Complexity lower bounds for algebraic computation trees

Dima Grigoriev (Lille)

CNRS

14/06/2011, Saint-Petersbourg

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

14.6.11 1 / 23

< A >

- - E - - - E

Several non-linear lower bounds are known in algebraic complexity unlike its boolean counterpart

・ 同 ト ・ ヨ ト ・ ヨ

Computational models Let *F* be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

• Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.

• To each node v of T (except leaves) a (testing) polynomial $g_v \in F[X_1, \ldots, X_n]$ with $\deg(g_v) \leq d$ is assigned. The algebraic decision tree branches at node v according to whether $g_v(x) = 0$. In case $F = \mathbb{R}$ one uses alternatively $g_v(x) > 0$ as a condition of branching.

- To each leaf L an output "accept" or "reject" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf L an output "accept" or "reject" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf L an output "accept" or "reject" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf L an output "accept" or "reject" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".

• The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

Let F be a ground field.

Algebraic *d*-decision tree

- Input $x = (x_1, ..., x_n) \in F^n$ is attributed to the root of tree *T*.
- To each node v of T (except leaves) a (testing) polynomial g_v ∈ F[X₁,...,X_n] with deg(g_v) ≤ d is assigned. The algebraic decision tree branches at node v according to whether g_v(x) = 0. In case F = ℝ one uses alternatively g_v(x) > 0 as a condition of branching.
- To each leaf *L* an output "*accept*" or "*reject*" is assigned.
- Denote by S_L ⊂ Fⁿ the set of inputs which arrive at L. They are pairwise disjoint and the set S ⊂ Fⁿ accepted by the algebraic decision tree is the union of S_L for all leaves L assigned with "accept".
- The **complexity** C_d is the depth of T.

The difference with algebraic decision trees is that testing polynomial g_v is calculated as $g_v = a \circ b$ where

• operation $\circ \in \{+, \times\}$

• $a, b \in F \cup \{X_1, \dots, X_n\} \cup \{g_u\}$ where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_v) \leq 2^{k_v}$ where k_v is the depth of v. Denote by C the complexity of algebraic computation trees. For any constant d the model of computation trees is stronger than one of d-decision trees.

We study the complexities $C_d(S)$, C(S) of the membership problem to S

The difference with algebraic decision trees is that testing polynomial g_v is calculated as $g_v = a \circ b$ where

• operation $\circ \in \{+, \times\}$

• $a, b \in F \cup \{X_1, \ldots, X_n\} \cup \{g_u\}$ where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_v) \leq 2^{k_v}$ where k_v is the depth of v. Denote by C the complexity of algebraic computation trees. For any constant d the model of computation trees is stronger than one of d-decision trees.

We study the complexities $C_d(S)$, C(S) of the membership problem to

The difference with algebraic decision trees is that testing polynomial g_v is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- $a, b \in F \cup \{X_1, \dots, X_n\} \cup \{g_u\}$ where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_v) \le 2^{k_v}$ where k_v is the depth of v. Denote by C the complexity of algebraic computation trees. For any constant d the model of computation trees is stronger than one of d-decision trees.

We study the complexities $C_d(S)$, C(S) of the membership problem to

イロト イポト イラト イラ

The difference with algebraic decision trees is that testing polynomial g_v is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- $a, b \in F \cup \{X_1, \dots, X_n\} \cup \{g_u\}$ where *u* runs the nodes on the path from the root to *v*.

In particular, $deg(g_v) \leq 2^{k_v}$ where k_v is the depth of v.

Denote by C the complexity of algebraic computation trees. For any constant d the model of computation trees is stronger than one of d-decision trees.

We study the complexities $C_d(S)$, C(S) of the membership problem to

The difference with algebraic decision trees is that testing polynomial g_v is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- $a, b \in F \cup \{X_1, \dots, X_n\} \cup \{g_u\}$ where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_v) \le 2^{k_v}$ where k_v is the depth of v. Denote by C the complexity of algebraic computation trees. For any constant d the model of computation trees is stronger than one of d-decision trees.

We study the complexities $C_d(S)$, C(S) of the membership problem to *S*.

・ロット (雪) (モリントロン

The difference with algebraic decision trees is that testing polynomial g_v is calculated as $g_v = a \circ b$ where

- operation $\circ \in \{+, \times\}$
- $a, b \in F \cup \{X_1, \dots, X_n\} \cup \{g_u\}$ where *u* runs the nodes on the path from the root to *v*.

In particular, $\deg(g_v) \leq 2^{k_v}$ where k_v is the depth of v.

Denote by C the complexity of algebraic computation trees. For any constant d the model of computation trees is stronger than one of d-decision trees.

We study the complexities $C_d(S)$, C(S) of the membership problem to S.

(日)

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge \log_2(c_i) - n, i = 1, 2, 3$ where

- c₁ is the maximum of the number of connected components in S and in Fⁿ \ S (Ben-Or [1983]);
- c₂ is the Euler characteristic of S (Björner-Lovasz-Yao [1992]);
- c₃ is the sum of Betti numbers (ranks of homological groups) of S (Yao [1994], Montaña-Morais-Pardo [1996]).

