Complexity lower bounds for algebraic computation trees

Dima Grigoriev (Lille)

CNRS

14/06/2011, Saint-Petersbourg

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-118-0) 14.6.11 1 / 23

 Ω

イロメ イ何メ イヨメイヨ

Several non-linear lower bounds are known in algebraic complexity unlike its boolean counterpart

 QQ

イロト イ母ト イヨト イヨ

Computational models Let *F* be a ground field.

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \leq d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by $S_L \subset F^n$ the set of inputs which arrive at *L*. They are pairwise disjoint and the set *S* ⊂ *F ⁿ* **accepted by the algebraic decision tree** is the union of *S^L* for all leaves *L* assigned with
- The **complexity** *C^d* is the depth of *T*.

Let *F* be a ground field.

Algebraic *d***-decision tree**

Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.

- $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic
-
-
-

Let *F* be a ground field.

Algebraic *d***-decision tree**

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
-
-

Let *F* be a ground field.

Algebraic *d***-decision tree**

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- pairwise disjoint and the set *S* ⊂ *F ⁿ* **accepted by the algebraic decision tree** is the union of *S^L* for all leaves *L* assigned with
-

Let *F* be a ground field.

Algebraic *d***-decision tree**

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- pairwise disjoint and the set *S* ⊂ *F ⁿ* **accepted by the algebraic decision tree** is the union of *S^L* for all leaves *L* assigned with
-

Let *F* be a ground field.

Algebraic *d***-decision tree**

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by $S_L \subset F^n$ the set of inputs which arrive at *L*. They are pairwise disjoint and the set *S* ⊂ *F ⁿ* **accepted by the algebraic decision tree** is the union of *S^L* for all leaves *L* assigned with "*accept*".

Let *F* be a ground field.

Algebraic *d***-decision tree**

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by $S_L \subset F^n$ the set of inputs which arrive at *L*. They are pairwise disjoint and the set *S* ⊂ *F ⁿ* **accepted by the algebraic decision tree** is the union of *S^L* for all leaves *L* assigned with "*accept*".
- • The **complexity** C_d is the depth of T.

Let *F* be a ground field.

Algebraic *d***-decision tree**

- Input $x = (x_1, \ldots, x_n) \in F^n$ is attributed to the root of tree T.
- To each node *v* of *T* (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $deg(g_v) \le d$ is assigned. The algebraic decision tree branches at node *v* according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by $S_L \subset F^n$ the set of inputs which arrive at *L*. They are pairwise disjoint and the set *S* ⊂ *F ⁿ* **accepted by the algebraic decision tree** is the union of *S^L* for all leaves *L* assigned with "*accept*".
- The **complexity** C_d is the depth of T.

The difference with algebraic decision trees is that testing polynomial *g*^{*y*} is calculated as $g_v = a \circ b$ where

a, *b* ∈ *F* ∪ {*X*₁, , *X_n*} ∪ {*g_u*} where *u* runs the nodes on the path

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

The difference with algebraic decision trees is that testing polynomial *g*^{*y*} is calculated as $g_v = a \circ b$ where

• operation $\circ \in \{+, \times\}$

a, *b* ∈ *F* ∪ { X_1 , ..., X_n } ∪ { g_u } where *u* runs the nodes on the path

In particular, $\deg(g_\mathsf{v}) \leq 2^{k_\mathsf{v}}$ where k_v is the depth of $\mathsf{v}.$

 $A \oplus A \oplus A \oplus A \oplus B$

The difference with algebraic decision trees is that testing polynomial *g*^{*y*} is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- *o a*, *b* ∈ *F* ∪ { X_1 , ..., X_n } ∪ { g_u } where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_\mathsf{v}) \leq 2^{k_\mathsf{v}}$ where k_v is the depth of $\mathsf{v}.$

 Ω

イロメ イ母メ イラメ イラメ

The difference with algebraic decision trees is that testing polynomial *g*^{*y*} is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- *a*, *b* ∈ *F* ∪ { X_1, \ldots, X_n } ∪ { g_u } where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_{\rm\scriptscriptstyle V})\leq 2^{k_{\rm\scriptscriptstyle V}}$ where $k_{\rm\scriptscriptstyle V}$ is the depth of ${\rm\scriptscriptstyle V}.$

 Ω

イロメ イ母メ イラメ イラメ

The difference with algebraic decision trees is that testing polynomial *g*^{*y*} is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- *a*, *b* ∈ *F* ∪ { X_1, \ldots, X_n } ∪ { g_u } where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_{\rm\scriptscriptstyle V})\leq 2^{k_{\rm\scriptscriptstyle V}}$ where $k_{\rm\scriptscriptstyle V}$ is the depth of ${\rm\scriptscriptstyle V}.$ Denote by *C* the complexity of algebraic computation trees. For any constant *d* the model of computation trees is stronger than one of *d*-decision trees.

 Ω

The difference with algebraic decision trees is that testing polynomial *g*^{*y*} is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- *a*, *b* ∈ *F* ∪ { $X_1, ..., X_n$ } ∪ { g_u } where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_{\rm\scriptscriptstyle V})\leq 2^{k_{\rm\scriptscriptstyle V}}$ where $k_{\rm\scriptscriptstyle V}$ is the depth of ${\rm\scriptscriptstyle V}.$

Denote by *C* the complexity of algebraic computation trees. For any constant *d* the model of computation trees is stronger than one of *d*-decision trees.

We study the complexities $C_d(S)$, $C(S)$ of the membership problem to *S*.

 Ω

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge log_2(c_i) - n$, $i = 1, 2, 3$ where

- *c*¹ is the maximum of the number of connected components in *S*
- **c**₂ is the Euler characteristic of *S* (Björner-Lovasz-Yao [1992]);
-

 Ω

イロト イ何 トイラ トイラト

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge log_2(c_i) - n$, $i = 1, 2, 3$ where

- *c*¹ is the maximum of the number of connected components in *S* and in *F ⁿ* \ *S* (Ben-Or [1983]);
- **•** c_2 is the Euler characteristic of *S* (Björner-Lovasz-Yao [1992]);
- *c*³ is the sum of Betti numbers (ranks of homological groups) of *S* (Yao [1994], Montaña-Morais-Pardo [1996]).

 Ω

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge log_2(c_i) - n$, $i = 1, 2, 3$ where

- *c*¹ is the maximum of the number of connected components in *S* and in *F ⁿ* \ *S* (Ben-Or [1983]);
- **•** c_2 is the Euler characteristic of *S* (Björner-Lovasz-Yao [1992]);
- *c*³ is the sum of Betti numbers (ranks of homological groups) of *S* (Yao [1994], Montaña-Morais-Pardo [1996]).

 Ω

イロト イ母 トイラ トイラ トーラ

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge log_2(c_i) - n$, $i = 1, 2, 3$ where

- *c*¹ is the maximum of the number of connected components in *S* and in *F ⁿ* \ *S* (Ben-Or [1983]);
- **•** c_2 is the Euler characteristic of *S* (Björner-Lovasz-Yao [1992]);
- *c*³ is the sum of Betti numbers (ranks of homological groups) of *S* (Yao [1994], Montaña-Morais-Pardo [1996]).

 Ω

イロト イ母 トイラ トイラ トーラー

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge log_2(c_i) - n$, $i = 1, 2, 3$ where

- *c*¹ is the maximum of the number of connected components in *S* and in *F ⁿ* \ *S* (Ben-Or [1983]);
- **•** c_2 is the Euler characteristic of *S* (Björner-Lovasz-Yao [1992]);
- *c*³ is the sum of Betti numbers (ranks of homological groups) of *S* (Yao [1994], Montaña-Morais-Pardo [1996]).

 c_1 , c_2 $<$ c_3

 Ω

イロト イ母 トイラ トイラ トーラ

• EQUALITY is the set

 $\{(x_1, \ldots, x_n, y_1, \ldots, y_n) \subset F^{2n} : \{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$;

- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{I \subset \{1,...,n\}} \{(x_1,\ldots,x_n) \,:\, \sum_{i \in I} x_i = 1\}.$

-
- *C*(*DISTINCTNESS*) *n* · log*n (QuickSort (F* = R*), discriminant (F* = C*) Strassen [1973], Ben-Or [1983]);*
- $C(KNAPSACK) \geq \Omega(n^2)$ *(Ben-Or [1983]).*

 Ω

イロト イ母 トイヨ トイヨト

• EQUALITY is the set

 $\{(x_1, \ldots, x_n, y_1, \ldots, y_n) \subset F^{2n} : \{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$;

DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$

KNAPSACK is the set $\bigcup_{I \subset \{1,...,n\}} \{(x_1,\ldots,x_n) \,:\, \sum_{i \in I} x_i = 1\}.$

