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Abstract—Complete constructions play an important role in theoretical computer science.
However, in cryptography complete constructions have so far been either absent or purely the-
oretical. In 2003, L.A. Levin presented the idea of a combinatorial complete one-way function.
In this paper, we present two new one-way functions based on semi-Thue string rewriting sys-
tems and a version of the Post correspondence problem. We also present the properties of a
combinatorial problem that allow a complete one-way function to be based on this problem.
The paper also gives an alternative proof of Levin’s result.
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1. INTRODUCTION

Problems arising in theoretical computer science are often presented as problems of recognizing
certain languages, sets of strings over a certain alphabet (usually in the binary alphabet {0, 1}).
These languages, in turn, may be divided into complexity classes. For example, the complexity
class P consists of all languages that are accepted by a deterministic polynomial Turing machine,
while the complexity class NP consists of all languages accepted by a nondeterministic polynomial
Turing machine.
Complexity theory started with studying the complexity of individual problems. However, it

became evident that techniques that allow to study complexity classes as a whole were much
more useful than results concerning individual problems. One of the first major breakthroughs
in complexity theory was the Cook–Levin theorem [1, 2], which allowed to develop the theory
of NP-complete problems [3, 4]. Complete problems for other complexity classes followed. For
example, complete problems for average-case complexity are presented in [5–8]; see also general
references on complexity theory [9–11].
Theoretical computer science holds in high esteem the possibilities that arise when a complete

problem is found for a particular complexity class. A complete problem allows to shift the analysis
from the whole class (where, in most cases, nothing can really be proved) to this certain, well-
specified complete problem. For example, SAT, the satisfiability problem for Boolean formulas,
is NP-complete, and even exponential algorithms for SAT are of great interest [12, 13]. Similarly,
the DistNP complexity class (DistNP consists of NP problems with polynomial-time computable
distributions), which is more relevant for this work, has complete problems, in particular, Post
correspondence and matrix transformation problems [6, 8, 14–16]. Though complete problems do
not exist for some classes [17], they remain one of the most useful objects in complexity theory.
However, not all complete problems are actually useful for theoretical and practical applications.

While such problems as satisfiability or graph coloring allow for combinatorial approaches, there are
problems that are undoubtedly complete for their complexity classes but do not actually cause such
1 Supported in part by the Russian Foundation for Basic Research, project nos. 05-01-00932, 06-01-00502,
08-01-00640-a, 08-01-00649, 09-01-00784-a, and INTAS, YSF fellowship 05-109-5565.
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a nice concept shift because they are hardly easier to analyze than the class itself. Such problems
usually come from diagonalization procedures and require enumeration of all Turing machines or
all problems of a certain complexity class.
Our results lie in the field of cryptography. For a long time, little has been known about complete

problems in cryptography. While “conventional” complexity classes got their complete representa-
tives relatively soon, it took thirty years since the definition of a public-key cryptosystem [18] to
present a complete problem for the class of all public-key cryptosystems (with bounded decoding
error) [19,20]. Moreover, this complete problem is of the “bad” kind, since it requires enumerating
all Turing machines and can hardly be put to any use, be it practical implementation or theoretical
complexity analysis.
Before tackling public-key cryptosystems, it is natural to ask the same question about a seem-

ingly simpler object: one-way functions (public-key cryptography is equivalent to the existence of
a trapdoor function, a particular case of a one-way function). The first big step towards “useful”
complete one-way functions was taken by L.A. Levin, who provided a construction of the first
known complete one-way function [21] (see also [22–24]). Completeness is understood here in the
following sense.

Definition 1. Assume that a function f : {0, 1}∗ → {0, 1}∗ has the following property: if there
exists a strongly (weakly) one-way function g : {0, 1}∗ → {0, 1}∗, then f is also strongly (weakly)
one-way. Then f is called a complete strongly (weakly) one-way function.

In complexity theory, completeness usually implies that a problem is complete with respect to
certain reductions. However, in the theory of one-way functions, reductions are not yet known;
in [24], Levin stated this problem as one of the most important problems of the field. Thus, in the
present work we use the “classical” Levin’s definition of a complete one-way function.
The first known construction of a (weakly) one-way function, developed by Levin, is called

a universal one-way function. It uses a universal Turing machine U to compute the following
function:

funi(desc(M), x) = (desc(M),M(x)),

where desc(M) is the description of a Turing machine M , andM(x) is the output of M on input x
after ≤ |x|2 steps. If there are one-way functions among Turing machines M , then funi is itself
a weakly one-way function. Since it is easy to show that if there are one-way functions, then
there are one-way functions working for quadratic time [22], funi is a complete weakly one-way
function.
Note that this complete one-way function is of the “useless” kind of complete problems. It can

hardly be put to practice. Naturally, Levin asked whether it is possible to find “combinatorial”
complete one-way functions, functions that would not depend on enumerating Turing machines or
giving their descriptions as input. For 15 years, the problem remained open and then was resolved
by Levin himself [24]. Levin devised a smart trick of completely forbidding indeterministic choice
in the computation of the function itself, allowing it only for the inverse function (we describe this
construction in detail below).
Also, Levin in [24] formulated the problem of finding other combinatorial complete one-way

function. In this paper we show how, using ideas similar to [24], one can get a complete one-
way function from string rewriting systems. In [25], the bounded accessibility problem for string
rewriting systems was shown to be average-case complete. A slightly more complex construction
allows a complete one-way function to be based on the Post correspondence problem. Besides,
we discuss the general properties that a combinatorial problem should possess in order to contain
a complete one-way function by similar arguments. This paper describes and extends the results
of [23].
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170 KOZHEVNIKOV, NIKOLENKO

