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Abstract. We consider the problem of constructing continuous cryptographic primitives.
We present several candidates for continuous hard-to-invert functions. To formulate these
candidates, we introduce constructions based on tropical and supertropical circuits.

1. Introduction

Many important cryptographic applications require the underlying primitives to possess
some continuity properties. This effect is especially prominent in biometrics: fingerprints,
retina scans, and human voices change a little over time, and the conditions are also never
exactly the same. However, the system still needs to let the slightly changed human being
pass and still needs to deny access for other human beings who have “changed” substantially
more. Thus, for biometric applications continuous cryptographic primitives would be of
great interest.

In biometrics, approaches to continuous cryptography have already been proposed. In [23],
a fuzzy vault scheme was put forward. In fuzzy vault schemes, continuity is understood in
a discrete, set-theoretic sense: a set of features (minutae) is close to another set if their
intersection is large and their set difference is small; however, the features themselves remain
discrete and must match perfectly, just not all of them. The fuzzy vault scheme of [23] was
recently criticized and found vulnerable to certain plausible attacks [38, 39]; however, the
general problem of finding continuous primitives remains interesting.

In this work, we propose several candidates for continuous hard-to-invert functions, as in-
troduced in [16]1. We understand continuity in the regular mathematical sense: a continuous
function maps close points of a Euclidean space to close points of another Euclidean space.
This setting makes perfect sense for biometric applications. For example, voice features –
spectral and cepstral coefficients and related characteristics – are multidimensional real vec-
tors; a vault signed by somebody’s voice should forgive small variations in these integral
characteristics.

Our basic cryptographic construction, corresponding to biometric needs, is an authentica-
tion scheme based on a one-way function. There exist many secure authentication protocols
based on one-way functions, e.g. the Lamport’s scheme and the X.509 mechanism based on
digital signatures, as well as password schemes [32]. Their exact details are unimportant for
our present work; what is important is which function to use as the underlying hard-to-invert

1We deliberately do not use the term “one-way” here, as it has a precise mathematical meaning [13],
which we obviously cannot prove for our candidate functions. Hard-to-invert functions are functions which
are polynomially easy to compute, but for which there is no known algorithm for inverting them in polynomial
time. This is, obviously, not a mathematical definition, as it relies on our state of knowledge rather than
formal concepts; nevertheless, this is the best we can hope for at present.
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function. Suppose that f : X → Y is a function which is easy to compute but hard to invert,
and a participant of the authentication protocol Alice has a secret x ∈ X (her biometric
data). We aim to find a continuous function f : X → Y so that even if Alice’s biometrics
changed a little over time to some x′ ∈ X, the distance ρ(x, x′) being small, the value of
f(x′) would nevertheless be close to f(x), and the other participant of the protocol would be
able to authenticate Alice. On the other hand, an impostor Charlie with biometrics y ∈ X
on a relatively large distance ρ(x, y) should not be authenticated, and f(y) should be far
from f(x) in Y .

Continuous one-way functions (better to say, function candidates) have already appeared
in literature, but examples and discussion have been limited to the field of physical one-way
functions, i.e. hard-to-invert physical processes and their mathematical models. There are
continuous maps based on the second law of thermodynamics that are presumably hard to
invert [21]; other physical processes, often naturally continuous, have been proposed as one-
way candidates [36, 37]. Our candidates are much simpler, but still do not allow for known
efficient inversion algorithms although much thought has been spent on their underlying
problems.

For now, no one knows whether there exist functions which are much harder to invert than
to compute, especially in the formal cryptographic setting of one-way functions. The hardest
results we have without additional assumptions are linear lower bounds (no better explicit
lower bounds exist for circuit complexity anyway) [19, 20]. However, we can formulate an
open question in theoretical cryptography, which may (or may not, one never knows for sure)
turn out to be easier than overcoming these foundational obstacles.

Open question. Provided that one-way functions exist, does there exist a continuous
one-way function?

The paper is organized as follows. In Section 2, we consider a polynomial mapping as a
one-way candidate. In Section 3, we propose a candidate tropical construction. In Section 4,
we give constructions of interactive protocols based on our candidate functions.

2. Polynomial candidates

2.1. The general idea. Our first candidate is a polynomial mapping f : Rn → Rm for
m > n (for example, m = n + 1) for some ring R. In theory, we usually take R = R or
R = C and assume that f has integer coefficients; in practice, the corresponding real or
rational numbers will all be rational; we denote the rational points of C by QC = Q + iQ.
Inverting this one-way function is equivalent to solving a (slightly) overdetermined system
of polynomial equations:

f1(x1, . . . , xn) = y1,
f2(x2, . . . , xn) = y2,
. . . . . .
fm(x1, . . . , xn) = ym.