-
- *C*(*DISTINCTNESS*) *n* · log*n (QuickSort (F* = R*), discriminant (F* = C*) Strassen [1973], Ben-Or [1983]);*
- $C(KNAPSACK) \geq \Omega(n^2)$ *(Ben-Or [1983]).*

 Ω

イロト イ押 トイラト イラトー

• EQUALITY is the set

 $\{(x_1, \ldots, x_n, y_1, \ldots, y_n) \subset F^{2n} : \{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$;

- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- $\mathsf{KNAPSACK}$ is the set $\bigcup_{I \subset \{1, ..., n\}} \{(\mathsf{x}_1, \ldots, \mathsf{x}_n) \, : \, \sum_{i \in I} \mathsf{x}_i = 1 \}.$

-
- *C*(*DISTINCTNESS*) *n* · log*n (QuickSort (F* = R*), discriminant (F* = C*) Strassen [1973], Ben-Or [1983]);*
- $C(KNAPSACK) \geq \Omega(n^2)$ *(Ben-Or [1983]).*

 Ω

イロト イ母 トイヨ トイヨ トーヨ

• EQUALITY is the set

 $\{(x_1, \ldots, x_n, y_1, \ldots, y_n) \subset F^{2n} : \{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$;

- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- $\mathsf{KNAPSACK}$ is the set $\bigcup_{I \subset \{1, ..., n\}} \{(\mathsf{x}_1, \ldots, \mathsf{x}_n) \, : \, \sum_{i \in I} \mathsf{x}_i = 1 \}.$

Corollary

C(*EQUALITY*) *n* · log*n (QuickSort (F* = R*), elementary symmetric functions (F* = C*) Strassen [1973], Ben-Or [1983]);*

 $C(KNAPSACK) \geq \Omega(n^2)$ *(Ben-Or [1983]).*

 Ω

• EQUALITY is the set

 $\{(x_1, \ldots, x_n, y_1, \ldots, y_n) \subset F^{2n} : \{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$;

- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- $\mathsf{KNAPSACK}$ is the set $\bigcup_{I \subset \{1, ..., n\}} \{(\mathsf{x}_1, \ldots, \mathsf{x}_n) \, : \, \sum_{i \in I} \mathsf{x}_i = 1 \}.$

Corollary

- *C*(*EQUALITY*) *n* · log*n (QuickSort (F* = R*), elementary symmetric functions (F* = C*) Strassen [1973], Ben-Or [1983]);*
- *C*(*DISTINCTNESS*) *n* · log*n (QuickSort (F* = R*), discriminant (F* = C*) Strassen [1973], Ben-Or [1983]);*

 $C(KNAPSACK) \geq \Omega(n^2)$ *(Ben-Or [1983]).*

 Ω

• EQUALITY is the set

 $\{(x_1, \ldots, x_n, y_1, \ldots, y_n) \subset F^{2n} : \{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$;

- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- $\mathsf{KNAPSACK}$ is the set $\bigcup_{I \subset \{1, ..., n\}} \{(\mathsf{x}_1, \ldots, \mathsf{x}_n) \, : \, \sum_{i \in I} \mathsf{x}_i = 1 \}.$

Corollary

- *C*(*EQUALITY*) *n* · log*n (QuickSort (F* = R*), elementary symmetric functions (F* = C*) Strassen [1973], Ben-Or [1983]);*
- *C*(*DISTINCTNESS*) *n* · log*n (QuickSort (F* = R*), discriminant (F* = C*) Strassen [1973], Ben-Or [1983]);*
- $C(KNAPSACK) \geq \Omega(n^2)$ *(Ben-Or [1983]).*

 Ω

Let *F* be an algebraically closed field of characteristic $p > 0$. For a variety $S\subset F^n$ introduce $B(S)$ which replaces the sum of Betti numbers (over $\mathbb C$ or $\mathbb R$).

 D enote $N_k = N_k(S) = \sharp (S \cap \mathbb{F}_o^n)$

 $\textsf{Zeta function}~Z(S,t)=\exp(\sum_{1\leq k<\infty}N_kt^k/k)=P(t)/Q(t)$ is a rational function (due to Dwork, Deligne).

 \bullet Define $B(S) = \deg(P) + \deg(Q)$.

Dima Grigoriev (CNRS)

Let *F* be an algebraically closed field of characteristic $p > 0$. For a variety $S\subset F^n$ introduce $B(S)$ which replaces the sum of Betti numbers (over $\mathbb C$ or $\mathbb R$).

Zeta function

- $\mathsf{Denote}\;\mathsf{N}_k=\mathsf{N}_k(\mathcal{S})=\sharp(\mathcal{S}\cap\mathbb{F}^n_p)$ *p k*).
- $\textsf{Zeta function}~Z(S,t)=\exp(\sum_{1\leq k<\infty}N_kt^k/k)=P(t)/Q(t)$

Dima Grigoriev (CNRS)

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 7 / 23

Let *F* be an algebraically closed field of characteristic $p > 0$. For a variety $S\subset F^n$ introduce $B(S)$ which replaces the sum of Betti numbers (over $\mathbb C$ or $\mathbb R$).

Zeta function

- $\mathsf{Denote}\;\mathsf{N}_k=\mathsf{N}_k(\mathcal{S})=\sharp(\mathcal{S}\cap\mathbb{F}^n_p)$ *p k*).
- \boldsymbol{Z} eta function $Z(\mathcal{S}, t) = \exp(\sum_{1 \leq k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).

Dima Grigoriev (CNRS)

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 7 / 23

Let *F* be an algebraically closed field of characteristic $p > 0$. For a variety $S\subset F^n$ introduce $B(S)$ which replaces the sum of Betti numbers (over $\mathbb C$ or $\mathbb R$).

Zeta function

- $\mathsf{Denote}\;\mathsf{N}_k=\mathsf{N}_k(\mathcal{S})=\sharp(\mathcal{S}\cap\mathbb{F}^n_p)$ *p k*).
- \boldsymbol{Z} eta function $Z(\mathcal{S}, t) = \exp(\sum_{1 \leq k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).
- \bullet Define $B(S) = \deg(P) + \deg(Q)$.

Ben-Or [1994]).

Let *F* be an algebraically closed field of characteristic $p > 0$. For a variety $S\subset F^n$ introduce $B(S)$ which replaces the sum of Betti numbers (over $\mathbb C$ or $\mathbb R$).

Zeta function

• Denote
$$
N_k = N_k(S) = \sharp(S \cap \mathbb{F}_{p^k}^n)
$$
.

 \boldsymbol{Z} eta function $Z(\mathcal{S}, t) = \exp(\sum_{1 \leq k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).

• Define
$$
B(S) = \deg(P) + \deg(Q)
$$
.

Theorem

 $C(S) > a \cdot log(B(S)) - b \cdot n$ for some constants a, *b* (Ben-Or [1994])

Ben-Or [1994]).

Let *F* be an algebraically closed field of characteristic $p > 0$. For a variety $S\subset F^n$ introduce $B(S)$ which replaces the sum of Betti numbers (over $\mathbb C$ or $\mathbb R$).

Zeta function

- $\mathsf{Denote}\;\mathsf{N}_k=\mathsf{N}_k(\mathcal{S})=\sharp(\mathcal{S}\cap\mathbb{F}^n_p)$ *p k*).
- \boldsymbol{Z} eta function $Z(\mathcal{S}, t) = \exp(\sum_{1 \leq k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).
- \bullet Define $B(S) = \deg(P) + \deg(Q)$.