 $c_1, c_2 \leq c_3$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge \log_2(c_i) - n, i = 1, 2, 3$ where

- c₁ is the maximum of the number of connected components in S and in Fⁿ \ S (Ben-Or [1983]);
- c₂ is the Euler characteristic of S (Björner-Lovasz-Yao [1992]);
- c₃ is the sum of Betti numbers (ranks of homological groups) of S (Yao [1994], Montaña-Morais-Pardo [1996]).

 $c_1, c_2 \leq c_3$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge \log_2(c_i) - n, i = 1, 2, 3$ where

- c₁ is the maximum of the number of connected components in S and in Fⁿ \ S (Ben-Or [1983]);
- c₂ is the Euler characteristic of S (Björner-Lovasz-Yao [1992]);
- c₃ is the sum of Betti numbers (ranks of homological groups) of S (Yao [1994], Montaña-Morais-Pardo [1996]).

 $c_1, c_2 \le c_3$

(日)

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge \log_2(c_i) - n, i = 1, 2, 3$ where

- c₁ is the maximum of the number of connected components in S and in Fⁿ \ S (Ben-Or [1983]);
- c₂ is the Euler characteristic of S (Björner-Lovasz-Yao [1992]);
- c₃ is the sum of Betti numbers (ranks of homological groups) of S (Yao [1994], Montaña-Morais-Pardo [1996]).

 $c_1, c_2 \leq c_3$

There are several lower bounds for algebraic computation trees over the field either $F = \mathbb{C}$ or $F = \mathbb{R}$ of the form $C(S) \ge \log_2(c_i) - n, i = 1, 2, 3$ where

- c₁ is the maximum of the number of connected components in S and in Fⁿ \ S (Ben-Or [1983]);
- c₂ is the Euler characteristic of S (Björner-Lovasz-Yao [1992]);
- c₃ is the sum of Betti numbers (ranks of homological groups) of S (Yao [1994], Montaña-Morais-Pardo [1996]).

 $\textit{c}_1,\textit{c}_2 \leq \textit{c}_3$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• EQUALITY is the set

 $\{(x_1,\ldots,x_n,y_1,\ldots,y_n)\subset F^{2n}: \{x_1,\ldots,x_n\}=\{y_1,\ldots,y_n\}\};$

- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{I \subseteq \{1,...,n\}} \{(x_1,...,x_n) : \sum_{i \in I} x_i = 1\}.$

Corollary

- C(EQUALITY) ≍ n · logn (QuickSort (F = ℝ), elementary symmetric functions (F = ℂ) Strassen [1973], Ben-Or [1983]);
- C(DISTINCTNESS) ≈ n · logn (QuickSort (F = ℝ), discriminant (F = ℂ) Strassen [1973], Ben-Or [1983]);
- $C(KNAPSACK) \ge \Omega(n^2)$ (Ben-Or [1983]).

< ロ > < 同 > < 回 > < 回 > < 回 > <

- EQUALITY is the set $\{(x_1, ..., x_n, y_1, ..., y_n) \subset F^{2n} : \{x_1, ..., x_n\} = \{y_1, ..., y_n\}\};$
- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{i \in \{1,...,n\}} \{(x_1,...,x_n) : \sum_{i \in I} x_i = 1\}$.

Corollary

- C(EQUALITY) ≍ n · logn (QuickSort (F = ℝ), elementary symmetric functions (F = ℂ) Strassen [1973], Ben-Or [1983]);
- C(DISTINCTNESS) ≍ n · logn (QuickSort (F = ℝ), discriminant (F = ℂ) Strassen [1973], Ben-Or [1983]);
- $C(KNAPSACK) \ge \Omega(n^2)$ (Ben-Or [1983]).

- EQUALITY is the set $\{(x_1, ..., x_n, y_1, ..., y_n) \subset F^{2n} : \{x_1, ..., x_n\} = \{y_1, ..., y_n\}\};$
- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{I \subset \{1,...,n\}} \{ (x_1,...,x_n) : \sum_{i \in I} x_i = 1 \}.$

Corollary

- C(EQUALITY) ≍ n · logn (QuickSort (F = ℝ), elementary symmetric functions (F = ℂ) Strassen [1973], Ben-Or [1983]);
- C(DISTINCTNESS) ≍ n · logn (QuickSort (F = ℝ), discriminant (F = ℂ) Strassen [1973], Ben-Or [1983]);
- $C(KNAPSACK) \ge \Omega(n^2)$ (Ben-Or [1983]).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- EQUALITY is the set $\{(x_1, ..., x_n, y_1, ..., y_n) \subset F^{2n} : \{x_1, ..., x_n\} = \{y_1, ..., y_n\}\};$
- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{I \subset \{1,...,n\}} \{ (x_1,...,x_n) : \sum_{i \in I} x_i = 1 \}.$

Corollary

C(EQUALITY) ≍ n · logn (QuickSort (F = ℝ), elementary symmetric functions (F = ℂ) Strassen [1973], Ben-Or [1983]);

• $C(DISTINCTNESS) \simeq n \cdot \log n$ (QuickSort ($F = \mathbb{R}$), discriminant ($F = \mathbb{C}$) Strassen [1973], Ben-Or [1983]);

• $C(KNAPSACK) \ge \Omega(n^2)$ (Ben-Or [1983]).