2. DISTRIBUTIONAL ACCESSIBILITY PROBLEM FOR SEMI-THUE SYSTEMS

Consider a finite alphabet A. An ordered pair of strings 〈g, h〉 over A is called a rewriting rule
(sometimes also called a production). We write these rules as g → h and interpret them as rules
for making substitutions in other strings. Formally, for two strings u, v ∈ A∗ we write u⇒g→h v if
u = agb and v = ahb for some a, b ∈ A∗. A set of rewriting rules is called a semi-Thue system. For
a semi-Thue system R, we write u⇒R v if u⇒g→h v for some rewriting rule 〈g, h〉 ∈ R. We write
u⇒∗

R v if there exists a finite sequence of rewriting rules 〈g1, h1〉, . . . , 〈gm, hm〉 ∈ R such that

u = u0 ⇒g1→h1 u1 ⇒g2→h2 u2 ⇒ . . .⇒gm→hm um = v

(i.e., instead of the original definition of⇒R we take its transitive reflexive closure). Also, we define
a restricted version of ⇒∗

R: we write u⇒n
R v if there exists a finite sequence of rewriting rules 〈g1,

h1〉, . . . , 〈gm, hm〉 ∈ R such that

u = u0 ⇒g1→h1 u1 ⇒g2→h2 u2 ⇒ . . .⇒gm→hm um = v, where m ≤ n;

i.e., one can get v from u by the rules of R in no more than n steps.
We can now define the distributional accessibility problem for semi-Thue systems.

Instance. A semi-Thue system R = {〈g1, h1〉, . . . , 〈gm, hm〉}, two binary strings u and v, a
positive integer n in unary.2 The input size,3 therefore, is n+ |u|+ |v|+

m∑
1
(|gi|+ |hi|).

Question. Is u⇒n
R v?

Distribution. Randomly and independently choose positive integers n and m and binary
strings u and v. Then randomly and independently choose binary strings g1, h1, . . . , gm, hm.
Integers and strings are chosen with the default uniform probability distribution, namely, the

distribution proportional to
1
n2
for integers, and to

2−|u|

|u|2 , for binary strings.

We do not describe in detail the properties of semi-Thue systems; they are discussed, for example,
in [26–28]. We only note a relevant property: in [29] it was shown that the distributional accessibility
problem for semi-Thue systems is complete for the DistNP complexity class. The proof relies on
the fact that semi-Thue systems can model Turing machines. This fact attracted attention to
semi-Thue systems in the first place: their first application was the proof of undecidability of
the accessibility problem. The proof went by modeling the Turing machine halting problem in
semi-Thue systems [27,30].
However, in what follows we also need another notion of accessibility in semi-Thue systems.

Namely, for a semi-Thue system R we write u !⇒R v if u = agb and v = ahb for some 〈g, h〉 ∈ R
and strings a, b ∈ A∗ and, moreover, there does not exist another rewriting rule 〈g′, h′〉 ∈ R such
that u = a′g′b′ and v = a′h′b′ for some a′, b′ ∈ A∗. Similarly to ⇒R, we extend

!⇒R to its transitive
reflexive closure !⇒∗

R and introduce a restricted version: u
!⇒n

R v if u
!⇒∗

R v and the corresponding
rewriting sequence consists of no more than n steps.

In other words, u !⇒∗
R v if u ⇒∗

R v and on each step of this derivation there was only one
applicable rewriting rule. This uniqueness (or, better to say, determinism) is crucial to perform
Levin’s trick in Section 6.

2 We use unary notation for n, so that algorithms can be considered polynomial in input length, not in some
abstract “security parameter” that may turn out to be exponentially larger than the input length.

3 Hereafter, we code gi, hi, u, and v with prefix codes that allow unambiguous decoding.
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3. POST CORRESPONDENCE PROBLEM

The following problem was proved to be complete for DistNP in [6] (see also Remark 2 in [14]).

Instance. A positive integer m, pairs

Γ = {〈u1, v1〉, . . . , 〈um, vm〉},

a binary string x, a positive integer n. The size of the instance is n+ |x|+
m∑
1
(|ui|+ |vi|).

Question. Is ui1 . . . uik = xvi1 . . . vik for some k ≤ n?
Distribution. Randomly and independently choose positive integers n and m and binary
strings u and v. Then randomly and independently choose binary strings g1, h1, . . . , gm, hm.
Integers and strings are chosen with the default uniform probability distribution, namely, the

distribution proportional to
1
n2
for integers, and to

2−|u|

|u|2 , for binary strings.

