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Abstract 1 Introduction

We display an existence of the short (polynomial size)

proofs for nondivisibility of two sparse multivariat,e

polynomials under the Extended Riemanu Hypothes-

is (ERH). The divisibility problem is closely related to

the rational interpolation problem (whose complexity

bounds were determined in [GKS 90] and [GK 91]). In

this setting we assume that a rational function is give,n

by a black box (see e.g. [KT 88, GKS 90, K 89]) for eval-

uating it.

We prove also that, surprisingly, the problem of deciding

whether a rational function given by a black box equals

a polynomial belongs to the parallel class NC (see e.g.

[KR 90]), provided we know the degree of some sparse

representation of it,
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Symbolic manipulation of sparse polynomials,

given by binary lists of exponents and nonzero

coefficients, appears to be much more difficult

than dealing with polynomials in dense encod-

ing (see e.g. [GKS 90, KT 88, P 77a, P 77b]).

The sparse representation of polynomials corre-

sponds to the actual size of arithmetic circuits

of depth 2 representing them, and excludes the

possibility of exponential padding of the size

of the input by the nonzero coef%cients. The

first results in this direction are due to Plaisted

[P 77a, P 77b], who proved, in particular, the

NP-completeness of divisibility of a polynomial

Zn — 1 by a product of sparse polynomials. On

the other hand, essentially nothing nontrivial

is known about the complexity of the divisibil-

ity problem of two sparse integer polynomials.
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(One can easily prove that it is in PSPACE

with the help of [M S6]. ) Here we prove that

the problem of nondivisibility of two sparse

multivariable polynomials has (polynomially)

short proofs (is in NP), provided that the Ex-

tended Riemann Hypothesis (ERH) holds (see

e.g. [LO 77]).

We prove also that the problem of deciding

whether a rational function given by a b/ack

bo~ equals a polynomial belongs to the paral-

lel class NC, provided we know the degree of

some sparse rat ional represent at ion of it.

2 Nondivisibility problem for

sparse polynomials

We start with the formulation of the problem.

Let f = ~l<i<t a%~’Jt , 9 = ~15i5t bi~r<t G

Zz[xl,. . ., xnj _ie two at most t-sparse poly -

nomials. Assume that every degree degZ, ( f ),

CMZ. (~) <41 ~ j < n and the bit-size /(ai),

l(bi) of each integer coefficient ai, bi is less than

ill. The problem is to test, whether g divides

f. Observe that the bit-size of input data is

O(i(A4 + n log d)).

First, we consider the case n = 1 of one-

variable polynomials ~ = ~l<,<t a,x~~, g =— —

Zl<i<t bixkt .

Lemma 1. Any nonzero root ofg (also off)

has multiplicity less than t.

Proof. Assume the contrary and let ZO # O

be a root of g with multiplicity at least t. Then

g(xo) = g(ll(zo) = . . “ = gtt-ll(xo) = 0, Hence

the t x t matrix

1 . . . 1

Itl . . . k~

kl(kl – 1) . . . k,(kt – 1)

kl(kl – l)(kl – 2) ~. . kt(kt – l)(kt -2)

kl(kl–l) . ..(kt +2)2) . . k,(kt–l) . ..(kt +2)2)

is singular. This leads to a contradiction since

this matrix by elementary transformations of its

rows can be reduced to a Vandermonde matrix

[ 1

1 1 . . . 1

kl kz . . . kt
■

k:-1 j“-~ :...
k:-l

Assume that g does not divide f. Then there

exists a factor h c Z[Z] of g that is irreducible

over Q , and such that its multiplicity rn~ in

g is larger than its multiplicity mj in f. The

Lemma 1 above shows m~ < t.

There exist polynomials u, v c ~ [z] with

deg(u), deg(v) < d such that 1 = uh + v (~).

Taking into account the bounds l(h), 1 (~) <

A4 + d that apply to factors of g, f, respec-

tively, we obtain J(u), 1(v) < MclO(l) by virtue

of the bounds on the bit-size of minors of the

Sylvester matrix (see e.g. [CG 82, L 82, M 82]).