(日)

- EQUALITY is the set $\{(x_1, ..., x_n, y_1, ..., y_n) \subset F^{2n} : \{x_1, ..., x_n\} = \{y_1, ..., y_n\}\};$
- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{I \subset \{1,...,n\}} \{(x_1,...,x_n) : \sum_{i \in I} x_i = 1\}$.

Corollary

- C(EQUALITY) ≍ n · logn (QuickSort (F = ℝ), elementary symmetric functions (F = ℂ) Strassen [1973], Ben-Or [1983]);
- C(DISTINCTNESS) ≍ n · logn (QuickSort (F = ℝ), discriminant (F = ℂ) Strassen [1973], Ben-Or [1983]);

• $C(KNAPSACK) \ge \Omega(n^2)$ (Ben-Or [1983]).

(日)

- EQUALITY is the set $\{(x_1, ..., x_n, y_1, ..., y_n) \subset F^{2n} : \{x_1, ..., x_n\} = \{y_1, ..., y_n\}\};$
- DISTINCTNESS is the set $\{(x_1, \ldots, x_n) : x_i \neq x_j, i \neq j\};$
- KNAPSACK is the set $\bigcup_{I \subset \{1,...,n\}} \{ (x_1,...,x_n) : \sum_{i \in I} x_i = 1 \}.$

Corollary

- C(EQUALITY) ≍ n · logn (QuickSort (F = ℝ), elementary symmetric functions (F = ℂ) Strassen [1973], Ben-Or [1983]);
- C(DISTINCTNESS) ≍ n · logn (QuickSort (F = ℝ), discriminant (F = ℂ) Strassen [1973], Ben-Or [1983]);
- $C(KNAPSACK) \ge \Omega(n^2)$ (Ben-Or [1983]).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *F* be an algebraically closed field of characteristic p > 0. For a variety $S \subset F^n$ introduce B(S) which replaces the sum of Betti numbers (over \mathbb{C} or \mathbb{R}).

Zeta function

- Denote $N_k = N_k(S) = \sharp(S \cap \mathbb{F}_{p^k}^n).$
- Zeta function $Z(S, t) = \exp(\sum_{1 \le k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).
- Define $B(S) = \deg(P) + \deg(Q)$.

Theorem

```
C(S) \ge a \cdot \log(B(S)) - b \cdot n for some constants a, b (Ben-Or [1994])
```

Corollary

 $C(EQUALITY), C(DISTINCTNESS) \asymp n \cdot \log n$ (Strassen [1973],

Dima Grigoriev (CNRS)

Let *F* be an algebraically closed field of characteristic p > 0. For a variety $S \subset F^n$ introduce B(S) which replaces the sum of Betti numbers (over \mathbb{C} or \mathbb{R}).

Zeta function

- Denote $N_k = N_k(S) = \sharp(S \cap \mathbb{F}^n_{p^k}).$
 - Zeta function $Z(S, t) = \exp(\sum_{1 \le k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).

• Define $B(S) = \deg(P) + \deg(Q)$.

Theorem

```
C(S) \ge a \cdot \log(B(S)) - b \cdot n for some constants a, b (Ben-Or [1994])
```

Corollary

 $C(EQUALITY), C(DISTINCTNESS) \asymp n \cdot \log n$ (Strassen [1973],

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

Let *F* be an algebraically closed field of characteristic p > 0. For a variety $S \subset F^n$ introduce B(S) which replaces the sum of Betti numbers (over \mathbb{C} or \mathbb{R}).

Zeta function

- Denote $N_k = N_k(S) = \sharp(S \cap \mathbb{F}^n_{p^k}).$
- Zeta function $Z(S, t) = \exp(\sum_{1 \le k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).

• Define $B(S) = \deg(P) + \deg(Q)$.

Theorem

 $C(S) \ge a \cdot \log(B(S)) - b \cdot n$ for some constants a, b (Ben-Or [1994])

Corollary

 $C(EQUALITY), C(DISTINCTNESS) \asymp n \cdot \log n$ (Strassen [1973],

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

Let *F* be an algebraically closed field of characteristic p > 0. For a variety $S \subset F^n$ introduce B(S) which replaces the sum of Betti numbers (over \mathbb{C} or \mathbb{R}).

Zeta function

- Denote $N_k = N_k(S) = \sharp(S \cap \mathbb{F}^n_{p^k}).$
- Zeta function $Z(S, t) = \exp(\sum_{1 \le k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).

• Define
$$B(S) = \deg(P) + \deg(Q)$$
.

Theorem

```
C(S) \ge a \cdot \log(B(S)) - b \cdot n for some constants a, b (Ben-Or [1994])
```

Corollary

 $C(EQUALITY), C(DISTINCTNESS) \asymp n \cdot \log n$ (Strassen [1973],

Dima Grigoriev (CNRS)

Let *F* be an algebraically closed field of characteristic p > 0. For a variety $S \subset F^n$ introduce B(S) which replaces the sum of Betti numbers (over \mathbb{C} or \mathbb{R}).

Zeta function

- Denote $N_k = N_k(S) = \sharp(S \cap \mathbb{F}^n_{p^k}).$
- Zeta function $Z(S, t) = \exp(\sum_{1 \le k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).