In order to build a complete one-way function, we need a modification of this problem. Namely,
we pose the question as follows: does

ui1 . . . uiky = xvi1 . . . vik

hold for some y?
Properties of the Post correspondence problem are similar to properties of semi-Thue systems.

The Post correspondence problem was also formulated as a combinatorial version of an undecidable
problem and attracted attention as one of the simplest and, therefore, most useful undecidable
problems [31–34]. Our version of the Post correspondence is also undecidable if we remove the
restriction on n; the bounded version is also complete for DistNP, as is shown in [6].
Let us elaborate on the analogy with semi-Thue systems. The function based on modified Post

correspondence can be naturally viewed as a derivation with certain inference rules. Namely, for
some nonempty set

Γ = (〈u1, v1〉, . . . , 〈um, vm〉) ,

we say that a string x yields a string y in one step and write x �Γ y if there is a pair 〈u, v〉 ∈ Γ
such that uy = xv. The “yields” relation �∗

Γ is defined as the transitive closure of the “yields-
in-one-step” relation: a binary string x yields a binary string y if there exists a sequence of pairs
〈u1, v1〉, . . . , 〈um, vm〉 ∈ Γ and a sequence of strings x = x1, x2 . . . , xm, xm+1 = y such that uixi+1 =
xivi for each 1 ≤ i ≤ m.
To perform Levin’s trick, we need to get rid of the indeterminism. This time, the description

of a deterministic version !� of the relation � is more complicated than in the case of semi-Thue
systems. If we simply required it to be deterministic, we would not be able to move the head of the
Turing machine to the left (see Section 7). To solve this problem, we have to look one step ahead:
if there are two applicable rules and one of the two branches leads to a dead end on the very next
step, we consider the choice deterministic.
Formally speaking, we say that x yields y in one step (x !�Γ y) if there are no more than two

pairs 〈p, s〉, 〈p′, s′〉 ∈ Γ such that py = xs and p′y′ = xs′ for some strings y and y′ (where y �= y′,
but p may equal p′: two possible different applications of the same rule are still nondeterministic)

and, moreover, we cannot apply any rule in Γ to y′. As above, we denote by x !�∗
Γ y the transitive

reflexive closure of this relation and write u
!�n
Γ v if u

!�Γ v in no more than n steps.
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172 KOZHEVNIKOV, NIKOLENKO

4. TURING MACHINES AND ONE-WAY FUNCTIONS

Proofs of completeness for one-way functions rely upon modeling Turing machines with these
functions. Therefore, we need to fix basic definitions. In defining a Turing machine we follow the
classical textbook [35].

Definition 2. A (one-tape) Turing machine is an ordered 7-tuple

M = 〈Q,Γ, B,Σ, π, s,H〉, where:
• Q is a finite set of states;
• Γ is a finite set of tape symbols;
• B ∈ Γ is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any
step during the computation);

• Σ ⊆ Γ \ {B} is the set (subalphabet) of input symbols;
• π : Q × Γ → Q × Γ × {L,R} is the transition function: L denotes a left shift of the machine’s
head, R denotes a right shift (there exist modifications that allow the machine’s head to remain
at the same place);

• s ∈ Q is the initial state;
• H ⊆ Q is the set of final (or accepting) states.

We are only interested in Turing machines with a single final stateH = {h}. Informally speaking,
a Turing machine consists of an infinite tape divided into a countable number of cells and a head,
which is located above one of these cells at any step of the computation. In the initial state s, the
tape contains the input to the Turing machine, which is a string over the alphabet Σ. The machine
makes transitions from state to state according to the function π, which takes as inputs the current
state q ∈ Q and the symbol α ∈ Γ that is currently under the machine’s head. At each step, the
head moves to the right or to the left according to the output of π.
We say that a Turing maching M computes a function f : Σ∗ → (Γ∗ \ {B})∗ if, after start-

ing M with input x ∈ Σ∗, it finishes the computation (i.e., reaches the final state h), leaving
the string f(x) written on the tape. For simplicity, in what follows we do not distinguish the
alphabets Σ and Γ \ {B}. By tM (x), where tM : Σ∗ → N, we denote the number of steps that a
Turing machine M requires to reach the final state h on input x. We say that M works for time
T : N → N if

∀n ∈ N max
x: |x|=n

tM (x) ≤ T (n),

where |x| is the length of the string x.
We will also need nondeterministic and probabilistic Turing machines. We do not give standard

definitions but rather consider a nondeterministic Turing machine as a regular deterministic ma-
chine with an additional tape that contains the “witness”; a nondeterministic Turing machine M
computes a function f : Σ∗ → Σ∗ if for every input x there exists a “witness” y ∈ Σ∗ such that
M(x, y) = f(x), and for no witness the machine terminates with a wrong answer (however, M is
allowed to terminate without giving any answer at all).
A probabilistic Turing machine is just a nondeterministic one, the only thing that changes is

the interpretation. This time, the witness is interpreted as random symbols, and we say that a
probabilistic Turing maching computes a function f on input x with probability p if

