
Processing Compressed Texts:

A Tractability Border ?

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg, Russia,
yura@logic.pdmi.ras.ru

Abstract. What kind of operations can we perform effectively (without
full unpacking) with compressed texts? In this paper we consider three
fundamental problems: (1) check the equality of two compressed texts,
(2) check whether one compressed text is a substring of another com-
pressed text, and (3) compute the number of different symbols (Hamming
distance) between two compressed texts of the same length.
We present an algorithm that solves the first problem in O(n3) time and
the second problem in O(n2

m) time. Here n is the size of compressed
representation (we consider representations by straight-line programs) of
the text and m is the size of compressed representation of the pattern.
Next, we prove that the third problem is actually #P-complete. Thus,
we indicate a pair of similar problems (equivalence checking, Hamming
distance computation) that have radically different complexity on com-
pressed texts. Our algorithmic technique used for problems (1) and (2)
helps for computing minimal periods and covers of compressed texts.

1 Introduction

How can one minimize data storage space, without compromising too much on
the query processing time? Here we address this problem using data compression
perspective. Namely, what kind of problems can be solved in time polynomially
depending on the size of compressed representation of texts?

Algorithms on compressed texts have applications in various areas of theoret-
ical computer science. They were used for solving word equations in polynomial
space [23]; for solving program equivalence within some specific class in poly-
nomial time [14]; for verification of message sequence charts [9]. Fast search in
compressed texts is also important for practical problems. Compression for in-
dices of search engines is critical for web, media search, bioinformatics databases.
Next, processing compressed objects has close relation to software/hardware ver-
ification. Usual verification task is to check some safety property on all possible
system states. However, number of such states is so large that can not be verified
by brute force approach. The only way is to store and process all states in some
implicit (compressed) form.

? Support by grants INTAS 04-77-7173 and NSh-8464.2006.1 is gratefully acknowl-
edged.

Problem. Straight-line program (SLP) is now a widely accepted abstract
model of compressed text. Actually it is just a specific class of context-free
grammars that generate exactly one string. Rytter showed [24] that resulting
encodings of most classical compression methods (LZ-family, RLE, dictionary
methods) can be quickly translated to SLP. We give all details on SLPs in
Section 2. Recently, an interesting variation of SLP was presented under the
name of collage systems [13]. For any text problem on SLP-generated strings we
ask two following questions: (1) Does a polynomial algorithm exist? (2) If yes,
what is exact complexity of the problem? We can think about negative answer
to the first question (say, NP-hardness) as an evidence that naive “generate-and-
solve” is the best way for that particular problem.

Consider complexity of pattern matching problem on SLP-generated strings
(sometimes called fully compressed pattern matching or FCPM). That is, given
a SLPs generating a pattern P and a text T answer whether P is a substring of T
and provide a succinct description of all occurrences. An important special case
is equivalence problem for SLP-generated texts. Then we generalize compressed
equivalence problem to compressed Hamming distance problem. Namely, given
two SLP-generated texts of the same length, compute the number of positions
where original texts differ from each other. Equality checking of compressed
texts is a natural seems to be a natural problem related to checking changes
in backup systems. Fully compressed pattern matching can be used in software
verification and media search (audio/video pattern might be quite large and
also require compression). Hamming distance is a simple form of approximate
matching which is widely used in bioinformatics as well as in media search.

Compressed equality problem was solved for the first time in the paper [22]
in 1994 in O(n4) time. The first solution for fully compressed pattern match-
ing appeared a year later in the paper [12]. Next, a polynomial algorithm for
computing combinatorial properties of SLP-generated text was presented in [8].
Finally, in 1997 Miyazaki, Shinohara and Takeda [18] constructed new O(n2m2)
algorithm for FCPM, where m and n are the sizes of SLPs that generate P
and T , correspondingly. In 2000 for one quite special class of SLP the FCPM
problem was solved in time O(mn) [10]. Nevertheless, nothing was known about
complexity of compressed Hamming distance problem.