Let us rewrite the equality in the following way:

Wo =
()

fUoh+vom, where W. c Z, Uo,

V. c Z[X]. There exist at most Al. d“i~) primes

which divide W.. Therefore, there exists a prime

p < N = (Md)”(l) which does not divide any

of Wo, the leading coefficient /c(g) of g and the

discriminant of h, and moreover the polynomial

h(modp) G GF(p)[x] has a root in GF(p) (pro-

vided the ERH holds, see [LO 77], Corollary 1.2

on p. 413 or [W 84], the Theorem on p, 182).

Then the multiplicity of this root in j equals

mf and in g is at least rn~.
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The nondeterministic procedure under con-

struction guesses a prime p < N and an element

a 6 GF(p) and tests whether for some O s ;i s

t– 1 one has g(a) = gtl)(a) = . . . = gi;)(~) n, 0,

~(il(a) # 0, lc(g)# O in GF(P).

One can easily see that if such p, CY exist then

g does not divide ~. Indeed, in the opposite

case, (Zc(g))sj = ge for some integer s and a

polynomial e e Z[z]. Reducing this equation

mod p, one gets a contradiction.

Now we return to the multivariable case, Su;p-

pose again that g does not divide ~. Let

hEz[x~,. ... x.] have a similar property to

the h in the univariate case. Assume witho-

ut loss of generality that a variable Xl oc-

curs in h. Then g also does not divide j

in the ring ~ (Xz, ..., X~ ) [Xl] by the Gauss

lemma. Consider division of j by g with re-

mainder in the latter ring: ~ = gp + 8. Then

degxt(p), degx, (~) < d’, 2 S z s n (cf. [L 82])

and the denominators of p, d are the powers

of lCXI (g) c Z[X2, . . . X~]. Hence for some

integers O < X2, . . . . x. ~ d2 + d we ha,ve

(~cx, (g) “ ZCXI(6))(ZZ, . . . . x~) # O. Therefore,

the polynomial g(Xl, X2, ..., z~) c ZIXI] does

not divide j(Xl, Z2, . . . . z~) E ZIX1] in the

ring ~ [Xl].

The nondeterministic procedure guesses im

index 1 ~ z ~ n, thus Xi (in our argument

above its role was played by Xl), the inte-

gers O < x2,. ... z~ < d2 + d and applies tlhe

nondeterministic procedure described before

to one-variable polynomials g(X1, Z2, . . . . zfi, )I,

j-(xl, zz,..., %n). Thus, we have proved tile

following

PROPOSITION 1. Nondivisibility of

sparse mult i variable polynomials belongs to N P

provided Extended Riemann Hypothesis holds.

3 Divisibility problem for sparse

rational function given by a

black-box

The proposition 1 can be improved if t-sparse

f, g e Z[x,,.. ., Xn] are not explicitly given,

but we only have a black box (see e.g. [GK 91,

GKS 90]) for the rational function j/g provided

that lCX1 (g) = 1 and a bound on d is given.

This is due to the fact that in the one-variable

case we need only a bound on ill which one

can get even in parallel class NC (cf. [KR 90])

from a black-box relying on the construction

from [GK 91] of a big enough number. To do

this we proceed as follows.

Assume that j = ~ aix~t, g = ~ bix~t,
l<i<tl l<i<t~

tl, t2 ~ t and g has-a-minimal possi~l; degree

for any t-sparse representation of the rational

function q = f/g.

Let M = m~x{l(ai), /(bi)} + 1.

Take successive primes pl, . . . . pt and for

each p among them calculate (by black-box)

dP), !?(P2)>“ “ ‘->dP 2’2+’). For at least one p all

these values are defined, i.e. g does not vanish

in these points. Let us fix such p.

Lemma 2.

9reater ia~”i~?~’~~’

At least one of

dP)>dP ), ) has an absolute value

/.

Proof. Denote M = max{]q(p)l, . . . .

