План лекции

Многосторонние секретные вычисления

Лекция N 8 курса "Современные задачи криптографии" СП6ГУ — SPRINT Lab

> Юрий Лифшиц yura@logic.pdmi.ras.ru

Лаборатория мат. логики ПОМИ РАН

Осень'2005

1 Постановка задачи

2 Участники: "честные, но любопытные"

3 Нечестные участники

4 Задача

1/22 2/22

План лекции

1 Постановка задачи

- 2 Участники: "честные, но любопытные"
- 3 Нечестные участники
- 4 Задача

Неформальная постановка

Вычислительная задача:

Есть n участников У каждого свой вход x_i Нужно вычислить $f(x_1, \ldots, x_n)$

Инфраструктура:

Общий канал (broadcast) Частные каналы (например, с помощью RSA)

Требования:

Корректность: получено верное значение f **Секретность:** Каждый участник i не узнал ничего, кроме x_i и значения f

3/22 4/22

Пример: два миллионера

Пусть

среди участников не более t < n/2 нарушителей всем известны commitment'ы входных данных

Формулировка теоремы

Тогда

для любой полиномиально-вычислимой f существует протокол π такой, что

Выполнены:

Корректность: получено верное значение f или были обнаружены нарушители Секретность: Все, что любая группа из t < n/2 участников могла вычислить после выполнения протокола, она могла бы вычислить, зная только f и свои x_i

6 / 22

Данные

Два участника A и B Состояние A - a, состояние B - b Хотят узнать, кто богаче, не раскрывая никакой другой информации

5 / 22

Порядок доказательства

План лекции

"Получестный участник":

Использует действительно случайные биты Посылает именно то сообщение, которое должен по протоколу
Не подслушивает сообщений между другими участниками

План доказательства:

Построить протокол для получестных участников Заставить участников быть получестными

- 1 Постановка задачи
- 2 Участники: "честные, но любопытные"
- 3 Нечестные участники
- 4 Задача

7/22 8/22

Логическая схема

Логическая схема

Наша задача:

Вычислить f Мы знаем, что f — полиномиально вычислима

Факт:

Вычисление f можно представить в виде логической схемы из \neg и \land полиномиального размера

Идея:

Вычислять в неявном виде все значения в узлах схемы

9 / 22

Распределение входных данных

Каждый участник P_i

для каждого своего бита b выбирает случайно n битов, чтобы $a_1 \oplus \cdots \oplus a_n = b$ и для каждого j посылает бит a_i участнику P_i

Наша цель

для каждого узла логической схемы распределить n битов среди участников так, чтобы их XOR давал значение в узле

Вычисление NOT

10 / 22

Как сделать разделение $\neg b$, когда есть разделение b?

NOT-конструкция:

Просто делаем отрицание у бита первого участника!

11/22 12/22

Вычисление AND

Вычисление AND II

Что у нас есть:

Распределение $c=c_1\oplus\cdots\oplus c_n$ Распределение $d=d_1\oplus\cdots\oplus d_n$ Хотим построить $c\wedge d=c\cdot d=b_1\oplus\cdots\oplus b_n$

Начинаем выкладки:

$$\sum c_i \cdot \sum d_i = \sum c_i \cdot d_i + sum_{i \neq j} (c_i \cdot d_j + c_j \cdot d_i)$$

Мечта:

построить b_{ij} и b_{ji} такие, что $b_{ij}+b_{ji}=c_i\cdot d_j+c_j\cdot d_i$

Тогда

 $b_i = c_i \cdot d_i + sum_{i, j \neq i} b_{ij}$ — то, что нужно!

13 / 22

14 / 22

Вычисление AND III

Table 3:	TPIP protocol using O	T_1^4
	party A	party B
input	a_{1}, a_{2}	b_{1},b_{2}
The "reduction" part	chooses $c_1 \in_R \{0, 1\}$.	computes
	computes	$i \leftarrow b_1 \circ b_2$
	$s_{00}\leftarrow c_1$	
	$s_{01}\leftarrow c_1+a_2$	
	$s_{10}\leftarrow c_1+a_1$	
	$s_{11} \leftarrow c_1 + a_1 + a_2$.	
Applying OT_1^4	2	s _i
output	c 1	$c_2 \leftarrow s_i$

Нужно решит задачу:

	party A	party B
input	a_{1}, a_{2}	b1,b2
	c 1	c 2

Идея: воспользуемся передачей данных вслепую "1-из-4"

План лекции

- 1 Постановка задачи
- 2 Участники: "честные, но любопытные"
- 3 Нечестные участники
- 4 Задача

15/22 16/22

Проверяемое разделение секрета

Формализация:

Разделить секрет $m\in [1..N]$ между n участниками Любые $\lceil n/2 \rceil$ из них могут восстановить m Любые $\lfloor n/2 \rfloor$ из них НИЧЕГО не могут узнать про m

Дополнительное требование:

если раздающий нарушает протокол, честные участники смогут это обнаружить

Такой протокол будем называть VSS-схемой

17 / 22

Исполнение протокола

Каждый шаг протокола определен как функция от входных данных, случайных битов и предыдущих сообщений, полученных участником.

Теперь каждый шаг будет:

- 1. Послать само сообщение
- 2. Доказать с нулевым разглашением, что

Существует строка r, которая могла быть порождена на предыдущем этапе, и такое значение входных данных, не противоречащее распределению на первом этапе, что при применении к ним функции протокола получилось то сообщение, которое и было послано

Сертифицированные случайные биты

- Каждый участник распределяет по VSS-схеме свои входные данные
- **2** Каждый участник i выбирает для каждого j случайно r_{ii} и распределяет эти значения по VSS-схеме
- $oldsymbol{3}$ Участники открывают r_{ij} для всех пар $i \neq j$
- **4** Случайные биты участника i считаются $r_i = r_{1i} \oplus \cdots \oplus r_{ni}$

Наблюдения:

Случайные биты каждого участника от него не зависят Большинство честных участников может восстановить случайные биты и входные данные любого нарушителя

18 / 22

План лекции

- 1 Постановка задачи
- 2 Участники: "честные, но любопытные"
- 3 Нечестные участники
- 4 Задача

19 / 22 20 / 22

Задача

Последний слайд

Как успехи с разрезом графа степени 3 (задача из предыдущей лекции)?

Постройте протокол для передачи данных вслепую "1-из-4"

Если не запомните ничего другого:

- Многосторонние секретные вычисления: получить общий результат, не раскрывая своих данных
- Доказательство в два этапа: протокол для получестных участников + система контроля
- Используемые примитивы: разделение секрета, передача данных вслепую, нулевое разглашение

Вопросы?

21/22 22/22