Our results. The key result of the paper is a new O(n2m) algorithm for
pattern matching on SLP-generated texts. As before, m and n are sizes of SLPs
generating P and T , correspondingly. This algorithm is not just an improvement
over previous ones [8, 10, 12, 18, 22] but is also simpler than they are. Next, we
prove #P-completeness of computing Hamming distance between compressed
texts in Section 4. Recall that #P is a class of functions, a kind of extension for
class of predicates NP. Here for the first time we have closely related problems
(equivalence checking, Hamming distance computation) from different sides of
the border between efficiently solvable problems on SLP-generated texts and
intractable ones. Algorithmic technique from our main FCPM algorithm could
be used for computing the shortest period/cover of compressed text. We show
this application and state some questions for further research in Section 5.

Historical remarks. Algorithms for finding an explicitly given pattern in
a compressed texts were the first results in the field [1, 6]. Next, polynomial
algorithms for regular expression matching [19], approximate pattern matching
[11] and subsequence matching [5] were constructed for SLP-generated texts.
Encouraging experimental results are reported in [20]. Some other problems
turned out to be hard. Context-free language membership [17], two-dimensional
pattern matching [4], fully compressed subsequence matching [16] are all at least
NP-hard. The paper [25] surveys the field of processing compressed texts.

2 Compressed Strings Are Straight-Line Programs

A Straight-line program (SLP) is a context-free grammar generating exactly
one string. Moreover, we allow only two types of productions: Xi → a and
Xi → XpXq with i > p, q. The string represented by a given SLP is a unique
text corresponding to the last nonterminal Xm. Although in previous papers Xi

denotes only a nonterminal symbol while the corresponding text was denoted by
val(Xi) or eval(Xi) we identify this notions and use Xi both as a nonterminal
symbol and as the corresponding text. Hopefully, the right meaning is always
clear from the context. We say that the size of SLP is equal to the number of
productions.

Example. Consider string abaababaabaab. It could be generated by the fol-
lowing SLP:X7 → X6X5, X6 → X5X4, X5 → X4X3, X4 → X3X2,X3 → X2X1,
X2 → a, X1 → b.

In fact, the notion of SLP describes
only decompression operation. We do
not care how such an SLP was ob-
tained. Surprisingly, while the compres-
sion methods vary in many practical al-
gorithms of Lempel-Ziv family and run-
length encoding, the decompression goes
in almost the same way. In 2003 Rytter
[24] showed that given any LZ-encoding
of string T we could efficiently get an
SLP encoding for the same string which is at most O(log |T |) times longer than
the original LZ-encoding. This translation allows us to construct algorithms only
in the simplest SLP model. If we get a different encoding, we just translate it
to SLP before applying our algorithm. Moreover, if we apply Rytter’s transla-
tion to LZ77-encoding of a string T , then we get an O(log |T |)-approximation of
the minimal SLP generating T . The straight-line programs allow the exponen-
tial ratio between the size of SLP and the length of original text. For example
Xn → Xn−1Xn−1, . . .X2 → X1X1, X1 → a has n rules and generates 2n−1-long
text.

We use both log |T | and n (number of rules in SLP) as parameters of algo-
rithms’ complexity. For example, we prefer O(n log |T |) bound to O(n2), since

in practice the ratio between the size of SLP and the length of the text might
be much smaller than exponential.

3 A New Algorithm for Fully Compressed Pattern

Matching

Decision version of the fully compressed pattern matching problem (FCPM) is
as follows:

INPUT: Two straight-line programs generating P and T
OUTPUT: Yes/No (whether P is a substring in T?)

Other variations are: to find the first occurrence, to count all occurrences, to
check whether there is an occurrence from the given position and to compute
a “compressed” representation of all occurrences. Our plan is to solve the last
one, that is, to compute an auxiliary data structure that contains all necessary
information for effective answering to the other questions.

We use a computational assumption which was implicitly used in all previous
algorithms. In analysis of our algorithm we count arithmetical operations on
positions in original texts as unit operations. In fact, text positions are integers
with at most log |T | bits in binary form. Hence, in terms of bit operations the
algorithm’s complexity is larger than our O(n2m) estimate up to some log |T |-
dependent factor.

Explanation of the algorithm goes in three steps. We introduce a special data
structure (AP-table) and show how to solve pattern matching problem using
this table in Subsection 3.1. Then we show how to compute AP-table using local
search procedure in Subsection 3.2. Finally, we present an algorithm for local
search in Subsection 3.3.