Solving systems of polynomial equations has naturally attracted much attention in alge-
braic geometry. It is well known that in the worst case, solving even a system of multivariate
quadratic equations is NP-complete, both over a finite field in the Turing machine model
and in the Blum-Shub-Smale model over an arbitrary ring or field, including R and C [2].
It is known that, over a finite field, if m is much larger than n (the system is very much
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overdetermined), there are efficient heuristics for solving such systems based on lineariza-
tion, namely the XSL method which was used in a much acclaimed method of breaking block
ciphers [6, 8].

Efficient algorithms for solving overdetermined systems on average (which are more rel-
evant in the cryptographic setting) are not known to date. For systems of n homogeneous
polynomial equations in exactly n+ 1 variables (functions f : Cn+1 → Cn), Shub and Smale
have developed an ingenious path following (homotopy) method that finds one of their non-
zero solutions in average subexponential time [40–44].

However, this method suffers from several restrictions. First, its running time is subex-
ponential in the dimension N of the vector space H(d) of all homogeneous polynomial maps
f : Cn+1 → Cn with f = (f1, . . . , fn), deg fi = di; latest progress in this area brings the
average complexity down to NO(log logN) [3]. This dimension is polynomial in the number
of variables if the degree is constant, and polynomial in the degree if the number of vari-
ables is constant, but not both. Second, the path following method is restricted to maps
f : Cn+1 → Cn. For overdetermined systems f : Cn → Cm, m > n, the method does not
work, and we have to fall back on Newton’s method [10], which only finds a root if one begins
in a small enough disc around a zero; see an estimate of the disc radius in [10, Theorem 1].

In order to obtain a small representation of a polynomial with large N , we define a poly-
nomial mapping by an arithmetic circuit. In essence, we allow parentheses in the definition
of the polynomial and do not require the system to open them. Arithmetic circuits are
able to “conceal” the number of monomials N , specifying a polynomial with an exponential
number of monomials by a polynomial size circuit. Even polynomials of exponential degree
can sometimes be computed in polynomial time, e.g. the value of (x + y)2n is easy to com-
pute by repeated squaring (in the Blum-Shub-Smale model, in the bit model the result may
have exponential length). Note, however, that many natural questions about circuits in this
representation become computationally hard. For example, in [29] it is shown that deciding
whether a given polynomial is zero is hard for P#P.

2.2. Continuity modulus. To use a continuous hard-to-invert function, we also have to
specify an estimate on the continuity modulus

ω(f, δ) = sup
|u−v|<δ

|f(u)− f(v)| ,

where δ is the maximum distance from the exact stored “password” that should still admit
legitimate authentication. For a polynomial, the continuity modulus is bounded only if we
restrict our attention to a compact set. Fortunately, in all practical applications there is a
compact set Ω ⊆ X on which it is meaningful to consider the function f (e.g., the set of all
reasonably possible fingerprint minutae or mel-frequency cepstral coefficients), so in what
follows we assume that all inputs will come from a compact domain Ω.

There are different approaches for computing the continuity modulus. It is easy to com-
pute the continuity modulus of a polynomial. However, we do not know the polynomial’s
coefficients, we only know its circuit (and remember, computing coefficients may be very
hard). We list several ideas.

(1) For a compact set Ω ⊆ X, we can estimate the continuity modulus inductively.
For input variables (resp, constants) the continuity modulus is 1 (resp., 0). For a
summation gate, wf+g ≤ wf + wg, so we get a new upper bound by summing the
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incoming upper bounds. For a multiplication gate,

wfg ≤ wf sup
x∈Ω

g(x) + wg sup
x∈Ω

f(x).

The supremum can also be estimated inductively in the obvious way:

sup(f + g) ≤ sup f + sup g, sup(fg) ≤ sup f sup g.

However, this estimate loses precision very fast as the size of the circuit grows, so in
certain cases it can result in an unacceptably forgiving system.

(2) For a specific x ∈ Ω, exceedingly imprecise supremum estimates are not necessary, as
the continuity modulus reduces to the derivative at point x which can be computed
recursively in the obvious way:

(f + g)′(x) = f ′(x) + g′(x), (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

(3) The continuity modulus can be estimated even better with the ideas of interval
analysis developed by Moore [34], Hansen [18], and Matiyasevich [30]; see also recent
surveys of the subject [7,11]. Application of interval analysis to this particular case,
especially in the (super)tropical case, may warrant a separate study, so we do not go
into details here and note it as an interesting open problem.