Theorem

 $C(S) > a \cdot log(B(S)) - b \cdot n$ for some constants a, *b* (Ben-Or [1994])

Corollary

 C (*EQUALITY*)[,](#page-0-0) C (*DISTINCTNESS*) $\times n \cdot \log n$ (*S[tr](#page-33-0)[a](#page-26-0)ss[e](#page-33-0)n* [\[1](#page-118-0)[97](#page-0-0)[3\]](#page-118-0), *Ben-Or [1994]).* **Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 7 / 23**

Complexity upper bound for membership to a linear complex

An **arrangement** *S* ⊂ *F n* is a union of hyperplanes ∪*iHⁱ* . A face of *S* is

of S. Then $C(S) \leq O(n^3 \cdot \log N)$ *(Meyer auf der Heide [1985]).*

algebraic computation tree is non-uniform (de[pe](#page-32-0)[nd](#page-34-0)[s](#page-32-0)[o](#page-38-0)[n](#page-0-0) n [\)](#page-0-0)[.](#page-118-0) 000

Complexity upper bound for membership to a linear complex

An **arrangement** *S* ⊂ *F n* is a union of hyperplanes ∪*iHⁱ* . A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

of S. Then $C(S) \leq O(n^3 \cdot \log N)$ *(Meyer auf der Heide [1985]).*

One can generalize the theorem to arbitrary **linear complexes**, i. e.

algebraic computation tree is non-uniform (de[pe](#page-33-0)[nd](#page-35-0)[s](#page-32-0)a[n](#page-0-0) *n*[\)](#page-0-0)[.](#page-118-0)... 000

Complexity upper bound for membership to a linear complex

An **arrangement** *S* ⊂ *F n* is a union of hyperplanes ∪*iHⁱ* . A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let S be either an arrangement or a (possibly unbounded) polyhedron (when F = R*). Denote by N the number of faces (of all the dimensions) of S. Then* $C(S) \leq O(n^3 \cdot \log N)$ *(Meyer auf der Heide [1985]).*

One can generalize the theorem to arbitrary **linear complexes**, i. e.

algebraic computation tree is non-uniform (de[pe](#page-34-0)[nd](#page-36-0)[s](#page-32-0)[o](#page-38-0)[n](#page-0-0) n_1 , \longrightarrow QQ
Complexity upper bound for membership to a linear complex

An **arrangement** *S* ⊂ *F n* is a union of hyperplanes ∪*iHⁱ* . A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let S be either an arrangement or a (possibly unbounded) polyhedron (when F = R*). Denote by N the number of faces (of all the dimensions) of S. Then* $C(S) \leq O(n^3 \cdot \log N)$ *(Meyer auf der Heide [1985]).*

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (de[pe](#page-35-0)[nd](#page-37-0)[s](#page-32-0)a[n](#page-0-0) *n*[\)](#page-0-0)[.](#page-118-0) $rac{1}{2}$

Complexity upper bound for membership to a linear complex

An **arrangement** *S* ⊂ *F n* is a union of hyperplanes ∪*iHⁱ* . A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let S be either an arrangement or a (possibly unbounded) polyhedron (when F = R*). Denote by N the number of faces (of all the dimensions) of S. Then* $C(S) \leq O(n^3 \cdot \log N)$ *(Meyer auf der Heide [1985]).*

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (de[pe](#page-36-0)[nd](#page-38-0)[s](#page-32-0)a[n](#page-0-0) *n*[\)](#page-0-0)[.](#page-118-0) 299

Complexity upper bound for membership to a linear complex

An **arrangement** *S* ⊂ *F n* is a union of hyperplanes ∪*iHⁱ* . A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let S be either an arrangement or a (possibly unbounded) polyhedron (when F = R*). Denote by N the number of faces (of all the dimensions) of S. Then* $C(S) \leq O(n^3 \cdot \log N)$ *(Meyer auf der Heide [1985]).*

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (de[pe](#page-37-0)[nd](#page-39-0)[s](#page-32-0)[o](#page-38-0)[n](#page-39-0) *[n](#page-0-0)*[\)](#page-0-0)[.](#page-118-0) 299

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 8 / 23

Membership to a polyhedron

Let $P \subset \mathbb{R}^n$ be a convex polyhedron (with *N* faces of all the dimensions). Then the sum of its Betti numbers equals 1.

Complexity of linear decision trees $C_1(P)$ *> log₂N (Rivest-Yao [1980])*

 $C_d(P) \ge \Omega(\log N)$, provided that $N \ge (dn)^{\Omega(n)}$ (G.-Karpinski-Vorobjov

 Ω

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

Membership to a polyhedron

Let $P \subset \mathbb{R}^n$ be a convex polyhedron (with *N* faces of all the dimensions). Then the sum of its Betti numbers equals 1.

Theorem

Complexity of linear decision trees $C_1(P) \ge \log_2 N$ (*Rivest-Yao [1980]*)

 $C_d(P) \ge \Omega(\log N)$, provided that $N \ge (dn)^{\Omega(n)}$ (G.-Karpinski-Vorobjov

 Ω

Membership to a polyhedron

Let $P \subset \mathbb{R}^n$ be a convex polyhedron (with *N* faces of all the dimensions). Then the sum of its Betti numbers equals 1.

Theorem

Complexity of linear decision trees $C_1(P) \ge \log_2 N$ (*Rivest-Yao [1980]*)

Theorem

 $C_d(P) \ge \Omega(\text{log}N)$, provided that $N \ge (dn)^{\Omega(n)}$ (G.-Karpinski-Vorobjov *[1994]).*

 Ω

As a testing function *g^v* at a node *v* of a Pfaffian *d*-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{\mathsf{v}_k} = \sum_{1\leq j\leq n} h_{kj}(g_{\mathsf{v}_0},\ldots,g_{\mathsf{v}_k},X_1,\ldots,X_n)\cdot dX_j$ $\mathsf{for} \ \mathsf{some} \ \mathsf{polynomials} \ h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \ \deg(h_{kj}) \leq d.$

For a polyhedron P with N faces of all the dimensions $\frac{p^{\mathsf{faff}}}{d}(P) \geq \Omega(\sqrt{\log{N}})$, provided that $\mathsf{N} \geq (\mathsf{d} n)^{\Omega(n^4 \cdot \log{d})}$ *(G.-Vorobjov [1994]).*

As a testing function *g^v* at a node *v* of a Pfaffian *d*-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k .

 $dg_{\nu_k} = \sum_{1\leq j\leq n} h_{kj}(g_{\nu_0},\ldots,g_{\nu_k},X_1,\ldots,X_n)\cdot dX_j$

 $\mathsf{for} \ \mathsf{some} \ \mathsf{polynomials} \ h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \ \deg(h_{kj}) \leq d.$

Examples of Pfaffian functions: polynomials, exp, log (on the positive half-line), \sin (on the interval $(-\pi,\pi),\, \sqrt{X}$ (on the positive half-line), X^{-1} on $\mathbb{R}\setminus\{0\}.$

For a polyhedron P with N faces of all the dimensions $\frac{p^{\mathsf{faff}}}{d}(P) \geq \Omega(\sqrt{\log{N}})$, provided that $\mathsf{N} \geq (\mathsf{d} n)^{\Omega(\mathsf{n}^4 \cdot \log{d})}$ *(G.-Vorobjov [1994]).*

As a testing function *g^v* at a node *v* of a Pfaffian *d*-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{\nu_k} = \sum_{1\leq j\leq n} h_{kj}(g_{\nu_0},\ldots,g_{\nu_k},X_1,\ldots,X_n)\cdot dX_j$ $\mathsf{for} \ \mathsf{some} \ \mathsf{polynomials} \ h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \ \deg(h_{kj}) \leq d.$ The complexity denote by C^{pfafi}_{d} *d* .

Examples of Pfaffian functions: polynomials, exp, log (on the positive half-line), \sin (on the interval $(-\pi,\pi),\, \sqrt{X}$ (on the positive half-line), X^{-1} on $\mathbb{R}\setminus\{0\}.$

For a polyhedron P with N faces of all the dimensions $\frac{p^{\mathsf{faff}}}{d}(P) \geq \Omega(\sqrt{\log{N}})$, provided that $\mathsf{N} \geq (\mathsf{d} n)^{\Omega(\mathsf{n}^4 \cdot \log{d})}$ *(G.-Vorobjov [1994]).*

As a testing function *g^v* at a node *v* of a Pfaffian *d*-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{\nu_k} = \sum_{1\leq j\leq n} h_{kj}(g_{\nu_0},\ldots,g_{\nu_k},X_1,\ldots,X_n)\cdot dX_j$ $\mathsf{for} \ \mathsf{some} \ \mathsf{polynomials} \ h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \ \deg(h_{kj}) \leq d.$ The complexity denote by C^{pfafi}_{d} *d* . **Examples of Pfaffian functions:** polynomials, exp, log (on the positive half-line), sin (on the interval (−π, π), *X* (on the positive half-line), X^{-1} on $\mathbb{R}\setminus\{0\}.$

For a polyhedron P with N faces of all the dimensions C pfaff $\frac{p^{\mathsf{faff}}}{d}(P) \geq \Omega(\sqrt{\log{N}})$, provided that $\mathsf{N} \geq (\mathsf{d} n)^{\Omega(n^4 \cdot \log{d})}$ *(G.-Vorobjov [1994]).*

As a testing function *g^v* at a node *v* of a Pfaffian *d*-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{\nu_k} = \sum_{1\leq j\leq n} h_{kj}(g_{\nu_0},\ldots,g_{\nu_k},X_1,\ldots,X_n)\cdot dX_j$ $\mathsf{for} \ \mathsf{some} \ \mathsf{polynomials} \ h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \ \deg(h_{kj}) \leq d.$ The complexity denote by C^{pfafi}_{d} *d* . **Examples of Pfaffian functions:** polynomials, exp, log (on the positive half-line), sin (on the interval (−π, π), *X* (on the positive half-line), X^{-1} on $\mathbb{R}\setminus\{0\}.$

