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ABSTRACT
We say that an algorithm for nearest neighbor search is com-
binatorial if only direct comparisons between two pairwise
similarity values are allowed. Combinatorial algorithms for
nearest neighbor search have two important advantages: (1)
they do not map similarity values to artificial distance val-
ues and do not use triangle inequality for the latter, and (2)
they work for arbitrarily complicated data representations
and similarity functions.

In this paper we introduce a special property of the simi-
larity function on a set S that leads to efficient combinatorial
algorithms for S. Disorder constant D(S) of a set S is de-
fined to ensure the following inequality: if x is the a’th most
similar object to z and y is the b’th most similar object to
z, then x is among the D(S) · (a+ b)’th most similar objects
to y.

Assuming that disorder is small we present the first two
known combinatorial algorithms for nearest neighbors whose
query time has logarithmic dependence on the size of S. The
first one called Ranwalk is a randomized zero-error algorithm
that always returns the exact nearest neighbor. It uses space
quadratic in the input size in preprocessing, but is very ef-
ficient in query processing. The second algorithm, called
Arwalk, uses near-linear space. It uses random choices in
preprocessing, but the query processing is essentially deter-
ministic. For every fixed query, there is only a small proba-
bility that the chosen data structure does not support it.

Finally, we show that for Reuters corpus average disorder
is, indeed, quite small and that ranwalk efficiently computes
the nearest neighbor in most cases.

Categories and Subject Descriptors
E.1 [Data Structures]; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems: computations on discrete structures, sorting
and searching; H.2.4 [Database Management]: Systems:
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query processing; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval: retrieval mod-
els, search process; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing: indexing methods;
I.3.1 [Pattern Recognition]: Clustering: similarity mea-
sures

General Terms
Algorithms, Theory, Experimentation

Keywords
Nearest neighbor search, similarity search, proximity search,
random walk, randomized algorithms, disorder inequality,
disorder dimension, disorder constant

1. INTRODUCTION

Challenge.
Nearest-neighbor search (also called similarity search) is

the problem of preprocessing a set S of n objects (which we
henceforth refer to as points) lying in some space U with a
similarity function so that given a query q ∈ U , one can effi-
ciently locate the point that is most similar to q among the
points in S. There are several surveys of nearest neighbor
search (NNS); e.g., [9, 8, 18, 21]. This intensively stud-
ied problem has numerous web-related applications besides
playing a central role in many other important areas. These
applications include:

• Near-duplicate detection [4, 7, 15, 20].

• Classification/filtering tasks like detecting spam pages
[37], spelling correction [11], sense disambiguation[36].

• Recommendation systems [34].

• Computing co-occurrence and co-citation similarity
[6, 12].

• Discovering related tags in folksonomies [13, 32].

• Social network analysis (e.g. suggesting new friends)
[32].

• News aggregation (searching for news articles that are
most similar to the user’s profile of interests) [26, 32].

• Advertisement targeting (searching for the most rel-
evant website for displaying a given advertisement)
[33].



Applying classical similarity search solutions for these tasks
is not straightforward for several reasons. First, data models
are quite heterogeneous and far from simple abstractions like
Euclidean space. Combination of text data and link struc-
ture [3] is now a norm. For instance, consider a description
of a blog: language, geographic location (dictionary parame-
ters), age, number of posts (numerical parameters), referring
links and reader list (graph parameters), text of profile and
posts (text parameters) and posting timestamps (time pa-
rameters). Such a heterogeneous description leads to quite
complicated similarity function. E.g. it can include man-
ually defined logical rules and threshold functions. Finally,
definition of similarity usually contains various “customiza-
tion” parameters which can be adjusted by domain experts.

Second, many applications are focused on similarity, not
distance. Mapping similarity values to distance values is
tricky since we need to guarantee the triangle inequality (as
most NNS-algorithms seem to crucially use the triangle in-
equality). Moreover, if most objects have low similarity with
each other (as is often the case in high-dimensional spaces)
almost all distances are in the range from 1/2 to 1. As a
result, rules like “|pp′| ≥ 2|qp|” (e.g. [8]) (which implies that
p′ is farther to q than p) will never apply. Note also that
even if we have an algorithm for approximate nearest neigh-
bor for distances, the approximation factor generally does
not hold for the original similarity values.

