the vertex set of the poly-
tope, conv(v1, v2) is the convex hull of vertices v1, v2 and F1(P ) is the set of
1-dimensional face (edges) of the polytope. sign(vi) represents the sign of the
monomial which corresponds to vertex vi. Fig. 1 shows an example of Newton
polytope construction for a single equation. Further definitions about properties
of a polytope and Newton polytope can be found in [7, 8].

Fig. 1. An example of a Newton polytope for the polynomial −x61+x31x2−x31+x1x
2
2. In

this example, all the monomial coefficients have order zero in ε and we want to solve the
tropical problem min(3a1+a2, a1+2a2) = min(6a1, 3a1). The Newton polytope vertices
(6, 0), (3, 0), (1, 2) are connected by lines. The point (3, 1) is not a vertex as it lies in
the interior of the polytope. This stems to having min(3a1 +a2, a1 +2a2) = a1 +2a2 for
all tropical solutions, which reduces the number of cases to be tested. The thick edges
satisfy the sign condition, whereas the dashed edge does not satisfy this condition.
For this example, the solutions of the tropical problem are in infinite number and are
carried by the two half-lines a1 = a2 ≥ 0 and 5a1 = 2a2 ≤ 0, orthogonal to the thick
edges of the Newton polygon.

4.3 Pruning and feasible solutions

By feasible solution we understand a vector (a1, . . . , an) satisfying all the equa-
tions of the system (??). A feasible solution lies in the intersection of hyperplanes
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(or convex subsets of these hyperplanes) orthogonal to edges of Newton poly-
topes obeying the sign conditions. Of course, not all sequences of edges lead
to nonvoid intersections and thus feasible solutions. This can be tested by the
following linear programming problem, resulting from (??):

γj(i) + 〈a,αj(i)〉 = γ′j(i) + 〈a,α′j(i)〉 ≤ γ′′j + 〈a,α′′j 〉),
for all j′′ 6= j, j′, νj′′i 6= 0, i = 1, . . . , n (11)

where j(i), j′(i) define the chosen edge of the i−th Newton polytope. The set
of indices j′′ can be restricted to vertices of the Newton polytope, because the
inequalities are automatically fulfilled for monomials that are internal to the
Newton polytope. For instance, in the exemple of the preceding section, the
choice of the edge connecting vertices (1, 2) and (6, 0) leads to the following
linear programming problem:

a1 + 2a2 = 3a1 ≤ 6a1,

whose solution is a half-line orthogonal to the edge of the Newton polygon.
The pseudo-code is presented in Algorithm 1 and the pruning method which is
heuristic to filter out the infeasible set of edge combinations is presented in Fig.
2. More details in [reference to our unpublished paper ?].

Algorithm 1: SolveOrders: Steps of tropical equilibration algorithm

Input: List of edge sets ne1, ne2, ..., nen, and the corresponding vertices
Output: Set of feasible systems (set of inequalities) corresponding to orders of

the variables a1,a2, ...,an (tropical equilibration solution set)
1 begin
2 solutionset ={}; integer k=1; equation = {}
3 SolveOrders(equation, k, edge-sets, vertices)

4 if k > n then
5 return

6 for l = 1 to number of entries in nekedge-set do

7 equation(k)* = vertices in lthrow

8 inequalities* = all other vertices in ne1to nekedge-sets

9 if LinearSolve(equation,inequalities)is feasible then
10 if k = n then
11 add the feasible system (set of inequalities) to solutionset

12 SolveOrders(equation, k + 1, ne1, .., nek, vertices)

13 *The equations and inequalities are initialised as per Eq. (11)
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e11

e22

e32e31

e21

e32e31

LinearSolve=true

LinearSolve=false

LinearSolve=true

Fig. 2. Pruning strategy. Results using different pruning strategies. The possible com-
binations of edges are represented in a tree representation. The algorithm starts by
testing for feasible solution for first pair of edge sets. If a feasible solution is found, the
algorithm proceeds further to other edge sets or it backtracks. In the figure, e11 and e21
are selected from edge sets ne1, ne2 and are checked for a feasible solution satisfying
(11). If such a solution exists, it moves to e31from the next edge set and again checks
for feasible solution, if not then it backtracks to e21 and then to e32 which results in
a feasible solution. Therefore, the subtree with root node e31 is discarded from future
searches and this improves running time. Likewise the branch e11 and e22 is explored.
This approach is similar to branch and bound algorithm technique. The dashed arrows
show the flow of the program.
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4.4 Computation of Minimal solution branches

The set of feasible systems that were obtained using Algorithm 1 are actually
H-polytopes represented as intersection of finitely many closed half spaces (i.e.
either ≤ or ≥ occurs in the inequality system) and can be represented as

P = {x ∈ Rn | 〈x, bi〉 ≤ βi,∀i ∈ I} (12)

where bi ∈ Rn and βi ∈ R for i ∈ I, where I is an arbitrary index set.