Pry∈Um [M(x, y) = f(x)] = p,

where m is the number of random symbols from Σ, Um is the uniform distribution on strings of
length m over alphabet Σ, and y ∈ Um means “y is taken over the distribution Um”. In what
follows, we usually set Σ = {0, 1}.
To make the paper self-contained, we also give the definition of a one-way function [22].
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Definition 3. A function f : {0, 1}∗ → {0, 1}∗ is called strongly one-way if the following condi-
tions hold:

1. There exists a deterministic Turing machine M with input alphabet {0, 1} that computes f in
polynomial time;

2. For every probabilistic Turing machine M ′, every polynomial p, and every sufficiently large n,

PrM ′,x∈Un

[
M ′(f(x), 1n) ∈ f−1(f(x))

]
<

1
p(n)

,

where the probability is taken over the random bits of M ′ and input x (both distributions are
uniform).

In other words, a function is strongly one-way if no adversary can invert it on any significant
fraction of inputs.

Definition 4. A function f : {0, 1}∗ → {0, 1}∗ is called weakly one-way if the following condi-
tions hold:

1. There exists a deterministic Turing machine M with input alphabet {0, 1} that computes f in
polynomial time;

2. There exists a polynomial p such that for every probabilistic Turing machine M ′ and for every
sufficiently large n,

PrM ′,x∈Un

[
M ′(f(x), 1n) /∈ f−1(f(x))

]
>

1
p(n)

,

where the probability is taken over the random bits of M ′ and input x (both distributions are
uniform).

In other words, a function is weakly one-way if for every polynomial adversary there is a signif-
icant fraction of inputs where this adversary fails to invert this function.
In what follows, we need the following facts; see [22] for proofs.

Proposition 1. 1. If there exists a weakly one-way function, then there exists a strongly one-
way function (that is, the existence of weakly and strongly one-way functions is equivalent).
2. If there exists a weakly (strongly) one-way function, then there exists a weakly (strongly)

one-way function computable by a Turing machine that works for no more than n2 steps on inputs
of length n.

5. THE COMPLETE ONE-WAY TILING FUNCTION

Before presenting our own construction, we recall Levin’s complete one-way function from [24].
In this section, we slightly modify Levin’s construction and present an alternative Turing machine
modeling technique based on ideas from [36]. The difference from the original Levin’s construction
is that he considered a tiling function for tiles with marked corners, namely, the corners of tiles,
instead of edges, are marked with symbols. In Levin’s tiling of an n×n square, symbols on touching
corners of adjacent tiles should match.
In our construction, a tile is a square whose edges are marked with symbols from a finite

alphabet A. We assume infinite supply of tiles of each kind. A tiling of an n × n square is a set
of n2 tiles covering an n× n grid such that symbols on adjacent sides match.
It will be convenient for us to consider the tiling function as a string transformation system

similar to a semi-Thue system (and based on the same semigroup ideas). Fix a finite set of tiles T .
We say that T transforms a string x over alphabet A to y, where |x| = |y|, if there is a tiling of an
|x| × |x| square such that symbols on the bottom of the lowest row of squares form the string x,
and symbols on the top of the uppermost row form y. We write x −→T y in this case.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 45 No. 2 2009



174 KOZHEVNIKOV, NIKOLENKO

By a tiling process we mean completion of a partially tiled square by one tile at the time.
Similarly to semi-Thue systems, we define x

!−→T y if and only if x −→T y with an additional
restriction: we permit the extension of a partially tiled square only if the possible extension is unique
(there is precisely one suitable tile in T ). Note that in this approach, for each string x, either there

exists precisely one string y such that x
!−→T y or there is no string y with this property.4

Let us fix a certain encoding of the set of labels with binary strings that encodes each label by
a string of length no more than log |A| + O(1). We do not distinguish a label and its encoding in
this section; it is not important for tiling, but will play a significant role in Section 6.

Definition 5. The tiling simulating function (Tiling) is a function f : {0, 1}∗ → {0, 1}∗ defined
as follows:

• If the input has the form (T, x) for a finite set of tiles T and a string x, and x
!−→T y, then

f(T, x) = (T, y);
• Otherwise, f(T, x) = (T, x).

Theorem 1. If one-way functions exist, then Tiling is a weakly one-way function.

Proof. The proof closely follows the completeness proof for the universal one-way function given
in [22] (and introduced in [21]). Let g be a length-preserving (i.e., |g(x)| = |x| for every x) one-way
function such that there exists a Turing machine that computes g and works for no more than n2

steps on inputs of length n (by Proposition 1, if one-way functions exist, there exists a one-way
function like this).
Consider a Turing machine f . We prove that every Turing machine can be modeled as a tiling

problem.

Lemma 1. For every deterministic Turing machineM with tape alphabet Γ = {0, 1, B} working
for no more than n2 steps on inputs of length n, there exists a set of tiles TM such that its set of
labels A includes Γ, and M(x) = y, |x| = |y|, if and only if

$sxBn(n−1)#
!

−→TM
$hyBn(n−1)#,

where s is the initial state of M , h is its final state, B is its blank symbol, and $,# /∈ Γ are
additional symbols marking the beginning and end of a string.