• Define
$$B(S) = \deg(P) + \deg(Q)$$
.

Theorem

 $C(S) \ge a \cdot \log(B(S)) - b \cdot n$ for some constants a, b (Ben-Or [1994])

Corollary

 $C(EQUALITY), C(DISTINCTNESS) \asymp n \cdot \log n$ (Strassen [1973],

Dima Grigoriev (CNRS)

Let *F* be an algebraically closed field of characteristic p > 0. For a variety $S \subset F^n$ introduce B(S) which replaces the sum of Betti numbers (over \mathbb{C} or \mathbb{R}).

Zeta function

- Denote $N_k = N_k(S) = \sharp(S \cap \mathbb{F}^n_{p^k}).$
- Zeta function $Z(S, t) = \exp(\sum_{1 \le k < \infty} N_k t^k / k) = P(t) / Q(t)$ is a rational function (due to Dwork, Deligne).
- Define $B(S) = \deg(P) + \deg(Q)$.

Theorem

 $C(S) \ge a \cdot \log(B(S)) - b \cdot n$ for some constants a, b (Ben-Or [1994])

Corollary

 $C(EQUALITY), C(DISTINCTNESS) \simeq n \cdot \log n \text{ (Strassen [1973],}$ Ben-Or [1994]) Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6:

Complexity upper bound for membership to a linear complex

An **arrangement** $S \subset F^n$ is a union of hyperplanes $\cup_i H_i$. A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let *S* be either an arrangement or a (possibly unbounded) polyhedron (when $F = \mathbb{R}$). Denote by *N* the number of faces (of all the dimensions) of *S*. Then $C(S) \leq O(n^3 \cdot \log N)$ (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (depends $an p_{2}^{b}, a_{2}, a_{3}, a_{3}$

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

14.6.11 8 / 23

Complexity upper bound for membership to a linear complex

An **arrangement** $S \subset F^n$ is a union of hyperplanes $\cup_i H_i$. A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let *S* be either an arrangement or a (possibly unbounded) polyhedron (when $F = \mathbb{R}$). Denote by *N* the number of faces (of all the dimensions) of *S*. Then $C(S) \leq O(n^3 \cdot \log N)$ (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (depends $an p_{2}^{b}, a_{2}, a_{3}, a_{3}$

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

Complexity upper bound for membership to a linear complex

An **arrangement** $S \subset F^n$ is a union of hyperplanes $\cup_i H_i$. A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let *S* be either an arrangement or a (possibly unbounded) polyhedron (when $F = \mathbb{R}$). Denote by *N* the number of faces (of all the dimensions) of *S*. Then $C(S) \leq O(n^3 \cdot \log N)$ (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (depends an p_{2}^{1} , q_{2} , q_{3} , q_{2} , q_{3} , q_{3}
Complexity upper bound for membership to a linear complex

An **arrangement** $S \subset F^n$ is a union of hyperplanes $\cup_i H_i$. A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let *S* be either an arrangement or a (possibly unbounded) polyhedron (when $F = \mathbb{R}$). Denote by *N* the number of faces (of all the dimensions) of *S*. Then $C(S) \leq O(n^3 \cdot \log N)$ (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (depends an p_{2}^{1} , q_{2} , q_{3} , q_{2} , q_{3}

Complexity upper bound for membership to a linear complex

An **arrangement** $S \subset F^n$ is a union of hyperplanes $\cup_i H_i$. A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let *S* be either an arrangement or a (possibly unbounded) polyhedron (when $F = \mathbb{R}$). Denote by *N* the number of faces (of all the dimensions) of *S*. Then $C(S) \leq O(n^3 \cdot \log N)$ (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (depends an n_{2}^{1} , n_{3}^{2} , $n_{3}^{$

Complexity upper bound for membership to a linear complex

An **arrangement** $S \subset F^n$ is a union of hyperplanes $\cup_i H_i$. A face of *S* is an intersection of some of the hyperplanes. DISTINCTNESS and KNAPSACK are arrangements.

Theorem

Let *S* be either an arrangement or a (possibly unbounded) polyhedron (when $F = \mathbb{R}$). Denote by *N* the number of faces (of all the dimensions) of *S*. Then $C(S) \leq O(n^3 \cdot \log N)$ (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary **linear complexes**, i. e. the unions of polyhedra.

Corollary

 $C(KNAPSACK) \leq O(n^5)$ (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an algebraic computation tree is non-uniform (depends on n).

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

14.6.11 8 / 23

Membership to a polyhedron

Let $P \subset \mathbb{R}^n$ be a convex polyhedron (with *N* faces of all the dimensions). Then the sum of its Betti numbers equals 1.

Theorem

Complexity of linear decision trees $C_1(P) \ge \log_2 N$ (Rivest-Yao [1980])

Theorem

 $C_d(P) \ge \Omega(\log N)$, provided that $N \ge (dn)^{\Omega(n)}$ (G.-Karpinski-Vorobjov [1994]).

Membership to a polyhedron

Let $P \subset \mathbb{R}^n$ be a convex polyhedron (with *N* faces of all the dimensions). Then the sum of its Betti numbers equals 1.