3.1 Pattern Matching via Table of Arithmetical Progressions

We need some notation and terminology. We call a position in the text a point
between two consequent letters. Hence, the text a1 . . . an has positions 0, . . . , n
where first is in front of the first letter and the last one after the last letter.
We say that some substring touches a given position if this position is either
inside or on the border of that substring. We use the term occurrence both for
a corresponding substring and for its starting position. Again, we hope that the
right meaning is always clear from the context.

Let P1, . . . , Pm and T1, . . . , Tn be nonterminal symbols of SLPs generating P
and T . For each of these texts we define a special cut position. It is a starting
position for one-letter texts and merging position for Xi = XrXs. In the example
above, the cut position for the intermediate text X6 is between 5th and 6th
letters: abaab|aba, since X6 is obtained by concatenating X5 = abaab and X4 =
aba.

Our algorithm is based on the following theoretical fact (it was already used
in [18], a similar technique was used also in [2]):

Lemma 1 (Basic Lemma). All occurrences of P in T touching any given
position form a single arithmetical progression (ar.pr.)

2 4 6

P P P

Common

position

The AP-table (table of arithmetical progressions) is defined as follows. For
every 1 ≤ i ≤ m, 1 ≤ j ≤ n the value AP [i, j] is a code of ar.pr. of occurrences
of Pi in Tj that touch the cut of Tj . Note that any ar.pr. could be encoded by
three integers: first position, difference, number of elements. If |Tj | < |Pi| we
define AP [i, j] = ∅1, and if text is large enough but there are no occurrences we
define AP [i, j] = ∅2

P1

.

.

.

Pm

T1
. . . Tn

Pi

Tj

Claim 1: Using AP-table (actually, only top row is necessary) one can solve
decision, count and checking versions of FCPM in time O(n).

Claim 2: One can compute the whole AP-table by dynamic programming
method in time O(n2m).

Proof of Claim 1. We get the answer for decision FCPM by the following
rule: P occurs in T iff there is j such that AP [m, j] is nonempty. Checking
and counting are slightly more tricky. Recursive algorithm for checking: test
whether the candidate occurrence touches the cut in the current text. If yes,
use AP-table and check the membership in the corresponding ar.pr., otherwise
call recursively this procedure either for the left or for the right part. We can
inductively count the number of P -occurrences in all T1, . . . , Tn. To start, we
just get the cardinality of the corresponding ar.pr. from AP-table. Inductive
step: add results for the left part, for the right part and cardinality of central
ar.pr. without “just-touching” occurrences.

3.2 Computing AP-table

Sketch of the algorithm for computing AP-table:

1. Preprocessing: compute lengths and cut positions for all intermediate
texts;

2. Compute all rows and columns of AP-table that correspond to one-
letter texts;

3. From the smallest pattern to the largest one, from the smallest text
to the largest one consequently compute AP[i,j]:

(a) Compute occurrences of the larger part of Pi in Tj around the
cut of Tj ;

(b) Compute occurrences of the smaller part of Pi in Tj that start
at ending positions of the larger part occurrences;

(c) Intersect occurrences of smaller and larger part of Pi and merge
all results to a single ar.pr.

Step 1: preprocessing. At the very beginning we inductively compute
arrays of lengths, cut positions, first letter, last letter of the texts P1, . . . , Pm,
T1, . . . , Tn in time O(n+m).

Step 2: computing AP-table elements in one-letter rows/columns.
Case of |Pi| = 1: compare it with Tj if |Tj | = 1 or compare it with the last
letter of the left part and the first one of the right part (we get this letters from
precomputation stage). The resulting ar.pr. has at most two elements. Hence,
just O(1) time used for computing every cell in the table. Case of |Tj | = 1: if
|Pi| > 1 return ∅1, else compare letters. Also O(1) time is enough for every
element.

Step 3: general routine for computing next element of AP-table.
After one-letter rows and columns we fill AP-table in lexicographic order of pairs
(i, j). Let Pi = PrPs. We use already obtained elements AP [r, 1], . . . , AP [r, j]
and AP [s, 1], . . . , AP [s, j] for computing AP [i, j] . In other words, we only need
information about occurrences of left/right part of the current pattern in the
current and all previous texts.