Proof. Let QM be the set of states of a Turing machineM , s be the initial state ofM , h be the
final state, π be the transition function of M , and {0, 1, B} be the tape symbols. By $ we denote
the begin marker, and by #, the end marker. We also introduce a new symbol for each pair from
Q× {0, 1, B}. We are now ready to present a construction of a tileset TM .

1. For each tape symbol a ∈ {0, 1, B}, we add

a

a

(h, a)

(h, a)

2. For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if

πM (q, a) = (p, b,R),

4 There also exists a different tiling task where the question is posed as follows: can we tile the whole plane
with a given set of tiles? This problem is also undecidable (for similar reasons); it was introduced in
1961 by Hao Wang and led to several interesting results [37–41]. However, we only consider a “bounded”
version of tiling in this paper.
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we add

(q, a)

b

p

c

(p, c)

p

3. For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if

πM (q, a) = (p, b, L),

we add

(q, a)

b

p

c

(p, c)

p

4. Finally, for $ and # we add

$

$

$

#

#

#

It is now easy to see that each computation of M now corresponds to a proper tiling of the
square. Thus, for each computation on the deterministic Turing machine M on input x that goes
on for no more than n2 steps, there exists a corresponding tiling of the |x|2 × |x|2 square in which
bottom labels of the lowest row form the input string (padded with symbols B to length n), and
top labels of the uppermost row form the output string (padded with symbols B to length n). If the
computation halts after less than n2 steps, we can still finish the tiling with tiles from item 1. �
Lemma 1 guarantees that there exists a finite set of tiles TM such that

$sxBn(n−1)# −→∗
TM

$hyBn(n−1)#

is equivalent to g(x) = y. Therefore, with constant probability (equal to the probability of the
event that the input string begins with the description of TM ), inverting Tiling is equivalent to
inverting g. �

Thus, Tiling is a complete one-way function; it is a weakly one-way function if and only if there
exists a weakly one-way function. By Proposition 1, one can build a strongly one-way function
with the same property.

6. A COMPLETE ONE-WAY FUNCTION BASED ON SEMI-THUE SYSTEMS

The first new complete one-way function that we present in this paper is based upon the distri-
butional accessibility problem for semi-Thue systems. First, we need to make this decision problem
a function and then add Levin’s trick, always keeping in mind length preservation.

Definition 6. The semi-Thue accessibility function (STAF) is a function f : A∗ → A∗ defined
as follows:
• If the input has the form (〈g1, h1〉, . . . , 〈gm, hm〉, x), and in the semi-Thue system

Γ = (〈g1, h1〉, . . . , 〈gm, hm〉)

we have x !⇒t

Γ
y, t = |x|2+4|x|+2, there are no rewriting rules in Γ applicable to y, and |y| = |x|,

then
f(Γ, x) = (Γ, y);

• Otherwise, f(Γ, x) = (Γ, x).

Theorem 2. If one-way functions exist, then STAF is a weakly one-way function.
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Proof. The proof of this theorem, as well as of Theorem 1, follows the ideas of [22].
First, note that STAF is easy to compute: one simply needs to use the first part of the input as

a semi-Thue system (if this is impossible, return the input) and apply its rules until either there
are two rules that apply, or we have worked for |x|2 + 4|x| + 2 steps, or some other string y has
been reached and no other rules can be applied. In the first two cases, return the input. In the
third case, check that |y| = |x| and return (Γ, y) if so, or the input, otherwise.
Then, note that with constant probability (for the uniform distribution, this probabilty is pro-

portional to
1

|R|22|R| ), the description of any given semi-Thue system (which is simply a binary

string) appears as the first part of STAF’s input. Consider a length-preserving one-way function g
and a Turing machineMg that computes g and runs in quadratic time (they exist by the assumption
and by Proposition 1).
To continue the proof, we need to encode Turing machines into a semi-Thue system. We need an

encoding that is efficient enough (so that the distributions on inputs and encoded outputs would
be polynomially equivalent). This can be done with a so-called dynamic binary coding scheme
developed by Yu. Gurevich and used in [6, 29,36].

Proposition 2. For any finite alphabet A with |A| > 2 and any pair of binary strings x and
y beginning with ones, there exists a dynamic binary coding scheme of A over the alphabet {0, 1}
with the following properties.
1. All codes (binary codes of symbols of A) have the same length # = 2 log |x|+O(1);
2. Both strings x and y are distinguishable from every code; i.e., no code is a substring of x or y;
3. If a nonempty suffix z of a code u is a prefix of a code v, then z = u = v (one can always

distinguish where a code ends and another code begins);
4. Strings x and y can be written as a unique concatenation of binary strings 1, 10, 000, and 100,

which are not prefixes of any code.
Now we can prove that semi-Thue systems are capable of modeling deterministic Turing ma-

chines.

Lemma 2. For every deterministic Turing machine M , there exists a semi-Thue system RM

such that M(x) = y if and only if
sx$ !⇒t

RM
hy$,

where t = T + 2|x|+ 2|y|+ 2, and T is the time that M works for on input x.