Third, the number of description parameters is overwhelm-
ing and collections we face in practice are very far from
“random [families] of random sets” [19]. We cannot expect
to find efficient NNS-algorithms for general sets with arbi-
trary similarity functions. Hence, instead of addressing the
problem in general we should attempt to find an additional
properties that hold for real data and support efficient and
provably correct NNS-algorithms.

Combinatorial approach.
Complicated data models and the absence of the trian-

gle inequality for similarity values leave very few tools for
the NNS-problem. To our knowledge, there are no NNS-
algorithms that work directly with similarity values without
first modelling the problem in a metric space. In the present
paper, we propose a framework for designing algorithms that
do not translate the problem to metric spaces.

Besides working with the similarity function directly, we
introduce a restriction on the way the similarity function
can be used. We call a search algorithm combinatorial if
only direct comparisons between two pairwise similarity val-
ues are allowed. As we will see, even working with this
restriction we can design good algorithms. The restriction
offers some advantages: Since we make minimal assumptions
about the similarity function, the algorithms in our frame-
work have wide applicability. Moreover, the algorithms are
quite robust to certain changes in the similarity function.
E.g. adding a constant to all similarity values does not af-
fect such an algorithm at all. Also, any transformation of
the data representations that preserves the order of similar-
ity values between the points, does not change anything in
the output of the algorithm.

As mentioned before, we cannot expect efficient NNS-
algorithms for general databases with arbitrary similarity
functions. We introduce a natural property of databases
which allows us to design efficient NNS-algorithms and is es-
sentially satisfied for at least one real database, as described

in our experimental results.
Consider a set S of n points. For every point x we sort

all other point by their similarity to x. Overall, we have n
sorted lists of n−1 points each. This is the only information
actually to be used in the preprocessing stage. We denote
the position of point x in y’s list by ranky(x).

Now we introduce notion of nice sets for nearest neighbor
search. Nice sets should satisfy the following informal prin-
ciple: For every triple of points x, y, z, if x has small rank
with respect to z, and y has small rank with respect to z then
x also has quite small rank with respect to y. This is our
replacement for the triangle inequality. Actually, we relax it
by a multiplicative factor D and call it disorder inequality :

ranky(x) ≤ D · (rankz(x) + rankz(y)).

We observe that disorder constant D is connected to the
concept of “intrinsic dimension” for metric spaces. More
precisely, log2 D + 1 can be used as a fair estimate of the
real dimension of uniformly distributed sets in Euclidean
space of some fixed dimension. Hence, we call log2 D+1 the
disorder dimension of the set.

It is natural to conjecture that if the disorder constant
(and hence, the disorder dimension) is small, then the near-
est neighbors problem has provably more efficient solutions
than brute force. Thus our plan is (1) to verify the “small
disorder assumption” on some real data set and (2) to con-
struct a search algorithm utilizing this assumption.

Results.
Our first contribution is the introduction of the concepts

of combinatorial algorithm, disorder inequality and disorder
dimension. To the best of our knowledge this is the first time
that a framework for comparison-based similarity search has
been explicitly introduced.

Next, we present two new randomized algorithms for exact
nearest neighbor search: Ranwalk and Arwalk. They are
the first ones known to be purely combinatorial in the sense
defined above. They bear some resemblance to the greedy
search algorithms for small world networks (see, e.g., [24]).

Ranwalk performs a random walk in the search phase. It
requires O(n2) preprocessing space, O(n2 log n) preprocess-
ing time and uses expectedO(D log n log log n+D2) time for
answering a query. It always produces the correct answer.

The Arwalk algorithm (walk via navigation array) requires
O(nD log n log log n) preprocessing space, O(n2 log n) pre-
processing time and uses O(D log n(log log n+ log1/δ)+D2)
time for answering a query. For every query it produces the
correct answer with probability at least 1− δ. The underly-
ing data structure, called navigation array, is a n×D′×log n
table of pointers to points in the database S. Informally, for
every point x ∈ S and every k ≤ log2 n we keep pointers to
D′ = D log log n random points in the n/2k neighborhood
of x.

The analysis of Arwalk shows that similarity search is
tractable (near-linear preprocessing space, near-logarithmic
query time) when the disorder dimension logD+1 is at most
log log n. Thus, we have similar results to [9, 10, 27, 28, 23]
where the tractability was shown under the log log n bound
for other definitions of intrinsic dimension. One important
advantage of Ranwalk and Arwalk is that they are the only
exact algorithms in this family.