Pi

Pr

Ps

Tj

Order of computation:

“grey” values are used for computing “black” one

(we assume Pi = PrPs)

Let the cut position in Tj be γ (we get it from the preprocessing stage), and
without loss of generality let |Pr| ≥ |Ps|. The intersection method is (1) to
compute all occurrences of Pr “around” cut of Tj , (2) to compute all occurrences
of Ps “around” cut of Tj , and (3) shift the latter by |Pr| and intersect.

Miyazaki et al. [18] construct a O(mn) realization of intersection method.
We use a different (more accurate) way and new technical tricks that require
only O(n) time for computing AP [i, j]. We use the same first step as in inter-
section method. But on the second one we look only for Ps occurrences that

start from Pr endings. We design a special auxiliary local search procedure that
extracts useful information from already computed part of AP-table. Procedure
LocalSearch(i, j, [α, β]) returns occurrences of Pi in Tj inside the interval [α, β].
Important properties: (1) Local search uses values AP[i,k] for 1 ≤ k ≤ j, (2) It
works properly only when |β − α| ≤ 3|Pi|, (3) It works in time O(j), (4) The
output of local search is a pair of ar.pr., all occurrences inside each ar.pr. have a
common position, and all elements of the second are to the right of all elements
of the first. We now show how to compute a new element using 5 local search
calls.

Step 3a: finding occurrences of bigger part of the pattern. We apply
local search for finding all occurrences of Pr in the interval [γ−|Pi|, γ+ |Pr|]. Its
length is |Pi|+ |Pr| ≤ 3|Pr|. As an answer we get two ar.pr. of all potential starts
of Pr occurrences that touch the cut. Unfortunately, we are not able to do the
same for Ps, since the length of interesting interval is not necessarily constant
in terms of |Ps|. So we are going to find only occurrences of Ps that start from
endings of two arithmetical progressions of Pr occurrences.

Step 3b: finding occurrences of smaller part of the pattern. We
process each ar.pr. separately. We call an ending continental if it is at least |Ps|
far from the last ending in progression, otherwise we call it seaside.

|Ps|
Tj

continental seaside

| |← →

Pr Pr Pr Pr Pr

Since we have an ar.pr. of Pr occurrences that have common position (property
4 of local search), all substrings of length |Ps| starting from continental endings
are identical. Hence, we need to check all seaside endings and only one conti-
nental position. For checking the seaside region we just apply local search for
|Ps|-neighborhood of last endpoint and intersect the answer with ar.pr. of sea-
side ending positions. Intersecting two ar.pr. could be done in time O(log |T |).
Indeed, the difference of resulting ar.pr. is equal to the least common multiple
of differences of initial progressions. To find the first common point we should
solve an equation of type ax ≡ b (mod c). This kind of equations can be solved
by technique similar to Euclid algorithm.

For checking continental region we apply local search for |Ps| substring start-
ing from the first continental ending.

Step 3c: simplifying answer to a single progression. Complete answer
consists of all continental endings/or none of them, plus some sub-progression
of seaside endings, plus something similar for the second ar.pr. Since all of these
four parts are ar.pr. going one after another, we could simplify the answer to
one ar.pr. (it must be one ar.pr. by Basic Lemma) in time O(1).

Complexity analysis. We use one local search call for Pr, four local search
calls for Ps, and twice compute the intersection of arithmetical progressions.
Hence, we perform 7 steps of O(n) complexity for computing a new element.

3.3 Realization of Local Search

Local search finds all Pi occurrences in the substring Tj [α, β]. On the first step we
run recursive crawling procedure with main parameters (i, j, α, β). After halt-
ing of all computation branches we get a sorted list of progressions representing
Pi occurrences within [α, β] interval in Tj . Then we run merging procedure
that simplifies all progressions to two ones.

Crawling procedure. Here we have three main parameters (i, j, [α, β]) and
two auxiliary ones: global shift and pointer to output list. Initially we start with
main parameters of local search, zero shift and a pointer to empty list. In ev-
ery call we take the ar.pr. of occurrences of Pi in Tj that touch the cut, leave
only occurrences within the interval, and output this truncated ar.pr. (adding
global shift) to the list (using current pointer). After that, we check whether
the intersection of the interval [α, β] with left/right part of Tj is at least |Pi|
long. If so, we recursively call crawling procedure with the same i, the index of
left/right part of Tj , and with this intersection interval. We also update global
shift parameter for the right part and use new pointers to places just before/after
inserted element.