Theorem

Complexity of linear decision trees $C_1(P) \ge \log_2 N$ (Rivest-Yao [1980])

Theorem

 $C_d(P) \ge \Omega(\log N)$, provided that $N \ge (dn)^{\Omega(n)}$ (G.-Karpinski-Vorobjov [1994]).

Membership to a polyhedron

Let $P \subset \mathbb{R}^n$ be a convex polyhedron (with *N* faces of all the dimensions). Then the sum of its Betti numbers equals 1.

Theorem

Complexity of linear decision trees $C_1(P) \ge \log_2 N$ (Rivest-Yao [1980])

Theorem

 $C_d(P) \ge \Omega(\log N)$, provided that $N \ge (dn)^{\Omega(n)}$ (G.-Karpinski-Vorobjov [1994]).

As a testing function g_v at a node v of a Pfaffian d-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{v_k} = \sum_{1 \le j \le n} h_{kj}(g_{v_0}, \ldots, g_{v_k}, X_1, \ldots, X_n) \cdot dX_j$ for some polynomials $h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n]$, $\deg(h_{kj}) \le d$. The complexity denote by C_d^{pfaff} . **Examples of Pfaffian functions**: polynomials, exp, log (on the positive half-line), sin (on the interval $(-\pi, \pi), \sqrt{X}$ (on the positive half-line), X^{-1} on $\mathbb{R} \setminus \{0\}$.

Theorem

 Let S ⊂ ℝⁿ be semi-pfaffian (defined by inequalities of the form g ≥ 0 for Pfaffian functions g. Denote by c₃ the sum of its Betti numbers. Then C^{pfaff}_d ≥ Ω(√logc₃) (G.-Vorobjov [1994]);

• For a polyhedron P with N faces of all the dimensions $C_d^{pfaff}(P) \ge \Omega(\sqrt{\log N})$, provided that $N \ge (dn)^{\Omega(n^4 \cdot \log d)}$ (G.-Vorobjov [1994]).

As a testing function g_v at a node v of a Pfaffian d-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k .

 $dg_{v_k} = \sum_{1 \leq j \leq n} h_{kj}(g_{v_0}, \ldots, g_{v_k}, X_1, \ldots, X_n) \cdot dX_j$

for some polynomials $h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n]$, $\deg(h_{kj}) \leq d$. The complexity denote by C^{plaff}

Examples of Pfaffian functions: polynomials, exp, log (on the positive half-line), sin (on the interval $(-\pi, \pi)$, \sqrt{X} (on the positive half-line), X^{-1} on $\mathbb{R} \setminus \{0\}$.

Theorem

 Let S ⊂ ℝⁿ be semi-pfaffian (defined by inequalities of the form g ≥ 0 for Pfaffian functions g. Denote by c₃ the sum of its Betti numbers. Then C^{pfaff}_d ≥ Ω(√logc₃) (G.-Vorobjov [1994]);

• For a polyhedron P with N faces of all the dimensions $C_d^{pfaff}(P) \ge \Omega(\sqrt{\log N})$, provided that $N \ge (dn)^{\Omega(n^4 \cdot \log d)}$ (G.-Vorobjov [1994]).

As a testing function g_v at a node v of a Pfaffian d-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{v_k} = \sum_{1 \le j \le n} h_{kj}(g_{v_0}, \ldots, g_{v_k}, X_1, \ldots, X_n) \cdot dX_j$ for some polynomials $h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n], \deg(h_{kj}) \le d$. The complexity denote by C_d^{pfaff} .

Examples of Pfaffian functions: polynomials, exp, log (on the positive half-line), sin (on the interval $(-\pi, \pi)$, \sqrt{X} (on the positive half-line), X^{-1} on $\mathbb{R} \setminus \{0\}$.

Theorem

- Let S ⊂ ℝⁿ be semi-pfaffian (defined by inequalities of the form g ≥ 0 for Pfaffian functions g. Denote by c₃ the sum of its Betti numbers. Then C^{pfaff}_d ≥ Ω(√logc₃) (G.-Vorobjov [1994]);
- For a polyhedron P with N faces of all the dimensions $C_d^{pfaff}(P) \ge \Omega(\sqrt{\log N})$, provided that $N \ge (dn)^{\Omega(n^4 \cdot \log d)}$ (G.-Vorobjov [1994]).

As a testing function g_v at a node v of a Pfaffian d-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{v_k} = \sum_{1 \le j \le n} h_{kj}(g_{v_0}, \ldots, g_{v_k}, X_1, \ldots, X_n) \cdot dX_j$ for some polynomials $h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n]$, $\deg(h_{kj}) \le d$. The complexity denote by C_d^{pfaff} . **Examples of Pfaffian functions**: polynomials, exp, log (on the positive half-line), sin (on the interval $(-\pi, \pi)$, \sqrt{X} (on the positive half-line), X^{-1} on $\mathbb{R} \setminus \{0\}$.

Theorem

- Let S ⊂ ℝⁿ be semi-pfaffian (defined by inequalities of the form g ≥ 0 for Pfaffian functions g. Denote by c₃ the sum of its Betti numbers. Then C^{pfaff}_d ≥ Ω(√logc₃) (G.-Vorobjov [1994]);
- For a polyhedron P with N faces of all the dimensions $C_d^{pfaff}(P) \ge \Omega(\sqrt{\log N})$, provided that $N \ge (dn)^{\Omega(n^4 \cdot \log d)}$ (G.-Vorobjov [1994]).