On the experimental side, we compute the disorder di-
mension of Reuters corpus [31]. The results show that (1)



on average the disorder inequality requires a fairly small
constant D, (2) even for triangles with large rank values on
the sides, the average D is still small, but (3) in the worst
case for some triangles, the disorder fraction is large.

Outline.
The next section is devoted to our concept of disorder.

Then we present our algorithms: Ranwalk and Arwalk. The
experiments on the Reuters corpus are presented in Section
4. Finally, we explain the relation of our results to previous
research and present six directions for further research.

2. COMBINATORIAL FRAMEWORK AND
DISORDER INEQUALITY

As mentioned earlier, one of the main contribution of the
present work is the combinatorial framework for the nearest
neighbor problem. To describe this framework we need some
notation.

Definition 1. (similarity space) A similarity space is a
tuple (U, σ), where U is a finite universe of points, and U is
equipped with a similarity function σ : U × U → R.

Intuitively, if σ(p, q) is large for p, q ∈ U , then p and q
are more similar to each other than when σ(p, q) is small.
Thus similarity has the opposite interpretation of distance
in a metric space. Note that we do not require the similarity
function to be symmetric.

The nearest neighbor problem is the following: given a
database S ⊆ U , we would like to preprocess it so that for
any query q ∈ U we are able to find a point in S that is
closest to q; that is to say, we would like to find p ∈ S such
that σ(q, p) = min{σ(q, p) | p ∈ S}. Note that the similarity
function need not be symmetric.

In our combinatorial framework, we propose to do away
with the numerical value of the similarity function. Instead,
we distill the problem down to the relative values of the
similarity function. To make this precise we introduce the
notion of rank.

One advantage of our framework is that any transforma-
tion of the set, or change in similarity function, that does
not affect the rank function also does not affect the output
of the nearest neighbor search. For example, if one adds a
fixed number to all similarity values, an algorithm in our
framework will work precisely in the same way. Note that
classical ANN algorithms do not have this property.

Definition 2. (rank function) For points x, y and set S
define rankx,S(y) to be the position of y when the elements
z of S∪{x, y} are ordered according to decreasing similarity
to x. When the set S is clear from the context we abbreviate
rankx,S(y) to rankx(y).

Let’s restate the nearest-neighbor problem. In a similarity
space (U,σ), given a database S ⊆ U , preprocess S so that
given a query q ∈ U , we can quickly find the nearest neighbor
of q in S, that is p ∈ S such that rankq,S(p) = 1.

In our combinatorial framework, the only operations an
algorithm can do are to compute the similarity values and
compare them with each other; in the preprocessing step,
the algorithm can store the outcomes of these operations.
We cannot expect to find efficient nearest-neighbor algo-
rithms for general similarity spaces, and thus we need to

find out some properties that are likely to be satisfied in
real databases, and which also admit efficient nearest neigh-
bor algorithms. We identify one such property next.

But before we do that, let’s consider an example to moti-
vate the definition. Suppose that set S is an (infinite) set of
equally distant points on a line. Let us define the similar-
ity function between two points to be the reciprocal of the
Euclidean distance between them. Then it is easy to verify
that for any triple x, y, z ∈ S we have

ranky(x) ≤ rankz(x) + rankz(y) + 3.

Similarly we have three more inequalities, if we replace
rankz(x) by rankx(z) and/or rankz(y) by ranky(z) in the
above inequality.

Of course, for a general set of points this will not be satis-
fied. Disorder constant D(S) of a set of points is a measure
of how far a given set of points S is from a total order:

Definition 3. (disorder constant D) Let S be a set equipped
with corresponding similarity function σ. Define D(S), the
disorder constant of S, to be the smallest number D such
that for all triples x, y, z ∈ S we have the following disorder
inequality:

ranky(x) ≤ D(rankz(x) + rankz(y)). (1)

We often abbreviate D(S) to D, when S is clear from
the context. Other variants of this definition may also be
useful; e.g., we may also require three“brothers”of the above
inequality to be satisfied:

ranky(x) ≤ D(rankx(z) + rankz(y)), (2)

ranky(x) ≤ D(rankx(z) + ranky(z)), (3)

ranky(x) ≤ D(rankz(x) + ranky(z)). (4)

It follows from (1) of the above inequalities that for all
x, y we have

rankx(y) ≤ Dranky(x). (5)

There is a natural notion of similarity attached to a met-
ric space: we can think of the similarity between two points
as reciprocal or negative of the distance between them. In
either case, we get the same similarity ordering. As it turns
out, sometimes a notion of dimension defined for the metric
space is closely related to the disorder constant for its associ-
ated similarity order. We now show that for grids log2 D+1
is essentially the dimension of the grid.