Theorem

Let S ⊂ R *ⁿ be semi-pfaffian (defined by inequalities of the form* $g > 0$ for Pfaffian functions g. Denote by c_3 the sum of its Betti $g \geq 0$ for *F* lamal randicities g. Before by σ_3 and sam of the numbers. Then $C_d^{\text{pfaff}} \geq \Omega(\sqrt{\log c_3})$ (G.-Vorobjov [1994]);

For a polyhedron P with N faces of all the dimensions $\frac{p^{\mathsf{faff}}}{d}(P) \geq \Omega(\sqrt{\log{N}})$, provided that $\mathsf{N} \geq (\mathsf{d} n)^{\Omega(\mathsf{n}^4 \cdot \log{d})}$

As a testing function *g^v* at a node *v* of a Pfaffian *d*-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{\nu_k} = \sum_{1\leq j\leq n} h_{kj}(g_{\nu_0},\ldots,g_{\nu_k},X_1,\ldots,X_n)\cdot dX_j$ $\mathsf{for} \ \mathsf{some} \ \mathsf{polynomials} \ h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \ \deg(h_{kj}) \leq d.$ The complexity denote by C^{pfafi}_{d} *d* . **Examples of Pfaffian functions:** polynomials, exp, log (on the positive half-line), sin (on the interval (−π, π), *X* (on the positive half-line), X^{-1} on $\mathbb{R}\setminus\{0\}.$

Theorem

- *Let S* ⊂ R *ⁿ be semi-pfaffian (defined by inequalities of the form* $g > 0$ for Pfaffian functions g. Denote by c_3 the sum of its Betti $g \geq 0$ for *F* lamal randicities g. Before by σ_3 and sam of the numbers. Then $C_d^{\text{pfaff}} \geq \Omega(\sqrt{\log c_3})$ (G.-Vorobjov [1994]);
- *For a polyhedron P with N faces of all the dimensions C pfaff* $\frac{p^{\mathsf{faff}}}{d}(P) \geq \Omega(\sqrt{\log{N}})$, provided that $\mathsf{N} \geq (\mathsf{d} n)^{\Omega(n^4 \cdot \log{d})}$ *(G.-Vorobjov [1994]).*

Let {*Ti*}1≤*i*≤*^s* be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities

 $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**.

A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the

-
- **Consider polynomials**

 $f(Z) = \prod_{1 \leq i \leq n} (Z-x_i), \ h(Z) = \prod_{1 \leq i \leq n} (Z-y_i).$ Sets $\{x_1, \ldots, x_n\} \equiv \{y_1, \ldots, y_n\} \Leftrightarrow f \equiv h;$

Let {*Ti*}1≤*i*≤*^s* be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $\mathcal{S} \subset \mathcal{F}^n$ if for any input $x \in \mathcal{F}^n$ the output is correct with probability $> 2/3$.

-
- **Consider polynomials**

 $f(Z) = \prod_{1 \leq i \leq n} (Z-x_i), \ h(Z) = \prod_{1 \leq i \leq n} (Z-y_i).$ Sets $\{x_1, \ldots, x_n\} \equiv \{y_1, \ldots, y_n\} \Leftrightarrow f \equiv h;$

Let {*Ti*}1≤*i*≤*^s* be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $\mathcal{S} \subset \mathcal{F}^n$ if for any input $x \in \mathcal{F}^n$ the output is correct with probability $> 2/3$.

The complexity *C prob* $\int_{d}^{p_{f} \circ f} \mathcal{L}_{d}(\mathcal{T}_{f}) \mathcal{L}_{d}(\mathcal{T}_{f})$ is defined as expectation $\sum_{1 \leq i \leq s} p_{i} \cdot \mathcal{C}_{d}(\mathcal{T}_{i}).$ Similarly, one defines C^{prob} .

-
- **Consider polynomials**

 $f(Z) = \prod_{1 \leq i \leq n} (Z-x_i), \ h(Z) = \prod_{1 \leq i \leq n} (Z-y_i).$ Sets $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\} \Leftrightarrow f \equiv h;$

Let {*Ti*}1≤*i*≤*^s* be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $\mathcal{S} \subset \mathcal{F}^n$ if for any input $x \in \mathcal{F}^n$ the output is correct with probability $> 2/3$.

The complexity *C prob* $\int_{d}^{p_{f} \circ f} \mathcal{L}_{d}(\mathcal{T}_{f}) \mathcal{L}_{d}(\mathcal{T}_{f})$ is defined as expectation $\sum_{1 \leq i \leq s} p_{i} \cdot \mathcal{C}_{d}(\mathcal{T}_{i}).$ Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

-
- **Consider polynomials**

 $f(Z) = \prod_{1 \leq i \leq n} (Z-x_i), \ h(Z) = \prod_{1 \leq i \leq n} (Z-y_i).$ Sets ${X_1, \ldots, X_n}$ = { ${Y_1, \ldots, Y_n}$ } ⇔ $f \equiv h$;

Let {*Ti*}1≤*i*≤*^s* be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $\mathcal{S} \subset \mathcal{F}^n$ if for any input $x \in \mathcal{F}^n$ the output is correct with probability $> 2/3$.

The complexity *C prob* $\int_{d}^{p_{f} \circ f} \mathcal{L}_{d}(\mathcal{T}_{f}) \mathcal{L}_{d}(\mathcal{T}_{f})$ is defined as expectation $\sum_{1 \leq i \leq s} p_{i} \cdot \mathcal{C}_{d}(\mathcal{T}_{i}).$ Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- $C^{prob}(EQUALITY) \asymp n$ (Bürgisser-Karpinski-Lickteig [1992]);
- - $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\} \Leftrightarrow f \equiv h;$
-

Let ${T_i}_{1 \leq i \leq s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $\mathcal{S} \subset \mathcal{F}^n$ if for any input $x \in \mathcal{F}^n$ the output is correct with probability $> 2/3$.

The complexity *C prob* $\int_{d}^{p_{f} \circ f} \mathcal{L}_{d}(\mathcal{T}_{f}) \mathcal{L}_{d}(\mathcal{T}_{f})$ is defined as expectation $\sum_{1 \leq i \leq s} p_{i} \cdot \mathcal{C}_{d}(\mathcal{T}_{i}).$ Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- $C^{prob}(EQUALITY) \asymp n$ (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials

$$
f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i).
$$
 Sets

$$
\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\} \Leftrightarrow f \equiv h;
$$

Let ${T_i}_{1 \leq i \leq s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \, \sum_{1 \leq i \leq s} p_i = 1.$ It is called **probabilistic algebraic** *d***-decision** or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $\mathcal{S} \subset \mathcal{F}^n$ if for any input $x \in \mathcal{F}^n$ the output is correct with probability $> 2/3$.

The complexity *C prob* $\int_{d}^{p_{f} \circ f} \mathcal{L}_{d}(\mathcal{T}_{f}) \mathcal{L}_{d}(\mathcal{T}_{f})$ is defined as expectation $\sum_{1 \leq i \leq s} p_{i} \cdot \mathcal{C}_{d}(\mathcal{T}_{i}).$ Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- $C^{prob}(EQUALITY) \asymp n$ (Bürgisser-Karpinski-Lickteig [1992]);
- **•** Consider polynomials $f(Z) = \prod_{1 \leq i \leq n} (Z - x_i), \ h(Z) = \prod_{1 \leq i \leq n} (Z - y_i).$ Sets $\{x_1, \ldots, x_n\} \equiv \{y_1, \ldots, y_n\} \Leftrightarrow f \equiv h$;
- • Choose randomly $z_0 \in F$ and test whether $f(z_0) = h(z_0)$. If yes, return "*accept*", else "*reject*".

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example).

Let *S* ⊂ *F ⁿ* be a polyhedron (when *F* = R) or an arrangement determined by *m* hyperplanes having $N \geq m^{\Omega(n)}$ faces.

2) $C^{prob}(S) \ge \Omega(\log N)$ *(G. [1997]).*

2) Cprob(*DISTINCTNESS*) *n* · log*n, Cprob*(*KNAPSACK*) ≥ Ω(*n* 2) *(G.).*

arrangement), thus the Theorem is not applic[abl](#page-54-0)e, \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

 QQ

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $\bar{F} = \mathbb{R}$) or an arrangement determined by m hyperplanes having $\mathsf{N}\geq m^{\Omega(n)}$ faces.