Consider the set of all intervals we work with during the crawling procedure.
Note that, by construction, any pair of them are either disjoint or embedded.
Moreover, since the initial interval is at most 3|Pi|, there are no four pairwise
disjoint intervals in this set. If we consider a sequence of embedded intervals,
then all intervals correspond to their own intermediate text from T1, . . . , Tj .
Therefore, there were at most 3j recursive calls in crawling procedure and it
works in time O(j). At the end we get a sorted list of at most 3n arithmetical
progressions. By “sorted” we mean that the last element of k-th progression
is less than or equal to the first one of k + 1-th progression. It follows from
construction of crawling procedure, that output progressions could have only
first/last elements in common.

Merging procedure. We go through the resulting list of progressions.
Namely, we compare the distance between the last element of current progres-
sion and the first element of the next progression with the differences of these
two progressions. If all three numbers are equal we merge the next progression
with the current one. Otherwise we just announce a new progression. Applying
Basic Lemma to δ1 = b 2α+β

3 c and δ2 = bα+2β
3 c positions, we see that all occur-

rences of Pi in [α, β] interval form at most two (one after another) arithmetical
progressions. Namely, those who touch δ1 and those who don’t touch but touch
δ2. Here we use that β − α ≤ 3|Pi|, and therefore any occurrence of Pi touches
either δ1 or δ2. Hence, our merging procedure starts a new progression at most
once.

3.4 Discussion on the Algorithm

Here we point out two possible improvements of the algorithm. Consider in
details the “new element routine”. Note that local search uses only O(h) time,
where h is the height of the SLP generating T , while intersection of arithmetical

progressions uses even O(log |T |). Hence, if it is possible to “balance” any SLP up
to O(log |T |) height, then the bound for working time of our algorithm becomes
O(nm log |T |).

It is interesting to consider more rules for generating texts, since collage
systems [13] and LZ77 [26] use concatenations and truncations. Indeed, as Rytter
[24] showed, we could leave only concatenations expanding the archive just by
factor O(log |T |). However, we hope that the presented technique works directly
for the system of truncation/concatenation rules. We also claim that AP-table
might be translated to a polynomial-sized SLP generating all occurrences of P
in T .

4 Hardness result

Hamming distance (denoted as HD(S, T)) between two strings of the same
length is the number of characters which differ. Compressed Hamming distance
problem (counting version): given two straight-line programs generating texts of
the same length, compute Hamming distance between them.

A function belongs to class #P if there exists a nondeterministic Turing
machine M such that the function value corresponding to input x is equal
to the number of accepting branches of M(x). In other words, there exists
a polynomially-computable function G(x, y) such that f(x) = #{y|G(x, y) =
“yes”}. A function f has a [1]-Turing reduction to a function g, if there exist
polynomially-computable functions E and D such that f(x) = D(g(E(x))). We
call a function to be #P-complete (under [1]-Turing reductions), if it belongs to
the class #P and every other function from this class has a [1]-Turing reduction
to it.

Theorem 1. Compressed Hamming distance problem is #P-complete.

Proof. Membership in #P. We can use a one-position-comparison as G func-
tion: G(T, S; y) = “yes”, if Ty 6= Sy. Then number of y giving answer “yes” is
exactly equal to Hamming distance. Function G is polynomially computable.
Indeed, knowing lengths of all intermediate texts we can walk through SLP de-
compression tree “from the top to the bottom” and compute value of Ty in linear
time.

#P-hardness. It is enough to show a reduction from another complete prob-
lem. Recall the well-known #P-complete problem subset sum [7]: given integers
w1, . . . , wn, t in binary form, compute the number of sequences x1, . . . , xn ∈
{0, 1} such that

∑n
i=1 xi · wi = t. In other words, how many subsets of W =

{w1, . . . , wn} have the sum of elements equal to t? We now construct a [1]-
Turing reduction from subset sum to compressed Hamming distance. Let us fix
input values for subset sum. We are going to construct two straight-line pro-
grams such that Hamming distance between texts generated by them can help
to solve subset sum problem.