Lemma 1. For the d-dimensional integer grid Zd with Eu-
clidean distance of sufficiently small step size, its disorder
constant is 2d−1 upto a smultiplicative constant close to one.

Proof. Let us fix some step of Euclidean lattice and ra-
dius r0. Let c be a constant such that the number of points
in an inner space of ball of radius r > r0 centered at a lattice
point is lower upper bounded by crd. Let c′ be a constant
such that the number of points in a ball with surface of radius
r is upper bounded by c′rd. Actually, for any ε > 0 there is
sufficiently small step of lattice and sufficiently large r0 such
that c′/c ≤ 1 + ε.

For points x, y ∈ Zd, denote by |x, y|, the Euclidean dis-
tance between x and y. For x, y ∈ Zd, we have

c(|x, y|)d ≤ rankx(y) ≤ c′(|x, y|)d.



This gives

|z, x| ≤
„

rankz(x)

c

«1/d

,

|z, y| ≤
„

rankz(y)

c

«1/d

,

|y, x| ≥
„

ranky(x)

c′

«1/d

.

Now, the triangle inequality |y, x| ≤ |z, x| + |z, y|, along
with the above inequality yields

„
ranky(x)

c′

«1/d

≤
„

rankz(x)

c

«1/d

+

„
rankz(y)

c

«1/d

.

Raising both sides to dth power gives

ranky(x) ≤ c′

c

„
rankz(x)1/d + rankz(y)1/d

«d

≤ c′

c
2d−1(rankx(y) + ranky(z)).

Similarly, we can show that other inequalities in Def. 3 are
satisfied. This shows that for Zd we can take the disorder
constant to be close to 2d−1 (because c′

c
≈ 1).

In Section 5 we mention further connections with metric
spaces. The above lemma motivates the following definition.

Definition 4. (disorder dimension) Let (S, σ) be a set
in similarity space and D(S) be the disorder constant of S.
Then we call 1 + logD disorder dimension of S.

3. NEAREST NEIGHBOR SEARCH
IN SETS WITH SMALL DISORDER

In this section we present two related randomized algo-
rithms for nearest neighbor search in similarity spaces (databases
equipped with a similarity order) with disorder constant D.
Both algorithms, called Ranwalk and Arwalk, use a walk
through the database. Ranwalk always returns a correct
answer but uses quadratic preprocessing space. Arwalk sub-
stantially reduces preprocessing space at the cost of allowing
a small probability of error. Throughout the paper we as-
sume that computing similarity value and comparing any
two of them have a unit cost.

3.1 Ranwalk algorithm
Now we describe our random walk algorithm. The high

level idea of the algorithm is to start at an arbitrary point
p ∈ S, and then search its appropriate neighborhood for
points that are more similar to the query point q, move to
the best such point and repeat the process. The neighbor-
hood in which we search can have a large number of points
making it difficult to find points more similar to q. We re-
solve this difficulty by taking a small random sample of the
neighborhood and choosing the point in the sample most
similar to q.

We now formally present the algorithm, and then prove
its correctness and analyze its performance. Let us set

D′ := 3D(log log n + 1).

Ranwalk algorithm

Preprocessing:

• For every point x in database we sort all
other points by their similarity to x. Thus
our data structure consists of n lists of n−1
points each.

Query processing:

1. Step 0: choose a random point p0 in the
database.

2. From k = 1 to k = log n do
Step k: Choose D′ random points from
min(n, 3Dn

2k
)-neighborhood of pk−1. Com-

pute similarities of these points w.r.t. q and
set pk to be the most similar one.

3. If rankplogn(q) > D go to step 0, otherwise

search the whole D2-neighborhood of plog n

and return the point most similar to q as
the final answer.