2) $C^{prob}(S)$ ≥ Ω(logN) *(G. [1997]).*

2) Cprob(*DISTINCTNESS*) *n* · log*n, Cprob*(*KNAPSACK*) ≥ Ω(*n* 2) *(G.).*

arrangement), thus the Theorem is not applic[abl](#page-55-0)e, \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

 QQ

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $\bar{F} = \mathbb{R}$) or an arrangement determined by m hyperplanes having $\mathsf{N}\geq m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (*G.-Karpinski-Meyer auf der Heide-Smolensky [1995]);*

2) Cprob(*S*) ≥ Ω(log*N*) *(G. [1997]).*

2) Cprob(*DISTINCTNESS*) *n* · log*n, Cprob*(*KNAPSACK*) ≥ Ω(*n* 2) *(G.).*

arrangement), thus the Theorem is not applic[abl](#page-56-0)e, \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $\bar{F} = \mathbb{R}$) or an arrangement determined by m hyperplanes having $\mathsf{N}\geq m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (*G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2)* $C^{prob}(S)$ ≥ Ω(logN) *(G. [1997]).*

 $P(D|C) \subset P^{\text{rob}}(D \cup \text{ISTINCTIONS}) \asymp n \cdot \log n, \ C^{\text{prob}}(K \cap \text{IFSACK}) \ge \Omega(n^2)$ (G.).

arrangement), thus the Theorem is not applic[abl](#page-57-0)e, \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $\bar{F} = \mathbb{R}$) or an arrangement determined by m hyperplanes having $\mathsf{N}\geq m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ *for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2)* $C^{prob}(S)$ ≥ Ω(logN) *(G. [1997]).*

Corollary

1) $C_d^{prob}(DISTINCTNESS) \times n \cdot log n, C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ *(G.-Karpinski-Meyer auf der Heide-Smolensky [1995]);* $P(D|C) \subset C^{prob}(DISTINCTNESS) \asymp n \cdot \log n, \ C^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in *F* 2*n* (not an arrangement), thus the Theorem is not applic[abl](#page-58-0)e, \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 12/23

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $\bar{F} = \mathbb{R}$) or an arrangement determined by m hyperplanes having $\mathsf{N}\geq m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ *for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2)* $C^{prob}(S)$ ≥ Ω(logN) *(G. [1997]).*

Corollary

1) $C_d^{prob}(DISTINCTNESS) \times n \cdot log n, C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ *(G.-Karpinski-Meyer auf der Heide-Smolensky [1995]);* $2)$ $C^{prob}($ $DISTIMESS) \asymp n \cdot \log n$, $C^{prob}($ $KNAPSACK) \geq \Omega(n^2)$ $(G_{\cdot}).$

EQUALITY is a union of *n*-dimensional planes in *F* 2*n* (not an arrangement), thus the Theorem is not applic[abl](#page-59-0)e, \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $\bar{F} = \mathbb{R}$) or an arrangement determined by m hyperplanes having $\mathsf{N}\geq m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ *for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2)* $C^{prob}(S)$ ≥ Ω(logN) *(G. [1997]).*

Corollary

1) $C_d^{prob}(DISTINCTNESS) \times n \cdot log n, C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ *(G.-Karpinski-Meyer auf der Heide-Smolensky [1995]);* $2)$ $C^{prob}($ $DISTIMESS) \asymp n \cdot \log n$, $C^{prob}($ $KNAPSACK) \geq \Omega(n^2)$ $(G_{\cdot}).$

EQUALITY is a union of *n*-dimensional planes in *F* 2*n* (not an arrangement), thus the Theorem is not applic[abl](#page-60-0)[e.](#page-62-0)

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 12 / 23

Probabilistic computation trees over algebraically closed fields of zero characteristic

Let $S = H_1 \cup \cdots \cup H_m \subset F^n$ be an arrangement.

containing $|cm|$ *hyperplanes, has* \geq *N faces (of all the dimensions). Then* $C^{prob}(S) \ge \Omega(\log N - 2 \cdot n)$ *(G. [1997]).*

 Ω

イロト イ押ト イラト イラト

Probabilistic computation trees over algebraically closed fields of zero characteristic

Let $S = H_1 \cup \cdots \cup H_m \subset F^n$ be an arrangement.

Theorem

Assume that for a certain c > 0 *any subarrangement* $H_{i_1} \cup \cdots \cup H_{i_{1},m}$ *containing* $|cm|$ *hyperplanes, has* \geq *N faces (of all the dimensions). Then* $C^{prob}(S) \ge \Omega(\log N - 2 \cdot n)$ *(G. [1997]).*

 Ω

イロト イ押 トイラ トイラト

Probabilistic computation trees over algebraically closed fields of zero characteristic

Let $S = H_1 \cup \cdots \cup H_m \subset F^n$ be an arrangement.

Theorem

Assume that for a certain c > 0 *any subarrangement* $H_{i_1} \cup \cdots \cup H_{i_{1},m}$ *containing* $|cm|$ *hyperplanes, has* \geq *N faces (of all the dimensions). Then* $C^{prob}(S)$ $\geq \Omega(\log N - 2 \cdot n)$ *(G. [1997]).*

Corollary

- $C^{prob}(DISTINCTNESS) \asymp n \cdot log n;$
- $C^{prob}(KNAPSACK) \geq \Omega(n^2)$.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \emptyset \right\} & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \emptyset \right\} & \rightarrow & \square \end{array} \right. \end{array} \right.$

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C$, C_d (Shub-Smale).

we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

-
-
-

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C$, C_d (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

we call it **analytic tree** and its complexity denote by *Can* ≤ *Ctop*.

- ORTANT $= \mathbb{R}^n_+ = \{(x_1, \ldots, x_n) : x_1 \geq 0, \ldots, x_n \geq 0\} \Leftrightarrow$
-
- MAX: to compute $\max\{x_1, \ldots, x_n\}$ by means of a modification of a

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C$, C_d (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

- ORTANT $= \mathbb{R}^n_+ = \{(x_1, \ldots, x_n) : x_1 \geq 0, \ldots, x_n \geq 0\} \Leftrightarrow$
- \bullet MAX= = { $(x_1, ..., x_n) : x_1 = \max\{x_1, ..., x_n\}$ }
- MAX: to compute $\max\{x_1, \ldots, x_n\}$ by means of a modification of a

 Ω

イロト イ押 トイラト イラトー

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C$, C_d (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

MAX

- ORTANT = \mathbb{R}^n_+ = {($x_1, ..., x_n$) : $x_1 ≥ 0, ..., x_n ≥ 0$ } ⇔
- \bullet MAX= = { $(x_1, ..., x_n) : x_1 = \max\{x_1, ..., x_n\}$ } is a weaker problem than
- MAX: to compute $\max\{x_1, \ldots, x_n\}$ by means of a modification of a decision (or computation) tree in which the outputs of leaves are functions (polynomials) rather than labels "*accept*" or "*reject*".

 QQQ

イロト イ母 トイラ トイラ トーラ

$C_1(MAX) \leq n-1$

- *Can*(*MAX* =) = *n* − 1 *(Rabin [1972];*
- *C prob* $d_d^{\text{proo}}(MAX =) \ge n/(2 \cdot d), \quad C^{\text{prob}}(MAX =) \ge n/4 \text{ (G.-K.-S.)}$ *[1995]);*
- $C_{top}^{prob}(MAX =) \le C_n^{prob}(MAX =) \le O(log^2 n)(G.-K.-S.$ [1995]);
- $C_{top}^{prob}(MAX) \leq C_{n}^{prob}(MAX) \leq O(\log^{2} n)$ *(Ben-Or [1996];* $\leq O(\log^5 n)$ *G.-K.-S.* [1995]).