As a testing function g_v at a node v of a Pfaffian d-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{v_k} = \sum_{1 \le j \le n} h_{kj}(g_{v_0}, \ldots, g_{v_k}, X_1, \ldots, X_n) \cdot dX_j$ for some polynomials $h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n]$, $\deg(h_{kj}) \le d$. The complexity denote by C_d^{pfaff} . **Examples of Pfaffian functions**: polynomials, exp, log (on the positive half-line), sin (on the interval $(-\pi, \pi)$, \sqrt{X} (on the positive half-line), X^{-1} on $\mathbb{R} \setminus \{0\}$.

Theorem

 Let S ⊂ ℝⁿ be semi-pfaffian (defined by inequalities of the form g ≥ 0 for Pfaffian functions g. Denote by c₃ the sum of its Betti numbers. Then C^{pfaff}_d ≥ Ω(√logc₃) (G.-Vorobjov [1994]);

• For a polyhedron P with N faces of all the dimensions $C_d^{pfaff}(P) \ge \Omega(\sqrt{\log N})$, provided that $N \ge (dn)^{\Omega(n^4 \cdot \log d)}$ (G.-Vorobjov [1994]).

As a testing function g_v at a node v of a Pfaffian d-decision tree appears a Pfaffian function.

Let v_0, \ldots, v_k be the nodes on the path from the root v_0 to v_k . $dg_{v_k} = \sum_{1 \le j \le n} h_{kj}(g_{v_0}, \ldots, g_{v_k}, X_1, \ldots, X_n) \cdot dX_j$ for some polynomials $h_{kj} \in \mathbb{R}[Z_0, \ldots, Z_k, X_1, \ldots, X_n]$, $\deg(h_{kj}) \le d$. The complexity denote by C_d^{pfaff} . **Examples of Pfaffian functions**: polynomials, exp, log (on the positive half-line), sin (on the interval $(-\pi, \pi)$, \sqrt{X} (on the positive half-line), X^{-1} on $\mathbb{R} \setminus \{0\}$.

Theorem

- Let S ⊂ ℝⁿ be semi-pfaffian (defined by inequalities of the form g ≥ 0 for Pfaffian functions g. Denote by c₃ the sum of its Betti numbers. Then C^{pfaff}_d ≥ Ω(√logc₃) (G.-Vorobjov [1994]);
- For a polyhedron P with N faces of all the dimensions $C_d^{pfaff}(P) \ge \Omega(\sqrt{\log N})$, provided that $N \ge (dn)^{\Omega(n^4 \cdot \log d)}$ (G.-Vorobjov [1994]).

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities

 $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called probabilistic algebraic *d*-decision or, respectively probabilistic computation tree.

A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prob} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) \times n (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials

 $f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i). \text{ Sets}$ $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called **probabilistic algebraic** *d*-decision or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prop} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) \times n (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials

 $f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i). \text{ Sets}$ $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called **probabilistic algebraic** *d*-decision or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prob} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) \sim n (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials

 $f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i). \text{ Sets } \{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called **probabilistic algebraic** *d*-decision or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prob} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) \times n (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials

 $f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i). \text{ Sets } \{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called **probabilistic algebraic** *d*-decision or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prob} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) × n (Bürgisser-Karpinski-Lickteig [1992]);
 - Consider polynomials
 - $f(Z) = \prod_{1 \le i \le n} (Z x_i), \ h(Z) = \prod_{1 \le i \le n} (Z y_i). \text{ Sets}$ $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$
- Choose randomly $z_0 \in F$ and test whether $f(z_0) = h(z_0)$. If yes, return "accept", else "reject".

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called **probabilistic algebraic** *d*-decision or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prob} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) × n (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials $f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i).$ Sets $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$

• Choose randomly $z_0 \in F$ and test whether $f(z_0) = h(z_0)$. If yes, return "accept", else "reject".

Let $\{T_i\}_{1 \le i \le s}$ be a collection of either algebraic *d*-decision or, respectively computation trees with attributed probabilities $p_1, \ldots, p_s, \sum_{1 \le i \le s} p_i = 1$. It is called **probabilistic algebraic** *d*-decision or, respectively **probabilistic computation tree**. A probabilistic tree accepts set $S \subset F^n$ if for any input $x \in F^n$ the output is correct with probability > 2/3.

The complexity C_d^{prob} is defined as expectation $\sum_{1 \le i \le s} p_i \cdot C_d(T_i)$. Similarly, one defines C^{prob} .

One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

- C^{prob}(EQUALITY) × n (Bürgisser-Karpinski-Lickteig [1992]);
- Consider polynomials $f(Z) = \prod_{1 \le i \le n} (Z - x_i), \ h(Z) = \prod_{1 \le i \le n} (Z - y_i).$ Sets $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\} \Leftrightarrow f \equiv h;$
- Choose randomly z₀ ∈ F and test whether f(z₀) = h(z₀). If yes, return "accept", else "reject".

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example).

Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N \ge m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{\text{prob}}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{\text{prob}}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \simeq n \cdot \log n$, $C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(DISTINCTNESS) \simeq n \cdot \log n$, $C^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable, a_{p} , $a_$

Dima Grigoriev (CNRS)

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N \ge m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \simeq n \cdot \log n$, $C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(DISTINCTNESS) \simeq n \cdot \log n$, $C^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable, a_{p} , $a_$

Dima Grigoriev (CNRS)

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N > m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]);

2) $C^{prob}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \asymp n \cdot \log n$, $C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(DISTINCTNESS) \asymp n \cdot \log n$, $C^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable, $a \rightarrow a \rightarrow a \rightarrow a$

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N > m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \simeq n \cdot \log n, C_d^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(DISTINCTNESS) \simeq n \cdot \log n, C^{prob}(KNAPSACK) \ge \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable, $a \rightarrow a \rightarrow a \rightarrow a$

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N > m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \approx n \cdot \log n, C_d^{prob}(KNAPSACK) \geq \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C_d^{prob}(DISTINCTNESS) \approx n \log n, C_d^{prob}(KNAPSACK) \geq \Omega(n^2)$ (G

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable, a_{p+1} , $a_{$

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

14.6.11 12 / 23

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N > m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \approx n \cdot \log n, C_d^{prob}(KNAPSACK) \geq \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(DISTINCTNESS) \approx n \cdot \log n, C^{prob}(KNAPSACK) \geq \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable, a_{n+1} , a_{n+1} , a_{n+1}

Dima Grigoriev (CNRS)

The topological methods and differential-geometric methods fail for probabilistic trees (another evidence is the latter example). Let $S \subset F^n$ be a polyhedron (when $F = \mathbb{R}$) or an arrangement determined by *m* hyperplanes having $N > m^{\Omega(n)}$ faces.

Theorem

1) $C_d^{prob}(S) \ge \Omega(\log N)$ for constant d (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(S) \ge \Omega(\log N)$ (G. [1997]).

Corollary

1) $C_d^{prob}(DISTINCTNESS) \approx n \cdot \log n, C_d^{prob}(KNAPSACK) \geq \Omega(n^2)$ (G.-Karpinski-Meyer auf der Heide-Smolensky [1995]); 2) $C^{prob}(DISTINCTNESS) \approx n \cdot \log n, C^{prob}(KNAPSACK) \geq \Omega(n^2)$ (G.).

EQUALITY is a union of *n*-dimensional planes in F^{2n} (not an arrangement), thus the Theorem is not applicable.

Dima Grigoriev (CNRS)

Probabilistic computation trees over algebraically closed fields of zero characteristic

Let $S = H_1 \cup \cdots \cup H_m \subset F^n$ be an arrangement.

Theorem

Assume that for a certain c > 0 any subarrangement $H_{i_1} \cup \cdots \cup H_{i_{\lfloor cm \rfloor}}$ containing $\lfloor cm \rfloor$ hyperplanes, has $\geq N$ faces (of all the dimensions). Then $C^{prob}(S) \geq \Omega(\log N - 2 \cdot n)$ (G. [1997]).

Corollary

• $C^{prob}(DISTINCTNESS) \asymp n \cdot \log n;$ • $C^{prob}(KNAPSACK) \ge \Omega(n^2).$

< 同 > < 三 > < 三 >

Probabilistic computation trees over algebraically closed fields of zero characteristic

Let $S = H_1 \cup \cdots \cup H_m \subset F^n$ be an arrangement.

Theorem

Assume that for a certain c > 0 any subarrangement $H_{i_1} \cup \cdots \cup H_{i_{\lfloor cm \rfloor}}$ containing $\lfloor cm \rfloor$ hyperplanes, has $\geq N$ faces (of all the dimensions). Then $C^{prob}(S) \geq \Omega(\log N - 2 \cdot n)$ (G. [1997]).

Corollary

• $C^{prob}(DISTINCTNESS) \asymp n \cdot \log n;$ • $C^{prob}(KNAPSACK) \ge \Omega(n^2).$

・ロト ・ 一下・ ・ ヨト ・ ヨト

Probabilistic computation trees over algebraically closed fields of zero characteristic

Let $S = H_1 \cup \cdots \cup H_m \subset F^n$ be an arrangement.

Theorem

Assume that for a certain c > 0 any subarrangement $H_{i_1} \cup \cdots \cup H_{i_{\lfloor cm \rfloor}}$ containing $\lfloor cm \rfloor$ hyperplanes, has $\geq N$ faces (of all the dimensions). Then $C^{prob}(S) \geq \Omega(\log N - 2 \cdot n)$ (G. [1997]).

Corollary

- $C^{prob}(DISTINCTNESS) \asymp n \cdot \log n;$
- $C^{prob}(KNAPSACK) \geq \Omega(n^2).$

(日)

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C, C_d$ (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

MAX

- ORTANT $= \mathbb{R}^n_+ = \{(x_1, \dots, x_n) : x_1 \ge 0, \dots, x_n \ge 0\} \Leftrightarrow$
- MAX= = { (x_1, \ldots, x_n) : $x_1 = \max\{x_1, \ldots, x_n\}$ } is a weaker problem than
- MAX: to compute max{x₁,..., x_n} by means of a modification of a decision (or computation) tree in which the outputs of leaves are functions (polynomials) rather than labels "accept" or "reject".