Proof. Let us define the semi-Thue system RM that corresponds to a Turing machine M . The
rewriting rules are divided into three parts:

RM = R1 ∪R2 ∪R3.

Let us denote B = {1, 10, 100, 000}, fix a dynamic binary coding scheme for A, x, and y, and denote
by w the encoding of w in this scheme.
The set R1 consists of the following rules for each u ∈ B:

su → $us1,
s1u → us1,
us1$ → s2u$,
us2 → s2u,
$s2 → $s,

where s, s1, s2, and $ are auxiliary symbols. These rules are necessary to rewrite the initial
string sx$ into $sx$. Since x can be uniquely written as u1 . . . um for some ui ∈ B, this transfor-
mation can be carried out in 2m+ 1 ≤ 2|x|+ 1 steps.
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The set R2 consists of rewriting rules corresponding to Turing machine instructions.

1. For each state q ∈ Q \ {h}, p ∈ Q, a, b, c ∈ {0, 1, B},

πM (q, a) = (p, b,R) ⇒ qac→ bpc, qa$→ bpB$ ∈ R2;

2. For each state q ∈ Q \ {h}, p ∈ Q, a, b, d ∈ {0, 1, B}, and c ∈ {0, 1, $},

πM (q, a) = (p, b, L) ⇒ dqac→ pdbc, dqB$→ pdbB$ ∈ R2

for a �= B, c �= $, or b �= B.
Note that R1 and R2 are completely similar to the construction presented in [36], where it is

used to prove average-case completeness for the word equivalence problem in a semi-Thue system.
By properties of a dynamic binary coding scheme, the strings used in the system can be decoded
unambiguously, and the rewriting rules correspond to Turing machine instructions. The third
part of this construction is supposed to reduce the result from $sy$, where y is the result of the
Turing machine computation, to the protocol of the Turing machine that is necessary to prove that
nondeterministic semi-Thue systems are DistNP-hard.
This time we have to deviate from [36]: we need a different set of rules because we actually need

the output of the machine, not the protocol. Thus, our version of R3 looks as follows:

$hu → $us3,
s3u → us3,
s3u$ → us4$,
us4 → s4u,
$s4 → h,

where s3 and s4 are auxiliary symbols. This transformation can be done in 2|y|+ 1 steps.
These rules simply translate y back into the original y and add h in the beginning of the output,

thus achieving the actual output configuration of the original Turing machine M . �
By Lemma 2, there exists a semi-Thue system RM such that sx$ ⇒∗,t

RM
hy$ is equivalent to

g(x) = y. Therefore, on a constant fraction of inputs, inverting STAF is equivalent to inverting g.�

7. A COMPLETE ONE-WAY FUNCTION BASED ON POST CORRESPONDENCE

In this section, we describe a one-way function based on the Post correspondence problem and
prove that it is complete. We recall that in Section 3 we have defined a deterministic version of
Post correspondence with the following “backtracking”: if there are two applicable rules, and one
of them immediately leads to a dead end (there is no applicable rule at the next step), we choose
the other and consider this choice deterministic.
The function is defined as follows.

Definition 7. The Post transformation function (PTF) is a function f : A∗ → A∗ defined as
follows:
• If the input has the form (〈g1, h1〉, . . . , 〈gm, hm〉, x), and for the rewriting rules

Γ = (〈g1, h1〉, . . . , 〈gm, hm〉)

we have x !−→n4

Γ
y, there are no rules in Γ applicable to y, and |y| = |x|, then

f(Γ, x) = (Γ, y);

• Otherwise, f(Γ, x) = (Γ, x).
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Theorem 3. If one-way functions exist, then PTF is a weakly one-way function.

Proof. The proof of this theorem is similar to the proofs of Theorems 1 and 2. Assume that g
is a length-preserving one-way function, andM is the Turing machine computing this function that
works for no more than n2 steps on inputs of length n.
We have to reduce Turing machine computations to Post correspondence; a version of this

reduction is described in [6].
First we define the system of rewriting rules ΓM corresponding to a given Turing machine M .

As usual, let Q be the set of states of a Turing machine M ; s be the initial state of M ; h be the
halting state; πM be the transition function of M ; and 0, 1, and B be the tape symbols. For all
symbols we use the dynamic binary coding scheme described in Section 6. The derivation set ΓM

consists of the following inference rules.
1. For every tape symbol u,

〈u, u〉;
2. For each state q ∈ QM \ {h}, p ∈ Q, a, b ∈ {0, 1}, and rule πM (q, a) = (p, b,R),

〈qa, bp〉;
3. For each state q ∈ QM \ {h}, p ∈ Q, a ∈ {0, 1}, and rule πM(q,B) = (p, a,R),

〈qB, bpB〉;
4. For each state q ∈ QM \ {h}, p ∈ Q, a, b, c ∈ {0, 1}, and rule πM (q, a) = (p, b, L),

〈cqa, pcb〉;
5. For each state q ∈ QM \ {h}, p ∈ Q, a ∈ {0, 1}, and rule πM(q,B) = (p, a, L),

〈cqB, pcbB〉.
Lemma 3. For a deterministic Turing machine M with running time at most n2 and its cor-

responding Post transformation system ΓM ,

M(x) = y if and only if sxB �∗,n4

ΓM
hyB.