In what follows we do not choose a specific approach to computing the continuity modulus
but assume that some approach is chosen, and wf is computed at each node and propagated
through the entire circuit.

2.3. Random key generation. In order to randomly generate a specific hard-to-invert
function candidate, we have to generate a random directed acyclic graph with at least n
vertices of indegree zero (inputs and field constants), m vertices of outdegree zero (outputs),
and internal vertices with indegree 2 labeled by either “+” or “×”. There exist generation
models for random directed acyclic graphs, both uniform [31] and based on the ordered graphs
model [26]. For use with our protocols, we prefer the latter model for random ordered graph
generation, especially given that arithmetic circuits are naturally random ordered graphs.
However, in order to keep the output polynomial-sized and to control the continuity modulus
we want to produce polynomials of degree nO(1), and random circuits, as noted above, may
have exponential degree.

Therefore, we modify the generation model of [26] in order to control the degree. Fix a
number n of inputs, a number m of outputs, a degree upper bound D, a number of constant
inputs c (all constant inputs in the circuit equal either 1 or −1, and larger constants should
be generated from them), and an upper bound on the outdegree K ≥ 2. The indegree of
each non-input vertex is 2 (all gates represent either + or ×), and the outdegree is generated
randomly when the node is generated. We build a random circuit node by node. Each
node is labeled by a pair (s, d), where s is one of xi, +, or ×, and d is a natural number
representing the “formal degree” of this node. The generation proceeds as follows.

(1) Generate the graph (G,E) with n+c vertices – n with labels (xi, 1) and c with labels
(±1, 0) (the sign is chosen uniformly) – and no edges. Choose outdegrees ki uniformly
from 1..K for each vertex and initialize ki “stubs” for each potential outgoing edge
(see [26] for a detailed discussion of these “stubs”).

(2) Until m outputs are generated:
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(a) Add a new node x, G := G ∪ {x}, select its label uniformly from {+,×}, select
two parents y and z uniformly from the “stubs” available at previous vertices,
add the corresponding edges E := E ∪ {(y, x), (z, x)}, and delete one “stub”
from y and z each.

(b) Compute the formal degree fdeg(x):

fdeg(x) =

{
max{fdeg(y), fdeg(z)}, if x is a +-vertex,

fdeg(y) + fdeg(z), if x is a ×-vertex.

(c) Compute the continuity modulus wx (see 2.2).
(d) If fdeg(x) ≥ bD

2
c+1, mark x as an output and do not generate outgoing “stubs”

for it. Otherwise, generate k outgoing “stubs”, where k is chosen uniformly from
1..K.

(3) Delete remaining “stubs” and output (G,E).

Obviously, this generation model will, with overwhelming probability, generate m outputs
of formal degree from D

2
to D in time polynomial in n+m+ c.

Note that the “formal degree” fdeg(x) is merely an upper bound on the actual degrees
of the generated polynomials; the actual degree may be much lower due to cancellations.
However, each output will have a degree deg fi ≤ D; the worst case is a product of two gates
of degree bD

2
c.

In what follows, we assume that there exists a polynomial-time procedure Gen(n,m,D)
that produces an arithmetic circuit for a polynomial map f : Qn

C → Qm
C of degrees deg fi ≤ D.

2.4. The resulting protocol. To make a precise example, let us specify a simple secret-key
authentication protocol. Suppose that agent A (Alice) wants to authenticate with a server
S using her biometric data. At the beginning of the protocol, S stores the biometric data x,
and Alice possesses her data x′, presumably close to x. The algorithm parameters include n
(dimension) and ε (authentication precision).

(1) A initiates the protocol and represents her biometric data as a vector x′ ∈ Qn
C.

(2) S randomly selects an arithmetic circuit f with n input variables as shown in 2.3 and
sends a representation of this circuit to A.

(3) A randomly selects a vector r ∈ Qn
C and a scalar α ∈ QC (this is analogous to random

padding), computes f(r + αx′) and transmits (r, α, y) for y = f(r + αx′).
(4) S computes ω, the continuity modulus at point r + αx, with any method from Sec-

tion 2.2 and checks that ||y − f(r + αx)|| ≤ ωε. If so, S accepts the authentication
of A.