 Ω

A + + = +

 $C_1(MAX) \leq n-1$

Theorem

- *Can*(*MAX* =) = *n* − 1 *(Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);*
- $d_d^{\text{proo}}(MAX =) \ge n/(2 \cdot d), \quad C^{\text{prob}}(MAX =) \ge n/4 \text{ (G.-K.-S.)}$
-
-

 Ω

 $\mathcal{A} \cap \overline{\mathcal{B}} \rightarrow \mathcal{A} \Rightarrow \mathcal{B} \rightarrow \mathcal{A} \Rightarrow$

 $C_1(MAX) \leq n-1$

Theorem

- *Can*(*MAX* =) = *n* − 1 *(Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);*
- *C prob* $d_d^{prop}(MAX =) \ge n/(2 \cdot d),$ $C^{prob}(MAX =) \ge n/4$ *(G.-K.-S.*) *[1995]);*
-
- $C_{top}^{prob}(MAX) \leq C_{n}^{prob}(MAX) \leq O(\log^{2} n)$ *(Ben-Or [1996];*

 Ω
$C_1(MAX) \leq n-1$

Theorem

- *Can*(*MAX* =) = *n* − 1 *(Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);*
- *C prob* $d_d^{prop}(MAX =) \ge n/(2 \cdot d),$ $C^{prob}(MAX =) \ge n/4$ *(G.-K.-S.*) *[1995]);*
- $C_{top}^{prob}(MAX =) \leq C_{n}^{prob}(MAX =) \leq O(\log^{2} n)$ *(G.-K.-S. [1995]);*
- $C_{top}^{prob}(MAX) \leq C_{n}^{prob}(MAX) \leq O(\log^{2} n)$ *(Ben-Or [1996];*

 Ω

イ何 ト イヨ ト イヨ トー

 $C_1(MAX) \leq n-1$

Theorem

- *Can*(*MAX* =) = *n* − 1 *(Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);*
- *C prob* $d_d^{prop}(MAX =) \ge n/(2 \cdot d),$ $C^{prob}(MAX =) \ge n/4$ *(G.-K.-S.*) *[1995]);*
- $C_{top}^{prob}(MAX =) \leq C_{n}^{prob}(MAX =) \leq O(\log^{2} n)$ *(G.-K.-S. [1995]);*
- $C_{top}^{prob}(MAX) \leq C_{n}^{prob}(MAX) \leq O(\log^{2} n)$ *(Ben-Or [1996];* \langle *O*(log⁵*n*) *G.-K.-S.* [1995]).

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{B}$

Topological complexity of the range searching

For $f_1, \ldots, f_m \in \mathbb{R}[X_1, \ldots, X_n]$ we say that a decision/computation tree *T* solves the RANGE SEARCHING problem if any two inputs $x, y \in \mathbb{R}^n$ with different sign vectors $(\text{sgn}(f_1), \ldots, \text{sgn}(f_n))(x) \neq (\text{sgn}(f_1), \ldots, \text{sgn}(f_n))(y)$ arrive to different leaves of *T*. Denote by *N* the number of sign vectors.

 Ω

∢ ロ ▶ (何) ((ヨ) (ヨ) (

Topological complexity of the range searching

For $f_1, \ldots, f_m \in \mathbb{R}[X_1, \ldots, X_n]$ we say that a decision/computation tree *T* solves the RANGE SEARCHING problem if any two inputs $x, y \in \mathbb{R}^n$ with different sign vectors $(\text{sgn}(f_1), \ldots, \text{sgn}(f_n))(x) \neq (\text{sgn}(f_1), \ldots, \text{sgn}(f_n))(y)$ arrive to different leaves of *T*. Denote by *N* the number of sign vectors.

Theorem

 C_{top} (RANGE SEARCHING) \asymp logN (G. [1998]).

 Ω

∢ ロ ▶ (何) ((ヨ) (ヨ) (

Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially) speed-up computation. Here is an example of a set for which it is not the case.

Let an integer $q \neq 2^m$. Consider set $\text{MOD}_q = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n : \prod_{1 \leq i \leq n} x_i \neq 0, q \mid \sharp \{ i : x_i < 0 \} \}.$

 Ω

イロメ イ何 トマ ヨ トマ ヨ ト

Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially) speed-up computation. Here is an example of a set for which it is not the case.

Let an integer $q \neq 2^m$. Consider set $\text{MOD}_q = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n : \prod_{1 \leq i \leq n} x_i \neq 0, q \mid \sharp \{ i : x_i < 0 \} \}.$

 Ω

イロメ イ何 メイモ メイモン

Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially) speed-up computation. Here is an example of a set for which it is not the case.

Let an integer $q \neq 2^m$. Consider set $\text{MOD}_q = \{ (x_1, \ldots, x_n) \in \mathbb{R}^n : \prod_{1 \leq i \leq n} x_i \neq 0, q \mid \sharp \{ i : x_i < 0 \} \}.$

Theorem

 $C_{an}^{prob}(MOD_q) \ge \Omega(\sqrt{n})$ *(G.-Karpinski-Smolensly [1995]).*

 Ω

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Open questi[o](#page-80-0)n: size (MAX) for binary decision/go[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) Ω

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. Consider set $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Open questi[o](#page-81-0)n: size (MAX) for binary decisio[n/c](#page-79-0)o[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) 000

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. Consider set $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Theorem

For analytic decision trees size_{an} $(EXACT_n) \geq 2^n/n$ *(G.-K.-S. [1995]).*

Alternatively to usual (binary) trees one can consider **ternary** decision

Open questi[o](#page-82-0)n: size (MAX) for binary decisio[n/c](#page-80-0)o[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) 000

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. Consider set $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Theorem

For analytic decision trees size_{an} $(EXACT_n) \geq 2^n/n$ *(G.-K.-S. [1995]).*

For linear decision trees $size_1(MAX =) < 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision

Ternary $size_{d}(MAX =) \geq 2^{c_{d} \cdot n}$ for d -decision trees, $c_{d} > 0$

Open questi[o](#page-83-0)n: size (MAX) for binary decisio[n/c](#page-81-0)o[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) 000

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. Consider set $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Theorem

For analytic decision trees size_{an} $(EXACT_n) \geq 2^n/n$ *(G.-K.-S. [1995]).*

For linear decision trees $size_1(MAX =) < 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node *v* with a testing function *g^v* branches into 3 nodes according to whether $q_v < 0$, or $q_v = 0$, or $q_v > 0$.

Ternary $size_{d}(MAX =) \geq 2^{c_{d} \cdot n}$ for d -decision trees, $c_{d} > 0$

Open questi[o](#page-84-0)n: size (MAX) for binary decisio[n/c](#page-82-0)o[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) 000

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. Consider set $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Theorem

For analytic decision trees size_{an} $(EXACT_n) \geq 2^n/n$ *(G.-K.-S. [1995]).*

For linear decision trees $size_1(MAX =) < 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node *v* with a testing function *g^v* branches into 3 nodes according to whether $q_v < 0$, or $q_v = 0$, or $q_v > 0$.

Theorem

Ternary size_d(MAX =) \geq 2 $^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ *(G.-Karpinski-Yao [1994])*

Open questi[o](#page-85-0)n: size (MAX) for binary decisio[n/c](#page-83-0)o[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) 000

So far, we studied the depth of decision/computation trees. Since *depth* \geq $log(size)$, the bounds on the size are stronger. Consider set $\mathsf{EXACT}_n = \{ (x_1, \ldots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \leq i \leq 2 \cdot n} x_i \neq 0, \, \sharp \{ i : x_i < 0 \} = n \}.$

Theorem

For analytic decision trees size_{an} $(EXACT_n) \geq 2^n/n$ *(G.-K.-S. [1995]).*

For linear decision trees $size_1(MAX =) < 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node *v* with a testing function *g^v* branches into 3 nodes according to whether $q_v < 0$, or $q_v = 0$, or $q_v > 0$.

Theorem

Ternary size_d(MAX =) \geq 2 $^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ *(G.-Karpinski-Yao [1994])*

Open questi[o](#page-86-0)n: size (MAX) for binary decisio[n/c](#page-84-0)o[m](#page-78-0)[p](#page-79-0)[ut](#page-86-0)[at](#page-0-0)[io](#page-118-0)[n t](#page-0-0)[re](#page-118-0)[es](#page-0-0)[?](#page-118-0) 000

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$.

To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}])$ is

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned.

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned.

Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Communication complexity *CC* is the depth of the communication

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{ \text{sgn}(g_{\nu i}(a_{\nu_0}(x), b_{\nu_1}(y), a_{\nu_2}(x), \dots, a_{\nu_{k-1}}(x), b_{\nu_k}(y) \}_{1 \leq i \leq N_{\nu_k}}\}$

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{ \text{sgn}(g_{\nu i}(a_{\nu_0}(x), b_{\nu_1}(y), a_{\nu_2}(x), \dots, a_{\nu_{k-1}}(x), b_{\nu_k}(y) \}_{1 \leq i \leq N_{\nu_k}}\}$ **Communication complexity** *CC* is the depth of the communication tree.

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** {*gvi*}1≤*i*≤*N^v* is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{ \text{sgn}(g_{\nu i}(a_{\nu_0}(x), b_{\nu_1}(y), a_{\nu_2}(x), \dots, a_{\nu_{k-1}}(x), b_{\nu_k}(y) \}_{1 \leq i \leq N_{\nu_k}}\}$ **Communication complexity** *CC* is the depth of the communication tree.