Theorem 1. Assume that database points together with
query point S ∪ {q} satisfy disorder inequality with constant
D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then Ranwalk algorithm always answers nearest neighbor
queries correctly. It uses the following resources:

Preprocessing space: O(n2).
Preprocessing time: O(n2 log n).
Expected query time: O(D log n log log n+D2).

Proof. Indeed, claimed time and space constraints for
preprocessing are satisfied.

We call a single execution of steps 0 to log n a trip. For
every k ≤ log n we say that the first k steps are successful if
rankq(pk) ≤ n

2k
. Now we estimate the probability of success

for the first k steps under the assumption that the first k−1
steps are, indeed, successful.

During the query processing the following lemma holds.

Lemma 2. Assume rankq(pk−1) ≤ n
2k−1 . Then with prob-

ability 1−1/2 log n the next inequality also holds: rankq(pk) ≤
n
2k

Proof. There are exactly n
2k

points satisfying inequality
rankq(x) ≤ n

2k
. For any of such points x disorder inequality

implies

rankpk−1 (x) ≤ D(
n

2k−1
+

n

2k
) =

3Dn

2k
.

Thus, in 3Dn
2k

range from pk−1 the fraction of good points

equals to 1/3D. Since we use D′ = 3D(log log n+1) random
pointers of level k, there is at most 1/2 log n chance that we
miss all good points.

The above lemma states an upper bound for probability
of not reducing the rank with respect to q by a factor of
half in a single step. Hence, summing up error probabilities
for all log n steps of a single trip, we have probability at
least 1/2 for trip success: rankq(plog n) is at most n

2log n = 1.



By disorder inequality this implies that rankplogn(q) ≤ D.
Therefore, a single trip has probability at least 1/2 to achieve
stopping condition. And hence, expected number of trips is
at most 2.

Now let’s consider the final “refinement procedure”. Let
rankp(q) ≤ D and let p′ be true nearest neighbor for q, that
is rankq(p

′) = 1. Thus, rankp′(q) ≤ D. Applying disorder
inequality to triple p, p′, q, we get rankp(p′) ≤ D2. Thus
exhaustive search of D2 neighborhood guarantees the correct
answer. This completes the analysis of Ranwalk. 2

3.2 Arwalk algorithm
We now present our second algorithm called Arwalk (walk

via navigation array). It achieves better preprocessing space
complexity but sometimes makes mistakes (i.e. it is not
zero-error algorithm). However, error probability δ can be
arbitrarily decreased under reasonable increase of used re-
sources.

The new algorithm is based on the first one, and is ob-
tained by making the random choices of our basic algorithm
in advance.

Let us set

D′ = 3D(log log n+ log 1/δ).

Our data structure consists of D′ pointers for every of log n
levels for every of n points. We give navigation array name
to this n× log n×D′ table.

Arwalk algorithm

Preprocessing:

• For every point x in database we sort all
other points by their similarity to x. For
every level number k from 1 to log n we
store pointers to D′ random points within
min(n, 3Dn

2k
) most similar to x points.

Query processing:

1. Step 0: choose a random point p0 in the
database.

2. From k = 1 to k = log n do Step k: go by
pk−1 pointers of level k. Compute similari-
ties of these D′ points to q and set pk to be
the most similar one.

3. Return plogn.

Theorem 2. Assume that database points together with
query point S ∪ {q} satisfy disorder inequality with constant
D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then for any probability of error δ Arwalk algorithm answers
nearest neighbor query within the following constraints:

Preprocessing space: O(nD log n(log log n+ log 1/δ)).
Preprocessing time: O(n2 log n).
Query time: O(D log n(log log n+ log 1/δ)).

Proof. Computing pointers for every point require
O(n log n) + D′ log n time. Doing it sequentially we can
manage to use only space proportional to output, t hat is

O(nD′ log n). Thus, claimed time and space constraints for
preprocessing are satisfied.

During the query processing the following lemma is satis-
fied.

Lemma 3. Assume rankq(pk−1) ≤ n
2k−1 . Then with prob-

ability 1−δ/ log n the next inequality also holds: rankq(pk) ≤
n
2k

Proof. There are exactly n
2k

points satisfying inequality
rankq(x) ≤ n

2k
. For any of such points x disorder inequality

implies

rankpk−1 (x) ≤ D(
n

2k−1
+

n

2k
) =

3Dn

2k
.