Proof. The configuration of M after t steps of computation is represented by a string xqy,
where q is the current state of M , x is the tape before the head, and y is the tape from the head to
the first blank symbol. Simulation of one step ofM ’s computation from a configuration xqy consists
of no more than |x| applications of rule 1, followed by one application of one of the rules 2–5, then
followed by |y| − 1 applications of rule 1.
Note that before applying a rule that moves M ’s head to the left, one could also apply rule 1.

If the Turing machine M is deterministic, then this “wrong” application leads to a situation where
no rule from ΓM is applicable. Thus, our version of deterministic Post correspondence can cope
with this choice. �
By Lemma 3, there exists a finite system of pairs ΓM such that

sxB �∗,n4

RM
hyB

is equivalent to g(x) = y. Therefore, with constant probability, solving PTF is equivalent to
inverting g. �

Remark. Note a slight change in distributions on inputs and outputs: PTF accepts as input x
and outputs y, while the emulated machine g accepts x and outputs y. Such nice distinctions often
hold the devil of average-case reasoning. Fortunately, distributions on x and x can be transformed
from one to another by a polynomial algorithm, so PTF is still a weak one-way function (see [22,42]
for details).
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8. COMPLETE ONE-WAY FUNCTIONS AND
DistNP-HARD COMBINATORIAL PROBLEMS

Both of our constructions of a complete one-way function look very similar to the construction
on the Tiling complete one-way function. This naturally leads to the question: in what other
combinatorial settings can one apply the same reasoning to find a complete one-way function?
All functions considered above were based on combinatorial problems that also can be modified

to give DistNP-hard problems [6,8]. However, the construction of complete one-way functions is not
quite straightforward: one needs to apply Levin’s trick to prove completeness. The whole point of
this proof is to keep the function both length-preserving and easily computable. Obvious functions
fall into one of two classes.

1. Easily computable but not length-preserving. For any DistNP-hard problem, one can construct a
hard-to-invert function f that transfers protocols of this problem into its results. This function
is hard to invert; moreover, it is hard to invert on average. However, it does not preserve length
(the protocol is usually much longer than the input), and thus it is impossible to translate
a uniform distribution on the outputs of f into a reasonable distribution on its inputs. The
reader is welcome to think of a reasonably uniform distribution on proper tilings (i.e., tilings
with matching symbols on neighboring tile sides) that would result in a “reasonably uniform”
distribution on their upper rows. We believe that constructing such a distribution is either
impossible or requires a major new insight.

2. Length-preserving but hard to compute. Take a DistNP-hard problem and consider the function
that sends its input into its output (e.g., the lowest row of the tiling into its uppermost row).
This function is hard to invert and length-preserving, so there is no problem with distributions.
But, unfortunately, it is also hard to compute, because one needs to solve Tiling to compute it;
therefore, it is hardly a good candidate for a one-way function.

Following Levin, we get around these obstacles by having a deterministic version of a DistNP-
hard problem. This time, a Tiling problem produces nontrivial results only if there is always only
one proper tile to attach. Thus, we get a function described above as the second type, but this time
it is easy to compute, too. Similarly, in Section 6 we demanded that only one rewriting rule was
applicable on each step (we introduced⇒∗ for this very purpose). And in Section 7 we have slightly
generalized this idea of “deterministic choice”, allowing fixed-length deterministic backtrack.
We conclude that a combinatorial problem should have two properties in order to hold a complete

one-way function.

1. It should have a deterministic restricted version that can be computed in polynomial time.
2. Its deterministic version should be expressive enough to simulate a deterministic Turing machine.
For example, natural deterministic Post correspondence (without any backtrack) is, of course,
easy to formulate, but does not seem to be powerful enough (fails to model moving the Turing
machine’s head to the left).

These ideas look so well-defined that one is tempted to formulate them as a mathematical
statement. We give such a formalization in the next section.

9. GENERALIZING COMPLETE ONE-WAY FUNCTIONS

First of all, we need to define a combinatorial problem. Note that all our examples contained
a finite set of rules that transformed one configuration of the problem into another; for example,
under a rewriting rule, a semi-Thue system transformed one binary string into another. This
intuition underlies the following definition.
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Definition 8. A combinatorial problem S is a tuple

S = 〈X, f1, . . . , fm〉,

where X is some fixed set (a set of configurations), and fi : X → X are partial functions.

The definition should be understood as follows: if a configuration x ∈ X lies in the domain of a
function fi, it means that the rule fi can transform it into fi(x).

Example. For the Post correspondence problem defined by pairs of strings

(u1, v1), . . . , (um, vm),

X = {0, 1}∗ × {0, 1}∗, and for each 1 ≤ i ≤ m, the function fi : {0, 1}∗ → {0, 1}∗ transforms a pair
of strings (a, b) into (uia, bvi).