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

-
- $CC^{prob}(\mathbb{R}_{>}^{n_1+n_2}) \leq 4$, $CC^{prob}(\mathbb{R}_{+}^{n_1+n_2}) \leq log^{O(1)}(n_1+n_2)$.

Arrangement $Q = \bigcup_{1 \leq i \leq n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

branching condition {sgn(*gvi*(*av*⁰ (*x*), *av*² (*x*), . . . , *[a](#page-92-0)vk*[−](#page-94-0)[1](#page-92-0) [\(](#page-93-0)*[x](#page-99-0)*[\)](#page-100-0)[,](#page-0-0) *[y](#page-0-0)*[\)\)](#page-118-0)[}](#page-0-0)[1](#page-0-0)[≤](#page-118-0)*i*[≤](#page-118-0)*[N](#page-0-0)[v](#page-118-0)*

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

Proposition

•
$$
CC(\mathbb{R}_{>}^{n_1+n_2}), CC(\mathbb{R}_{+}^{n_1+n_2}) = n_1 + n_2;
$$

Polyhedron $S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i \, x_i + y_i > 0\}.$ Arrangement $Q = \bigcup_{1 \leq i \leq n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

branching condition {sgn(*gvi*(*av*⁰ (*x*), *av*² (*x*), . . . , *[a](#page-93-0)vk*[−](#page-95-0)[1](#page-92-0) [\(](#page-93-0)*[x](#page-99-0)*[\)](#page-100-0)[,](#page-0-0) *[y](#page-0-0)*[\)\)](#page-118-0)[}](#page-0-0)[1](#page-0-0)[≤](#page-118-0)*i*[≤](#page-118-0)*[N](#page-0-0)[v](#page-118-0)*

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

Proposition

•
$$
CC(\mathbb{R}_{>}^{n_1+n_2}), CC(\mathbb{R}_{+}^{n_1+n_2}) = n_1 + n_2;
$$

$$
\bullet \;\;CC^{prob}(\mathbb{R}_{>}^{n_1+n_2})\leq 4, \quad CC^{prob}(\mathbb{R}_{+}^{n_1+n_2})\leq \log^{O(1)}(n_1+n_2).
$$

Polyhedron $S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i \, x_i + y_i > 0\}.$ Arrangement $Q = \bigcup_{1 \leq i \leq n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

branching condition {sgn(*gvi*(*av*⁰ (*x*), *av*² (*x*), . . . , *[a](#page-94-0)vk*[−](#page-96-0)[1](#page-92-0) [\(](#page-93-0)*[x](#page-99-0)*[\)](#page-100-0)[,](#page-0-0) *[y](#page-0-0)*[\)\)](#page-118-0)[}](#page-0-0)[1](#page-0-0)[≤](#page-118-0)*i*[≤](#page-118-0)*[N](#page-0-0)[v](#page-118-0)*

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

Proposition

•
$$
CC(\mathbb{R}_{>}^{n_1+n_2}), CC(\mathbb{R}_{+}^{n_1+n_2}) = n_1 + n_2;
$$

$$
\bullet \;\;CC^{prob}(\mathbb{R}_{>}^{n_1+n_2})\leq 4, \quad CC^{prob}(\mathbb{R}_{+}^{n_1+n_2})\leq \log^{O(1)}(n_1+n_2).
$$

Lower bound on probabilistic communication complexity

 $\text{Polyhedron } S = \{ (x, y) \in \mathbb{R}^{2 \cdot n} : \forall i \, x_i + y_i > 0 \}.$ Arrangement $Q = \bigcup_{1 \leq i \leq n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

branching condition {sgn(*gvi*(*av*⁰ (*x*), *av*² (*x*), . . . , *[a](#page-95-0)vk*[−](#page-97-0)[1](#page-92-0) [\(](#page-93-0)*[x](#page-99-0)*[\)](#page-100-0)[,](#page-0-0) *[y](#page-0-0)*[\)\)](#page-118-0)[}](#page-0-0)[1](#page-0-0)[≤](#page-118-0)*i*[≤](#page-118-0)*[N](#page-0-0)[v](#page-118-0)*

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

Proposition

•
$$
CC(\mathbb{R}_{>}^{n_1+n_2}), CC(\mathbb{R}_{+}^{n_1+n_2}) = n_1 + n_2;
$$

$$
\bullet \;\;CC^{prob}(\mathbb{R}_{>}^{n_1+n_2})\leq 4, \quad CC^{prob}(\mathbb{R}_{+}^{n_1+n_2})\leq \log^{O(1)}(n_1+n_2).
$$

Lower bound on probabilistic communication complexity

Polyhedron
$$
S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i \ x_i + y_i > 0\}
$$
.
Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

Problem; to obtain a lower bound for communication trees with branching condition {sgn(*gvi*(*av*⁰ (*x*), *av*² (*x*), . . . , *[a](#page-96-0)vk*[−](#page-98-0)[1](#page-92-0) [\(](#page-93-0)*[x](#page-99-0)*[\)](#page-100-0)[,](#page-0-0) *[y](#page-0-0)*[\)\)](#page-118-0)[}](#page-0-0)[1](#page-0-0)[≤](#page-118-0)*i*[≤](#page-118-0)*[N](#page-0-0)[v](#page-118-0)*

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

Proposition

•
$$
CC(\mathbb{R}_{>}^{n_1+n_2}), CC(\mathbb{R}_{+}^{n_1+n_2}) = n_1 + n_2;
$$

$$
\bullet \;\;CC^{prob}(\mathbb{R}_{>}^{n_1+n_2})\leq 4, \quad CC^{prob}(\mathbb{R}_{+}^{n_1+n_2})\leq \log^{O(1)}(n_1+n_2).
$$

Lower bound on probabilistic communication complexity

Polyhedron
$$
S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i \ x_i + y_i > 0\}
$$
.
Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

Theorem

 $CC^{prob}(S)$, $CC^{prob}(Q)$, $CC^{prob}(EQUALITY)$, $CC^{prob}(KNAPSACK) > n$ *(G. [2006]).*

Problem; to obtain a lower bound for communication trees with branching condition {sgn(*gvi*(*av*⁰ (*x*), *av*² (*x*), . . . , *[a](#page-97-0)vk*[−](#page-99-0)[1](#page-92-0) [\(](#page-93-0)*[x](#page-99-0)*[\)](#page-100-0)[,](#page-0-0) *[y](#page-0-0)*[\)\)](#page-118-0)[}](#page-0-0)[1](#page-0-0)[≤](#page-118-0)*i*[≤](#page-118-0)*[N](#page-0-0)[v](#page-118-0)*

$$
\mathbb{R}_{>}^{n_1+n_2} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i,j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}_{+}^{n_1+n_2} = \overline{\mathbb{R}_{>}^{n_1+n_2}}.
$$

Proposition

•
$$
CC(\mathbb{R}_{>}^{n_1+n_2}), CC(\mathbb{R}_{+}^{n_1+n_2}) = n_1 + n_2;
$$

$$
\bullet \;\;CC^{prob}(\mathbb{R}_{>}^{n_1+n_2})\leq 4, \quad CC^{prob}(\mathbb{R}_{+}^{n_1+n_2})\leq \log^{O(1)}(n_1+n_2).
$$

Lower bound on probabilistic communication complexity

Polyhedron
$$
S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i \ x_i + y_i > 0\}
$$
.
Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}$.

Theorem

 $CC^{prob}(S)$, $CC^{prob}(Q)$, $CC^{prob}(EQUALITY)$, $CC^{prob}(KNAPSACK) > n$ *(G. [2006]).*

Problem; to obtain a lower bound for communication trees with $\{ \text{branching condition }\{\text{sgn}(\bm{g}_{\textit{vi}}(\bm{a}_{\textit{v}_0}(\textit{x}),\bm{a}_{\textit{v}_2}(\textit{x}),\dots,\bm{a}_{\textit{v}_{k-1}}(\textit{x}),\textit{y}_{\textit{v}})\}\}_{1\leq i\leq N_k}$ $\{ \text{branching condition }\{\text{sgn}(\bm{g}_{\textit{vi}}(\bm{a}_{\textit{v}_0}(\textit{x}),\bm{a}_{\textit{v}_2}(\textit{x}),\dots,\bm{a}_{\textit{v}_{k-1}}(\textit{x}),\textit{y}_{\textit{v}})\}\}_{1\leq i\leq N_k}$

Dima Grigoriev (CNRS) [Complexity lower bounds: algebraic trees](#page-0-0) 14.6.11 20 / 23

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Th[e](#page-99-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-101-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

Th[e](#page-100-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-102-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

*f*_{*v*} = *A* ◦ *B* where ◦ ∈ {+, ×} and *A*, *B* ∈ *F* ∪ {*X*₁, . . . , *X*_n} ∪ {*f*_{*v*₁}, *f*_{*v*₂}}

-
-

Th[e](#page-101-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-103-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

*f*_{*v*} = *A* ◦ *B* where ◦ ∈ {+, ×} and *A*, *B* ∈ *F* ∪ {*X*₁, . . . , *X*_n} ∪ {*f*_{*v*₁}, *f*_{*v*₂}}

To *v* two boolean functions B_{v1} , B_{v2} are also attached.