A passive adversary in this protocol is faced with the problem of solving a system of
polynomial equations f(r + αx) = a with respect to the unknown x for f specified as an
arithmetic circuit. If a passive adversary has observed k runs of this protocol for the same
server and agent, he faces a problem of solving a system

f 1(r1 + α1x) = a1, f 2(r2 + α2x) = a2, . . . , fk(rk + αkx) = ak.

Note that it is hard for an adversary to apply the methods of [6, 8] because the monomials
of the polynomial f are unknown, and there are a lot of them.

5



It would be desirable for the server S to store only images of f , i.e., y rather than x;
this would reduce the danger of identity theft. However, in this simple protocol it is near
impossible

3. Supertropical candidates

Exact algebraic approaches to solving a system of nonlinear equations include the resul-
tant approach and Gröbner bases. Computing the resultant, despite recent advances [5],
is impractical for large multivariate cases [24, 25]. Gröbner bases provide a more practical
framework [12, 25], but still, the complexity of exact (symbolic) methods for solving large
systems of polynomial equations is too large.

However, in our case it would suffice to find an approximate solution; for approximate
solutions, there are also Newton’s method (the homotopy continuation method is based on
it), and optimization approaches (see, e.g., [35] that combines several of these methods). To
spoil Newton’s method, it is enough, in theory, to make the number of equations not equal
to the number of variables, and we have done so in the previous section. However, to avoid
both Newton’s method in practice and optimization approaches, one would like the system’s
function f to have many local minima; it would be even better if the function had many
kinks and/or breaks so that there would be no gradient to follow or it would be misleading.

Both of these properties come together in tropical constructions [4, 22, 33]; moreover,
counterparts of symbolic methods are not known for the tropical case. Tropical algebras are
based on the tropical semiring (also known as the min-plus algebra) which is a subset of
reals with an infinity point closed under addition, with two operations:

x⊕ y = min(x, y), x⊗ y = x+ y.

A tropical monomial m = a ⊗ xi1 ⊗ . . . ⊗ xin = a + xi1 + . . . + xin , 1 ≤ ij ≤ n, is simply
a linear function, while a tropical polynomial p = m1 ⊕ . . . ⊕ mk = min(m1, . . . ,mk) is a
minimum of several linear functions, i.e., a concave piecewise linear function with several
discontinuity regions.

Several cryptographic constructions based on tropical algebras have been recently pre-
sented in [17]. For the purposes of continuous cryptographic constructions, however, we
would like to extend the tropical semiring by one more operation, namely regular multipli-
cation (we do not introduce a special symbol for it and use · and juxtaposition). We call
the resulting extended semiring (A, ·,⊗,⊕), A ⊆ R ∪ {∞}, a supertropical algebra. In the
supertropical algebra, a supertropical monomial is in fact a polynomial

m(x1, . . . , xn) = xi111 xi122 . . . xi1nn ⊗ . . .⊗ x
im1
1 xim2

2 . . . ximn
n ,

and a supertropical polynomial

p(x1, . . . , xn) = m1(x1, . . . , xn)⊕ . . .⊕mk(x1, . . . , xn)

is a minimum of several polynomial functions, i.e., a piecewise polynomial function which is
not necessarily concave anymore and still has a lot of discontinuity regions.

We represent a supertropical polynomial system of n variables with a directed acyclic
graph with at least n vertices of indegree zero (inputs and field constants), m vertices of
outdegree zero (outputs), and internal vertices with indegree 2 labeled by either “·”, “⊕”, or
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“⊗”. The generation protocol remains the same with the following additions: for an ⊕-gate
x with parents y and z that compute functions f and g, respectively,

fdeg(x) = max{fdeg(y), fdeg(z)},
wf⊕g = max{wf , wg};

the multiplication and ⊗-gates (i.e., the usual addition) are treated in the same way as
their polynomial counterparts. The protocol from Section 2.4 works in a similar fashion.
The continuity modulus computation and random key generation are done similar to the
algorithms presented in subsections 2.2 and 2.3, respectively.