Our idea is the following. Let s = w1 + · · · + wn. We construct two texts of
length (s+1)2n, describing them as a sequence of 2n blocks of size s+1. The first
text T is an encoding of t. All its blocks are the same. All symbols except one
are “0”, the only “1” is located at the t+ 1-th place. Blocks of the second text
S correspond to all possible subsets of W . In every such block the only “1” is
placed exactly after the place equal to the sum of elements of the corresponding
subset. In a formal way, we can describe T and S by the following formulas:

T = (0t10s−t)2n , S =

2n−1∏

x=0

(0x̄·w̄10s−x̄·w̄).

Here x̄ · w̄ =
∑
xiwi and

∏
denotes concatenation.

The string S (let us call it Lohrey string) was used for the first time in the
Markus Lohrey’s paper [17], later it was reused in [16]. Lohrey proved in [17]
that knowing input values for subset sum one can construct polynomial-size SLP
that generates S and T in polynomial time. Notice that HD(T, S) is exactly two
times the number of subsets of W with elements’ sum nonequal to t. Therefore,
the subset sum answer can be computed as 2n − 1

2HD(T, S).

It turns out that #P-complete problems could be divided in subclasses that
are not Karp-reducible to each other. E.g. recently [21] a new class TotP was
presented. A function belongs to TotP, if there exists a nondeterministic machine
M such that f(x) is equal to the number of all branches ofM(x) minus one. Many
problems with polynomially-easy “yes/no” version and #P-complete counting
version belong to TotP.

We can show that compressed Hamming distance belongs to TotP. Indeed,
we can test equality of substrings and split computation every time when both
the left half and the right half of a substring in the first text are not equal to the
corresponding left/right halves of the same interval in the second text. We should
also add a dummy computing branch to every pair of nonequal compressed texts.

5 Consequences and Open Problems

A period of string T is a string W (and also an integer |W |) such that T is a
prefix of W k for some integer k. A cover (notion originated from [3]) of a string
T is a string C such that any character in T is covered by some occurrence of C
in T . Problem of compressed periods/covers: given a compressed string T , find
the length of minimal period/cover and compute a “compressed” representation
of all periods/covers.

Theorem 2. Assume that AP-table can be computed in time O((n+m)k). Then
compressed periods problem can be solved in time O(nk log |T |), while compressed
cover problem can be solved in time O(nk log2 |T |).

Corollary. Our O(n2m) algorithm for AP-table provides O(n3 log |T |) and
O(n3 log2 |T |) complexity bounds for compressed periods and compressed covers,
correspondingly.

For complete proof of Theorem 2 we refer to technical report version of
this paper [15]. The compressed periods problem was introduced in 1996 in the
extended abstract [8]. Unfortunately, the full version of the algorithm given in
[8] (it works in O(n5 log3 |T |) time) was never published.

We conclude with some problems and questions for further research:

1. To speed up the presented O(n2m) algorithm for fully compressed pat-
tern matching. Conjecture: improvement to O(nm log |T |) is possible. More
precisely, we believe that every element in AP-table can be computed in
O(log |T |) time.

2. Is it possible to speed up computing of edit distance (Levenshtein distance)
in the case when one text is highly compressible? Formally, is it possible
to compute the edit distance in O(nm) time, where n is the length of T1,
and m is the size of SLP generating T2? This result leads to speedup of
edit distance computing in case of “superlogarithmic” compression ratio.

Recall that the classical algorithm has O(n2

log n) complexity.
3. Consider two SLP-generated texts. Is it possible to compute the length of

the longest common substring for them in polynomial (from SLPs’ size)
time?

Compressed suffix tree. Does there exist a data structure for text repre-
sentation such that (1) it allows pattern matching in time linear to the pattern’s
length, and (2) for some reasonable family of “regular” texts this structure re-
quires less storing space than original text itself?