• if both v_1 , v_2 are "*passive*" then *v* is "*passive*" as well;

- if v_1 , v_2 are "active" then $b_v = B_{v2}(\text{sgn}(f_{v_1}(x)), \text{sgn}(f_{v_2}(x)))$;
- if only v_i , $i = 1, 2$ is "*active*" then $b_v = B_{v1}(\text{sgn}(f_{v_i}(x)))$.

Th[e](#page-102-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-104-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

 $f_v = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \ldots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

To *v* two boolean functions B_{v1} , B_{v2} are also attached.

• if both v_1 , v_2 are "*passive*" then *v* is "*passive*" as well;

- if v_1 , v_2 are "active" then $b_v = B_{v2}(\text{sgn}(f_{v_1}(x)), \text{sgn}(f_{v_2}(x)))$;
- if only v_i , $i = 1, 2$ is "*active*" then $b_v = B_{v1}(\text{sgn}(f_{v_i}(x)))$.

Th[e](#page-103-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-105-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

 $f_v = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \ldots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

To *v* two boolean functions B_{v1} , B_{v2} are also attached.

- **•** if both v_1 , v_2 are "*passive*" then *v* is "*passive*" as well;
- if v_1 , v_2 are "active" then $b_v = B_{v2}(\text{sgn}(f_{v_1}(x)), \text{sgn}(f_{v_2}(x)))$;
- if only v_i , $i = 1, 2$ is "*active*" then $b_v = B_{v1}(\text{sgn}(f_{v_i}(x)))$.

Th[e](#page-104-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-106-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

 $f_v = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \ldots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

To *v* two boolean functions B_{v1} , B_{v2} are also attached.

• if both v_1 , v_2 are "*passive*" then *v* is "*passive*" as well;

- if v_1 , v_2 are "active" then $b_v = B_{v2}(\text{sgn}(f_{v_1}(x)), \text{sgn}(f_{v_2}(x)))$;
- if only v_i , $i = 1, 2$ is "*active*" then $b_v = B_{v1}(\text{sgn}(f_{v_i}(x)))$.

Exactly one node *w* with the largest depth is "*active*", sgn($f_w(x)$) is treated as an output of the parallel network.

Th[e](#page-105-0) **parallel complexi[t](#page-99-0)y** *PC* is the depth of the [ne](#page-107-0)t[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node *v* of depth *k* lead edges from (at most) two nodes v_1 , v_2 of depth $k - 1$.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, X_n]$ and a **boolean indicator** *b^v* are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth k is bounded by $p \leq 2^k.$

 $f_v = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \ldots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

To *v* two boolean functions B_{v1} , B_{v2} are also attached.

• if both v_1 , v_2 are "*passive*" then *v* is "*passive*" as well;

- if v_1 , v_2 are "active" then $b_v = B_{v2}(\text{sgn}(f_{v_1}(x)), \text{sgn}(f_{v_2}(x)))$;
- if only v_i , $i = 1, 2$ is "*active*" then $b_v = B_{v1}(\text{sgn}(f_{v_i}(x)))$.

Exactly one node *w* with the largest depth is "*active*", sgn($f_w(x)$) is treated as an output of the parallel network.

The **parallel complexity** *PC* is the depth of th[e](#page-106-0) [ne](#page-108-0)[t](#page-99-0)[w](#page-100-0)[o](#page-107-0)[r](#page-108-0)[k.](#page-0-0)

$\mathsf{For\ set\ } \mathcal{S} \subset \mathbb{R}^n$ parallel complexity $\mathit{PC}(S) \geq \Omega(\sqrt{(\mathrm{log} N) / n})$ where N is

- either the sum of Betti numbers of *S* (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N\geq n^{\Omega(n)}$ (G. [1996])

イロト イ団 トイラトイ

Which nodes to use in a computation for *x* is determined by the boolean indicators.

 $\mathsf{For\ set\ } \mathcal{S} \subset \mathbb{R}^n$ parallel complexity $\mathit{PC}(S) \geq \Omega(\sqrt{(\mathrm{log} N) / n})$ where N is

- either the sum of Betti numbers of *S* (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N\geq n^{\Omega(n)}$ (G. [1996])

イロメ イ母メ イヨメ イヨ

Which nodes to use in a computation for *x* is determined by the boolean indicators.

Lower bound on the parallel complexity

 $\mathsf{For\ set\ } \mathcal{S}\subset \mathbb{R}^n \text{ parallel complexity } \overline{PC(S)} \ge \Omega(\sqrt{(\log N)/n})$ where N is

polyhedron, provided that $N\geq n^{\Omega(n)}$ (G. [1996])

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Which nodes to use in a computation for *x* is determined by the boolean indicators.

Lower bound on the parallel complexity

 $\mathsf{For\ set\ } \mathcal{S}\subset \mathbb{R}^n \text{ parallel complexity } \overline{PC(S)} \ge \Omega(\sqrt{(\log N)/n})$ where N is

either the sum of Betti numbers of *S* (Mulmuley [1994], Montaña-Morais-Pardo [1996].)

polyhedron, provided that $N\geq n^{\Omega(n)}$ (G. [1996])

 Ω

イロト イ何 トイラ トイラト

Which nodes to use in a computation for *x* is determined by the boolean indicators.

Lower bound on the parallel complexity

 $\mathsf{For\ set\ } \mathcal{S}\subset \mathbb{R}^n \text{ parallel complexity } \overline{PC(S)} \ge \Omega(\sqrt{(\log N)/n})$ where N is

- either the sum of Betti numbers of *S* (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N \geq n^{\Omega(n)}$ (G. [1996])

 Ω

-
- $\Omega(\sqrt{\log m}) \leq PC(S) \leq O($ *(Mulmuley [1994], G. [1996]).*

 Ω

 \sqrt{m}) \sqrt{m}) \sqrt{m})

Upper bound on the parallel complexity

p, *CP*(*S*) ≤ *O*(√ log*m* · loglog*m* · 2 *n*) (G. [1996]).

-
- $\Omega(\sqrt{\log m}) \leq PC(S) \leq O($ *(Mulmuley [1994], G. [1996]).*

 Ω

(ロ) (何) (ヨ) (ヨ) (

Upper bound on the parallel complexity

p, *CP*(*S*) ≤ *O*(√ log*m* · loglog*m* · 2 *n*) (G. [1996]).

Thus, the bound is interesting for small *n*. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

-
- $\Omega(\sqrt{\log m}) \leq PC(S) \leq O($ log*m* · loglog*m*) *(Mulmuley [1994], G. [1996]).*

 Ω

イロメイ 倒 メイモメイモメー 毛

Upper bound on the parallel complexity

p, *CP*(*S*) ≤ *O*(√ log*m* · loglog*m* · 2 *n*) (G. [1996]).

Thus, the bound is interesting for small *n*. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let S ⊂ R ² *be an m-gon. Then*

 \bullet $C(S) \times \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);

 $\Omega(\sqrt{\log m}) \le PC(S) \le O($ √ *(Mulmuley [1994], G. [1996]).*

Open problem: obtain an upper bound on the parallel complexity for

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Upper bound on the parallel complexity

p, *CP*(*S*) ≤ *O*(√ log*m* · loglog*m* · 2 *n*) (G. [1996]).

Thus, the bound is interesting for small *n*. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let S ⊂ R ² *be an m-gon. Then*

 \bullet $C(S) \times \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);

 $\Omega(\sqrt{\log m}) \le PC(S) \le O($ $^{\prime}$ log*m* · loglog*m*) *(Mulmuley [1994], G. [1996]).*

Open problem: obtain an upper bound on the parallel complexity for

 QQ

イロト イ母 トイヨ トイヨ

Upper bound on the parallel complexity

p, *CP*(*S*) ≤ *O*(√ log*m* · loglog*m* · 2 *n*) (G. [1996]).

Thus, the bound is interesting for small *n*. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let S ⊂ R ² *be an m-gon. Then*

 \bullet $C(S) \times \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);

 $\Omega(\sqrt{\log m}) \le PC(S) \le O($ $^{\prime}$ log*m* · loglog*m*) *(Mulmuley [1994], G. [1996]).*

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).

 QQ

 \leftarrow \overline{m} \rightarrow