Hunting zeros of Dirichlet series by linear algebra. III.

published by Yuri MatiYasevich as

Ю. В. Матиясевич

Охота за нулями рядов Дирихле
средствами линейной алгебры. III
POMI Preprints 3, 2022
http://www.pdmi.ras.ru/preprint/2020/22-03.html
Parts I and II can be downloaded from doi:10.13140/RG.2.2.29328.43528 and doi:10.13140/RG.2.2.20434.22720.

In the third part we consider some non-evident ways to calculate numbers (2.3) and (2.4) where (1.2) are the non-trivial zeta zeros and maps P_{n} are defined in (2.2). The main objects of our study are numbers (2.20) where N is a natural parameter and a is a complex parameter. These numbers are defined by (2.23) where matrix $M_{N, n}(a)$ is the result of deleting the topmost row and the nth column from matrix (2.40). The entries (2.19) of the latter matrix are defined by (2.41) and conditions (2.18) where $D_{N, m}(a, s)$ are finite Dirichlet series (2.13).

Whenever a is close to some zero ρ of the zeta function, $\varrho_{N, n}(a)$ is close to $P_{n}(\rho)$ - see Tables $7-9$, and 12, and inequalities (3.6)-(3.9).

For a fixed α functions $\operatorname{Re}\left(\varrho_{N, n}(\alpha+\mathrm{i} \tau)\right)$ and $\operatorname{Im}\left(\varrho_{N, n}(\alpha+\mathrm{i} \tau)\right)$ are almost stepwise functions of τ - see Figures 3-6.

When a is close neither to ρ_{k} nor to ρ_{k+1} the triangles with vertices $\varrho_{N, n}(\alpha+\mathrm{i} \tau)$, $P_{n}\left(\rho_{k}\right)$ and $P_{n}\left(\rho_{k+1}\right)$ have almost similar form independent of the value of n-see Figure 10 and Table 13 (where r is defined by (4.4)). This allows us to calculate $P_{n}\left(\rho_{k+1}\right)$ from $P_{n}\left(\rho_{k}\right)$ by (4.13) when $n^{2} \leq N$ - see Table 14.

When $n^{3} \leq N$, both $P_{n}\left(\rho_{k}\right)$ and $P_{n}\left(\rho_{k+1}\right)$ can be calculated as the zeros of the quadratic equation (4.30) with the coefficients defined by (4.27)-(4.29) - see Tables 15 and 16.