Checking for duplicates The solution set of such H-polytopes are checked for
duplicates using the software package polymake [9] using the method equal polyhedra.

Checking for Polytope containment After the distinct polytopes were ob-
tained from the previous step are checked for polytope containment which checks
for two given polytopes P and Q if P ⊆ Q is true. This was performed using
included polyhedra method in polymake. Those polytopes which are contained
in other polytopes are filtered out and the remaining ones were the polytopes
corresponding to minimal branches.

Sample point for minimal branches From the polytopes corresponding to
minimal branches, the samples points are needed to be computed which cor-
respond to orders of the variables a1,a2, ...,an. For this purpose Satisfiability
Modulo Theories (SMT) solver called Microsoft Z3 software [10] was used in
python environment. This allowed to express the inequalities as boolean formula
and generate the sample point. The tropical solution set can be computed as

Ti = {x ∈Mi ∧ x /∈ Ni,∀i ∈ I} (13)

where x is a tropical solution if it belongs to set M i.e. polytope corresponding
to minimal branches and do not belong to N i.e. set of polytopes contained in
some polytope in M . I is an index set corresponding to elements of M .

5 Results

33 models were selected from r25 version of Biomodels database [11] having
polynomial vector field. The main finding of this paper to compute the minimal
branches. A summary of the analysis is presented in Table 1. The analysis is
performed to compute all possible combinations of vertices leading to tropical
solutions within a maximal running time of 10000 seconds of CPU time. In
practice, we restrict this search space using the tree pruning strategy as explained
in Sect. 4.3. The analysis was repeated with four different choices for ε values. In
such models, the number of variables may not be equal to number of equations
as the conservation laws are treated as extra linear equations in our framework.
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Table 1. Summary of analysis on Biomodels database. Tropical solutions here mean
existence of at least one feasible solution from all possible combination of vertices of the
Newton polytope. Timed-out means all solutions could not be computed within 10000
secs of computation time. No tropical solution implies no possible combination of ver-
tices could be found resulting in a feasible solution. Model BIOMD0000000289 has so-
lution at ε values 1/5,1/7 and 1/9 but no solutions at 1/23. Model BIOMD0000000108
has no solutions at all values of ε.

ε
value

Total
models
con-
sidered

Models
without
tropical
solutions

Models
with
tropical
solutions

Average
running
time (in
secs)

Average
number of
minimal
branches

1/5 33 1 32 299.38 3.24

1/7 33 1 32 244.12 3

1/9 33 1 32 309.73 3.75

1/23 33 2 31 3179.32 3.84

A semilog time-plot is presented in Fig. 3(a) which plots the log of running
time in milliseconds versus the number of equations in the model. In Fig. 3(b)
the pruning ratio i.e. the efficacy of tree pruning for ε value of 1/5 is plotted.
By pruning ratio is the ratio between number of times the linear programming
is invoked with every tree pruning step (cf. Fig. 2) and the possible number of
combinations of newton polytope edges without tree pruning (cf. Eq. ??). This
ratio is a measure of efficiency achieved due to pruning.

A semilog plot for minimal solution branches is presented in Fig. 4(a) and a
semilog plot in Fig. 4(b) showing the ratio of minimal solution branches to num-
ber of feasible systems (obtained from Algorithm 1). It shows a large proportion
of feasible systems are either redundant or included in other feasible systems
(i.e. inclusion relations).

In order to investigate the effect of different ε values on the number of minimal
solutions, a boxplot is presented in Fig. 8(a) for different choices of ε values. In
Fig. 8(b) the boxplot shows ratio of minimal solution branches to number of
feasible systems (obtained from Algorithm 1) for different choices of ε values

6 Example

7 Discussions

7.1 Robustness of maximal polytopes w.r.t. epsilon

7.2 Effect of epsilon on tropical solutions

7.3 Number of Maximal polytopes versus feasible systems

References

1. Feinberg, M.: Chemical reaction network structure and the stability of complex
isothermal reactorsi. the deficiency zero and deficiency one theorems. Chemical
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ratio for ε value of 1/5 against number of equations in the model
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Fig. 8. A directed graph in layered form showing the inclusion relations among the
different solution branches. Vertices comprises of solution polytopes and an directed
edge between i and j means j is included in i. The topmost layer contain the minimal
solution branches, thereafter the bottom layers are ”included” solution branches. The
layers of the included solution branches are based on the dimension of the corresponding
solution polytope (in descending order). Therefore, included solutions in one layer are
of same dimensional solution polytope.
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