Application to verification. Algorithm for symbolic verification is one of
the major results in model checking. It uses OBDD (ordered binary decision
diagrams) representations for sets of states and transitions. It is easy to show
that every OBDD representation can be translated to the SLP-representation of
the same size. On the other hand there are sets for which SLP representation is
logarithmically smaller. In order to replace OBDD representations by SLPs we
have to answer the following question. Given two SLP-represented sets A and
B, how to compute a close-to-minimal SLP representing A ∩ B and a close-to-
minimal SLP representing A ∪B?

References

1. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. In SODA’94, 1994.

2. A. Amir, G. M. Landau, M. Lewenstein, and D. Sokol. Dynamic text and static
pattern matching. In WADS’03, LNCS 2748, pages 340–352. Springer-Verlag, 2003.

3. A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing
for strings. Inf. Process. Lett., 39(1):17–20, 1991.

4. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On
the complexity of pattern matching for highly compressed two-dimensional texts.
Journal of Computer and Systems Science, 65(2):332–350, 2002.

5. P. Cegielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich. Window subsequence
problems for compressed texts. In CSR’06, LNCS 3967. Springer-Verlag, 2006.

6. M. Farach and M. Thorup. String matching in lempel-ziv compressed strings. In
STOC ’95, pages 703–712. ACM Press, 1995.

7. M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory

of NP-completeness. Freeman, 1979.
8. L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms

for Lempel-Ziv encoding (extended abstract). In SWAT’96, LNCS 1097, pages
392–403. Springer-Verlag, 1996.

9. B. Genest and A. Muscholl. Pattern matching and membership for hierarchical
message sequence charts. In LATIN’02, LNCS 2286, pages 326–340. Springer-
Verlag, 2002.

10. M. Hirao, A. Shinohara, M. Takeda, and S. Arikawa. Fully compressed pattern
matching algorithm for balanced straight-line programs. In SPIRE’00, pages 132–
138. IEEE Computer Society, 2000.

11. J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string matching over
Ziv-Lempel compressed text. In CPM’00, LNCS 1848, pages 195–209. Springer-
Verlag, 2000.

12. M. Karpinski, W. Rytter, and A. Shinohara. Pattern-matching for strings with
short descriptions. In CPM’95, LNCS 937, pages 205–214. Springer-Verlag, 1995.

13. T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa.
Collage system: a unifying framework for compressed pattern matching. Theor.

Comput. Sci., 298(1):253–272, 2003.
14. S. Lasota and W. Rytter. Faster algorithm for bisimulation equivalence of normed

context-free processes. In MFCS’06, LNCS 4162, pages 646–657. Springer-Verlag,
2006.

15. Y. Lifshits. Algorithmic properties of compressed texts. Technical Report PDMI,
23/2006, 2006.

16. Y. Lifshits and M. Lohrey. Quering and embedding compressed texts. In MFCS’06,
LNCS 4162, pages 681–692. Springer-Verlag, 2006.

17. M. Lohrey. Word problems on compressed word. In ICALP’04, LNCS 3142, pages
906–918. Springer-Verlag, 2004.

18. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching al-
gorithm for strings in terms of straight line programs. In CPM’97, LNCS 1264,
pages 1–11. Springer-Verlag, 1997.

19. G. Navarro. Regular expression searching on compressed text. J. of Discrete

Algorithms, 1(5-6):423–443, 2003.
20. G. Navarro and M. Raffinot. A general practical approach to pattern matching

over Ziv-Lempel compressed text. In CPM’99, LNCS 1645, pages 14–36. Springer-
Verlag, 1999.

21. A. Pagourtzis and S. Zachos. The complexity of counting functions with easy
decision version. In MFCS’06, LNCS 4162, pages 741–752. Springer-Verlag, 2006.

22. W. Plandowski. Testing equivalence of morphisms on context-free languages. In
ESA’94, LNCS 855, pages 460–470. Springer-Verlag, 1994.

23. W. Plandowski. Satisfiability of word equations with constants is in PSPACE. J.

ACM, 51(3):483–496, 2004.
24. W. Rytter. Application of Lempel-Ziv factorization to the approximation of

grammar-based compression. Theor. Comput. Sci., 302(1–3):211–222, 2003.
25. W. Rytter. Grammar compression, LZ-encodings, and string algorithms with im-

plicit input. In ICALP’04, LNCS 3142, pages 15–27. Springer-Verlag, 2004.
26. J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3):337–343, 1977.