Thus, in 3Dn
2k

range from pk−1 the fraction of good points

equals to 1/3D. Since we use D′ = 3D(log log n + log 1/δ)
random pointers of level k, there is at most δ/ log n chance
that we miss all good points.

Summing up error probabilities for all levels, we have at
most δ probability that rankq(plogn) is larger than n

2log n =
1. This completes the analysis of Arwalk. 2

Remark. By additional cost of D2 we can make Arwalk
to be one-side error algorithm. That is, we can do the same
“stopping condition” and “refinement procedure” as in Ran-
walk. If stopping condition is satisfied we guarantee the
correctness of answer. If it failed we return “Sorry, it was a
bad luck. Here is the answer, but it does not seems to be a
true nearest neighbor”.

Discussion.
Let us summarize important properties of Ranwalk and

Arwalk algorithms:

• Both are exact algorithm. That is, the objective of
algorithm is to output the nearest neighbor, not the
second or the third one.

• Ranwalk has deterministic preprocessing and random-
ized query processing. Arwalk has randomized pre-
processing and deterministic query processing. The
latter is a version of the random walk algorithm where
all random choices are done in advance.

• For Arwalk, probability of error is taken entirely from
random choices of navigation array. Unlike many works
(e.g., [19]), we do not assume any particular distribu-
tion on query and/or database.

• Decreasing probability of Arwalk’s error has logarith-
mic cost. E.g. to obtain probability error equal to
1/n we have to increase space and time by a factor of
log n.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the concept of disorder dimen-

sion and the ranwalk algorithm experimentally. For evalua-
tion, we use the problem of nearest neighbor search in the
Reuters-RCV1 corpus [31]. Text classification is an impor-
tant application of nearest neighbor search and the RCV1
corpus is one of the most widely used data sets for evaluat-
ing text classification performance. RCV1 has roughly one
gigabyte of text. It consists of about 800,000 documents
that were sent over the Reuters newswire during a one year



period between August 20, 1996, and August 19, 1997. The
collection covers a wide range of topics, including politics,
business, and sports. The labels assigned to documents by
Reuters editors can be used as a gold standard to evaluate
nearest neighbor algorithms.

Disorder constant D.
In the previous section we introduced two algorithms,

whose query time and preprocessing space depend upon the
disorder constant D. These theoretical estimates become
practical only if D is sufficiently small. Hence, a natural
question arises: How small is D for real data sets?

The value of D as defined in Def. 3 is in a sense a worst-
case definition: we want the inequality (1) to hold for all
triples. This worst case definition leads to D being too large.
However, as we will see presently, in the case of Reuters D
it is small for most pairs.

We run a large number of micro-experiments with parame-
ters x ∈ S and R ∈ Z on the first 1000 documents of Reuters.
Choose a, b in [1, . . . , R] uniformly at random. Consider a
randomly chosen news article z. Let x and y be the articles
with rankz(x) = a and rankz(y) = b. Let c := ranky(x). Fi-
nally, compute c

a+b
. This ratio corresponds to D for triple

(x, y, z) using inequality (3).
Our experiments indicate that for R = 2, 5, 10, 50, 100, 1000,

the ratio c
a+b

is no more than 200, for an overwhelmingly
large fraction of the cases examined. And, in fact, for a large
fraction of cases the ratio was close to 1. We illustrate this
for R = 5 in Fig. 1.
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Figure 1: Distribution of ranky(x)/(rankz(x) +
rankz(y)) for R = 5

A second test of the disorder constant is to compute the
ratio ranky(x)/rankx(y) for pairs < x, y >, where x is ran-
domly chosen from S and y is randomly chosen from the R
closest neighbors of x. If values of this ratio are within a
small interval, then this indicates that the disorder constant
approximately reflects the true distribution of points. This
does seem to be the case for Reuters as shown in Fig. 2 for

R = 5 (the graph shows a histogram for 10,000 trials). Al-
most all ratios r are 10−1 ≤ r ≤ 100.3 and none are < 10−1.2.
We obtained similar results for R = 2, 5, 10, 50, 100, 1000.
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Figure 2: Distribution of ranky(x)/rankx(y) for R = 5

Ranwalk algorithm.
We also evaluated the performance of the ranwalk algo-

rithm on Reuters. We chose the parameter D = 10 and
selected a set of 1000 documents as training set and a dis-
joint set of 1000 documents as test set. We then performed
10,000 trials of randomly selecting a test point q and execut-
ing ranwalk to find the nearest neighbor p. For some points
q, rankp(q) > D for all training points p since the disorder
relationship does not hold for all points in the database. We
therefore limited the number of “restarts” (i.e., returning to
step 0 after failing to find a p with rankp(q) ≤ D) to 100. In
those cases, we selected from the set of 100 plogn candidates
that p in step 3 that was closest to q.