As for the hardness of the resulting protocol, little is known, but there are reasons to
believe that it is hard to solve systems of polynomial tropical equations. In [17], it has been
shown that it is NP-hard to find a solution of a system of tropical polynomial equations.
This does not mean that there are no algorithms efficient on average, in the generic case, or
for our particular choice of key generation, but it is usually an indicator that this is indeed
a hard problem. For example, only very recently D. Grigoriev has presented an algorithm
for solving a system of linear tropical equations [14]; this problem is known to be in NP∩co-
NP, and it is suspected to have polynomial complexity, but Grigoriev’s algorithm has been
recently shown to require superpolynomial time in the worst case [9]. In an independent
result, Akian, Gaubert, and Guterman presented several weakly polynomial algorithms for
this problem [1]. Many important invariants of tropical systems (varieties) are hard to
compute [27, 28, 45]. As for the supertropical case, the outlook is even bleaker; we do not
know of any works in this direction, but it is obvious that solving a supertropical system is
at least as hard as solving a tropical system and at least as hard as solving a polynomial
system. Based on all of the above, we recommend our supertropical candidate for use with
the protocol of Section 2.4.

4. An interactive protocol

In this section, we describe one more class of protocols that can be implemented in a
continuous fashion with polynomial and supertropical circuits. The basic protocol relies
upon the hardness of the matrix conjugation problem. The protocol has been presented
in [15]; it is an interactive authentication scheme that goes, for an underlying matrix ring
G, as follows.

(1) Alice’s public key is a pair of matrices (A,X−1AX), where A ∈ G, X ∈ G; Alice’s
secret key is the matrix X.

(2) For his challenge, Bob selects a random matrix B ∈ G and a random non-invertible
endomorphism ϕ of the ring G. Bob sends B and ϕ to Alice.

(3) Alice responds with random positive integers p and q and asks Bob to send back
random nonzero constants c1, c2, and c3 so that the new (better randomized) challenge
is B′ = c1A+ c2B + c3A

pBq.
(4) Alice responds with ϕ(X−1B′X).
(5) Bob selects a random word w(x, y) (without negative exponents), evaluates

M1 = w (ϕ(A), ϕ(B′)) , M2 = w
(
ϕ(X−1AX), ϕ(X−1B′X)

)
,
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and computes their traces. If tr(M1) is sufficiently close to tr(M2), Bob accepts
authentication, otherwise he rejects.

In [15], Grigoriev and Shpilrain propose to use the ring of n × n matrices over sparse
truncated k-variate polynomials over a finite field (in [15], Z11 is suggested). We propose to
use the key generation process of Section 2.3 to generate matrices over k-variate polynomials
over an infinite field F. Note that for an infinite field itself, there would be another way for the
adversary: compute the private key X from the public key (A,C), find the space of solutions
for the equation AX = XC and sample a matrix X ′ at random; with probability 1, X ′ will
be nondegenerate. Thus, the protocol in this section would be insecure for infinite fields.
For polynomial rings, this is not a problem because a matrix can be invertible only if the
determinant of the matrix is a constant polynomial (has degree zero), an event of probability
zero. Note also that this protocol does not work over the (super)tropical semiring at all since
the only invertible tropical matrices are monomial matrices, i.e., products of a diagonal and
a permutation matrix, which would make the break trivial [4].

Each matrix element can be represented as an arithmetic circuit; matrix products involve a
linear number of additions and multiplications and can be implemented without significantly
increasing the circuit size. The following remarks should be made about this process.

(1) In the protocol, the matrices A and B do not have to be invertible, so no problems
arise with its generation. The matrix X, however, has to be invertible, and therefore
we propose to generate it as a product of elementary matrices, i.e., matrices that have
exactly one non-zero element. The non-zero element is generated as in Section 2.3.

(2) To generate a random endomorphism, one can generate ϕ : xi → fi, where fi are
random truncated k-variate polynomials over F with zero constant term.

(3) To define what “sufficiently close” means on step 5 of the protocol, Bob uses the
continuity moduli for each element of M1 and M2 and computes ωtr(M1) and ωtr(M2)

as the continuity moduli of the corresponding sums of elements.

To break this protocol, an adversary would have to solve a system of n2 polynomial
equations given as arithmetic circuits. Note that it would be hard even for an infinite field
because the size of a linearization grows exponentially and, as shown in [15], even for a
reasonable choice of protocol parameters the linear system becomes too large to solve.

5. Conclusion

In this paper, we have presented two hard-to-invert candidates that share a common
desirable property: they are continuous. When preserved in an authentication protocol,
this property allows for small changes in the secret information so that a sufficiently close
authentication request (e.g., slightly modified biometrics) is still accepted. We have also
introduced supertropical algebras as a platform for cryptographic protocols.

We have presented the ideas of two protocols. Further work about these protocols should
deal with their specific implementations and tuning the parameters in order to test their
properties and modify them to be as secure and efficient in practice as possible.
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