Then, we need to define what it means for a combinatorial problem to “simulate a Turing
machine.” In our definitions, it is also easy to define. We denote by tM : Γ∗ ×Q× N → Γ∗ (here t
stands for “tape”) the function that reflects how the Turing machine M transforms its tape. The
string tM (γ, q,pos) coincides with γ everywhere except for the position with index pos; the symbol
in this position is substituted by the second component of the transition function π(q, γpos).

Definition 9. A family of combinatorial problems S simulates deterministic Turing machines
if for every Turing machine

M = 〈Q,Γ, B,Σ, π, s,H〉
there exists a combinatorial problem S = 〈X, f1, . . . , fm〉 ∈ S and a mapping σ : Q× Γ∗ → X such
that

π(q, α) = (q′, α′,move), where move ∈ {L,R},
if and only if for every string γ ∈ Γ∗ and every position pos ∈ N such that γpos = α there exists a
unique i, 1 ≤ i ≤ m, such that σ(q, γ) ∈ dom fi and

fi(σ(q, γ)) = σ(q′, tM (γ, q,pos)).

In other words, the configurations of a combinatorial problem should be able to encode (the
definition denotes this encoding by σ) every state of a Turing machine plus the string that is
currently on the tape. Moreover, images of these configurations under functions fi should be
consistent with the Turing machine’s transition function.
Now let us introduce the notion of derivation for a combinatorial problem S = 〈X, f1, . . . , fm〉.

For two configurations x, y ∈ X, we say that y follows from x in one step and write x ⇒S y if for
some index i, 1 ≤ i ≤ m, x ∈ dom fi and fi(x) = y. We also need its “deterministic version” ⇒∗

S :
x⇒∗

S y in one step if there exists a unique index i, 1 ≤ i ≤ m, such that x ∈ dom fi and fi(x) = y.
As above, we take transitive reflexive closures of ⇒S and ⇒∗

S . We also write x ⇒∗,n
S y if x ⇒∗

S y
in n steps at most.
To get a complete one-way function, we now only need to ensure that all these functions and

simulations can be performed in polynomial time.

Definition 10. A family of combinatorial problems S is efficiently encoded if there exists a map
ρ : S → {0, 1}∗, called an efficient encoding, a polynomial p, and a Turing machine MS such that
for every problem S = 〈X, f1, . . . , fm〉 ∈ S the length of the code |ρ(S)| ≤ p(m), and the Turing
machine MS for every i = 1, . . . ,m and for every configuration x ∈ dom fi computes the function

ρ(x) �→ ρ(fi(x))

in polynomial time.
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For example, for the family of semi-Thue systems we can get an efficient encoding by simply
coding left- and right-hand sides of each rewriting rule. The machine M in this case is supposed
to read a string, find an occurrence of some left-hand side, and make the substitution.

Definition 11. For a family of combinatorial problems S that simulates deterministic Turing
machines and is efficiently encoded by an encoding ρS , we call by its Turing machine simulating
function (TMSF) a function f : {0, 1}∗ → {0, 1}∗ defined as follows:

• If the input is a pair (ρS(S), x) for some S ∈ S, and, moreover, x ⇒∗,n2

S y for some y and
y /∈ dom fi for any i = 1, . . . ,m, then f(ρS(S), x) = (ρS(S), y);

• Otherwise, f outputs its input.

Theorem 4. If one-way functions exist, then the TMSF of every efficiently encoded family of
combinatorial problems S that models deterministic Turing machines is a one-way function (more
precisely, a weakly one-way function).

Proof. With constant probability (for the uniform distribution this probability is proportional

to
1

|ρ(S)|22|ρ(S)| ), the efficient encoding of every combinatorial problem S ∈ S shows up as a prefix
of the input. Consider a length-preserving one-way function g and a Turing machine Mg that
computes g in quadratic time (it exists by Proposition 1). Then, by Definition 9, there exists a
combinatorial problem Sg ∈ S that simulatesMg. Thus, with constant probability, inverting TMSF
of S is as hard as inverting g. �

10. CONCLUSION AND OPEN PROBLEMS

In this paper, we have considered several new complete one-way functions based on combina-
torial problems, discussed possibilities for other combinatorial settings to hold complete one-way
functions, and proved a sufficient condition for this by introducing formal definitions generalizing
these problems. These functions are combinatorial in nature and represent a step towards easy-to-
analyze complete cryptographic objects, much like the satisfiability problem is a perfect complete
problem for NP.
However, we are still not quite there. Basically, in all examples discussed above we sample a

Turing machine at random and hope to find precisely the hard one. This is, of course, hardly
a practical way to ensure security. We believe that constructing a practical complete one-way
function requires a major new insight, and such a construction represents one of the most important
challenges in modern theoretical cryptography.
Another direction would be to study different reductions between one-way functions. These in-

vestigations might lead to having a complete one-way function in the usual sense of “completeness,”
with respect to some class of polynomial reductions rather than in the sense of Definition 1.

The authors thank D.Yu. Grigoriev, Yu.V. Matiyasevich, I.N. Ponomarenko, and an anonymous
referee for numerous fruitful discussions, important comments, and suggestions.
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