Fig. 3 shows the results of the experiment. For almost
all query points, the algorithm successfully identified the
nearest neighbor (note logarithmic scale). There was only
1 case with rankq(p) ≥ 30. These results indicate good
performance of Ranwalk on practical nearest neighbor search
problems.

5. RELATED WORK AND
OPEN PROBLEMS

Related work.
Our work is inspired by several ideas presented in previous

publications. The first one is to use walks and, in particular
random walks for search problems. For nearest neighbors a
walk algorithm was suggest by Orchard [38] – however this
algorithm is not randomized. Also, this idea was used in
SAT algorithms [17], for measuring index quality [16] and
for ranking nodes in the Web graph [1].

The second idea is the small disorder constant assumption.
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Figure 3: Distribution of rankq(p) of p returned by
ranwalk

The informal idea that small dimensional spaces (for some
appropriate notion of dimension) are more nicely behaved
and tractable, is now well-known in many settings. In par-
ticular, for nearest neighbor search it has appeared in sev-
eral recent papers, where various notions of the dimension
of a metric space are introduced, and efficient algorithms
are given for small dimensional spaces: e.g., KR-dimension,
doubling dimension [9, 10, 23, 27, 28].

Definition 5. KR-dimension of a metric space M is the
minimum d such that |B2r(x)| ≤ 2d|Br(x)|, for all x and r;
here Br(x) denotes the ball of radius r with center x.

We are currently unable to prove any direct comparison
result for disorder dimension vs KR-dimension or doubling
dimension. However, one modelling example shows an ad-
vantage of disorder dimension over KR one. Consider a set
of points where almost all distances (dissimilarity values)
are in the interval [1/2, 1]. Then take any point x, let y be
it’s nearest neighbor and say d(x, y) = 0.6. Then by taking
radius 0.6 we have just one point in the ball but by taking
1.2 we get the whole database. Hence, KR-dimension is the
maximal possible for n points in this example. On the other
hand, there is still a chance for disorder to be small.

Finally, the principle “respective order but not absolute
values are really important” was previously applied in the
somewhat related setting of Web ranking problem [30]. They
were concerned with how different Web ranking algorithms
change the ranks of the webpages because of small changes
in the input.

Next steps.
We feel that the idea of focusing on rank values instead

of similarity values is quite promising. Hence, we suggest
to continue the study of nearest neighbors in this direction.
Here is our question list:

Average disorder. If disorder inequality does not hold for

a small fraction of pairs, how should we modify our al-
gorithm? One possible approach is to use some other
method (e.g. inverted index [35]) for determining a
“relatively similar” point in the database and then
start the random walk from this point.

Improving our algorithms. How can one decrease pre-
processing complexity of our algorithms? Is it possible
to combine advantages of Ranwalk and Arwalk? Does
there exist a deterministic algorithm with sublinear
search time utilizing small disorder assumption? E.g.,
can we use expanders for derandomization? Can we
use Ranwalk/Arwalk under other than disorder-based
assumptions?

Disorder of random sets. Compute disorder values for
some modelling examples. For example, consider n
random points on d-dimensional sphere, or n ran-
dom strings of some fixed length in σ-size alphabet
for Hamming/edit distance.

Further experiments. Compute disorder constant for other
data sets. Implement and test Ranwalk and Arwalk.
Study them in the context of MESSIF project [5].

Lower bounds. Is it possible to prove lower bounds on
preprocessing and query complexities in some “black-
box”model of computation? Can we adapt techniques
from recent papers [28, 39]?

Utilizing combinatorial framework. Consider well-known
techniques like search trees [8, 18], hashing [2, 22, 29]
or random projections [14, 25] under bounded dis-
order assumption. What are their “combinatorial”
analogues? Can they beat random walk? Construct
disorder-inequality-based clustering algorithms. Also,
what is analogue of disorder inequality for bichromatic
nearest neighbor search?
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