[q(p2’2+’ ) I}. The homogeneous linear system in

the indeterminates A;, Bi

~ Aips’t = ( ~ BipSka)q(pS), 1< s < Zt’+1
I<i<tl l<t<t~.-
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has a unique solution since the polynomials

.f, g provide a minimal t-sparse representa-

tion of q, hence (l<~tl AiZ~I)/(l<~t, Bixk: ) =
-— —-

q(z). Therefore, each ai, bi equals to a quo-

tient of a suitable pair of (il + & – 1) x (tl +

tz – 1) minors of this linear system. Then
2Wjt)2t < (~~

rnax{luil~ l&[} ~ (flp – 4d’2)2’. The

lemma is proved. ~

One can construct in NC the integer t4dt2

([BCH 86]), then by Lemma 2 an integer larger

than 2“12t and again using [BCH 86] an integer

larger than 2“.

Then the algorithm constructs an integer

NO >36. 23M . d5 . Finally, the algorithm yields

the number N = q(q(No)). We claim that N is

big enough (see [GK 91]), namely, divide with

the remainder ~ = eg + rem(~, g), then for each

integer N1 2 N wehave O < l%d(N1)\ < ~,

provided that rem(~, g) # O.

Let us prove the claim. Denote dl = deg(~),

do = deg(g). W.l,o.g. assume that lc(~) >

0. Then ~(No) > N~l – dNf’-12M > ~N~’,

O < g(NO) < N& + dN~O-12M < ~N$, hence
dl –d.q(No) > ~No . On the other hand ~(No) <

2“dN$ , g(No) > N$ – 2“dN$-1 > ;N~,

therefore q(No) < 2M+ldN$ ‘d”. We get that

~(No) < *No iff dl = do. In this case g divides

~ if and only if j_/g ~ const, arguing as in the

proof of Lemma 2 the latter identity is equiv-

alent to the equalities q(p) = . . . = q(p2tz+1 ).

So, we assume now that dl – do > 0. Notice

that the absolute value of each coefficient of

rern(j, g) is at most ((dl — do + 2)2”) *1-*0+2

(see e.g. [L 82]). In a similar way N =

~(~(NO)) > :(~(NCI))d]-~” > 3*0-d@N~*l-*o)2
and g(N) > N*o — 2“doNdo-1 > ; j@o .

Hence O < lrem(~, g)(N)l < ((all – do +

2)2M)*’ -*o+ ’doNdO–l < ~lVdO. This proves the

claim.

So, divisibility gl~ is equivalent to (~/g)(N)

being an integer. The number of arithmetic op-

erations of the exhibited algorithm is at most

(t log d)”tl) with the depth O(log t log log d).

Thus, the divisibility problem for one-variable

rational function given by a black-box, is in NC.

In the multivariable case divide with the re-

mainder j = eg + rem(j, g) w.r.t. the variable

Xl, namely in the ring ~ (X2, c“ “ , X~)[Xl], thus

e, rern(~, g) E ~ [Xl, . . . ,X~] since /cXl(g) =

1. After substituting Xl = Xdn-l, Xz =

X*n-’ ,... ,Xn = X*”, we get an equality

7 = z~ + rern(j, g) for nonvanishing iden-

tically polynomials ~, Z, ij, rem(~, g) 6 ~ [X]

and an inequality degx (~) = d“-l degxl (g) >

degx rem(~, g). Therefore O # rem(~, g) =

rem(~, U) and we conclude that g divides ~ iff ~

divides ~. So, we apply the divisibility test for

one-variable case exhibited above to the ratio-

nal function ij = ~/7j.

Hence the number of arithmetic operations

can be bounded by (tn.log d)”(l) with the depth

O(log(tn) log log d) invoking the bounds for

one-variable case.

PROPOSITION 2. The problem of testing

whether a sparse multivariable rational function

given by a black-box, equals to a polynomial,

belongs to NC, provided that a bound on the

degree of some t-sparse representation ~/g is

given such that Icxl (g) = 1.
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4 Further Research

There remains a fundamental open problem in

symbolic manipulation of polynomials whether

the eqdicit sparse divisibility problem can be

solved in polynomial (deterministic or random-

ized) time. At present we do not know even

whether the problem is in NP n CO-NP (and

this even under the assumption of the ERH).
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