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C, C_d$ (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

MAX

- ORTANT $= \mathbb{R}^n_+ = \{(x_1, \dots, x_n) : x_1 \ge 0, \dots, x_n \ge 0\} \Leftrightarrow$
- MAX= = { $(x_1, ..., x_n)$: $x_1 = \max\{x_1, ..., x_n\}$ } is a weaker problem than
- MAX: to compute max{x₁,..., x_n} by means of a modification of a decision (or computation) tree in which the outputs of leaves are functions (polynomials) rather than labels "accept" or "reject".

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C, C_d$ (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

MAX

- ORTANT $= \mathbb{R}^n_+ = \{(x_1, \dots, x_n) : x_1 \ge 0, \dots, x_n \ge 0\} \Leftrightarrow$
- MAX= = { $(x_1, ..., x_n)$: $x_1 = \max\{x_1, ..., x_n\}$ } is a weaker problem than
- MAX: to compute max{x₁,..., x_n} by means of a modification of a decision (or computation) tree in which the outputs of leaves are functions (polynomials) rather than labels "accept" or "reject".

If a decision tree admits arbitrary polynomials as testing functions we call it **topological tree** and its complexity denote by $C_{top} \leq C, C_d$ (Shub-Smale).

I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions we call it **analytic tree** and its complexity denote by $C_{an} \leq C_{top}$.

MAX

- ORTANT $= \mathbb{R}^n_+ = \{(x_1, \dots, x_n) : x_1 \ge 0, \dots, x_n \ge 0\} \Leftrightarrow$
- MAX= = { $(x_1, ..., x_n)$: $x_1 = \max\{x_1, ..., x_n\}$ } is a weaker problem than
- MAX: to compute max{x₁,..., x_n} by means of a modification of a decision (or computation) tree in which the outputs of leaves are functions (polynomials) rather than labels "accept" or "reject".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$C_1(MAX) \leq n-1$

Theorem

- C_{an}(MAX =) = n 1 (Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);
- $C_d^{prob}(MAX =) \ge n/(2 \cdot d), \quad C^{prob}(MAX =) \ge n/4 \ (G.-K.-S. [1995]);$
- $C_{top}^{prob}(MAX =) \le C_n^{prob}(MAX =) \le O(\log^2 n) \ (G.-K.-S. [1995]);$
- $C_{top}^{prob}(MAX) \le C_n^{prob}(MAX) \le O(\log^2 n)$ (Ben-Or [1996]; $\le O(\log^5 n)$ G.-K.-S. [1995]).

 $C_1(MAX) \leq n-1$

Theorem

- C_{an}(MAX =) = n 1 (Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);
- $C_d^{prob}(MAX =) \ge n/(2 \cdot d), \quad C^{prob}(MAX =) \ge n/4 \ (G.-K.-S. [1995]);$
- $C_{top}^{prob}(MAX =) \le C_n^{prob}(MAX =) \le O(\log^2 n) \ (G.-K.-S. \ [1995]);$
- $C_{top}^{prob}(MAX) \le C_n^{prob}(MAX) \le O(\log^2 n)$ (Ben-Or [1996]; $\le O(\log^5 n)$ G.-K.-S. [1995]).

 $C_1(MAX) \leq n-1$

Theorem

- C_{an}(MAX =) = n 1 (Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);
- $C_d^{prob}(MAX =) \ge n/(2 \cdot d), \quad C^{prob}(MAX =) \ge n/4 \ (G.-K.-S.$ [1995]);
- $C_{top}^{prob}(MAX =) \le C_n^{prob}(MAX =) \le O(\log^2 n) \ (G.-K.-S. \ [1995]);$
- $C_{top}^{prob}(MAX) \le C_n^{prob}(MAX) \le O(\log^2 n)$ (Ben-Or [1996]; $\le O(\log^5 n)$ G.-K.-S. [1995]).

(同) (ヨ) (ヨ)
$C_1(MAX) \leq n-1$

Theorem

- C_{an}(MAX =) = n 1 (Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);
- $C_d^{prob}(MAX =) \ge n/(2 \cdot d), \quad C^{prob}(MAX =) \ge n/4 \ (G.-K.-S.$ [1995]);
- $C_{top}^{prob}(MAX =) \le C_n^{prob}(MAX =) \le O(\log^2 n) \ (G.-K.-S. [1995]);$
- $C_{top}^{prob}(MAX) \le C_n^{prob}(MAX) \le O(\log^2 n)$ (Ben-Or [1996]; $\le O(\log^5 n)$ G.-K.-S. [1995]).

(日) (日) (日) (日) (日)

 $C_1(MAX) \leq n-1$

Theorem

- C_{an}(MAX =) = n 1 (Rabin [1972]; corrected proof Montaña-Pardo-Recio [1994]; short proof G.-Karpinski-Smolensky [1995]);
- $C_d^{prob}(MAX =) \ge n/(2 \cdot d), \quad C^{prob}(MAX =) \ge n/4 \ (G.-K.-S.$ [1995]);
- $C_{top}^{prob}(MAX =) \le C_n^{prob}(MAX =) \le O(\log^2 n) (G.-K.-S. [1995]);$
- $C_{top}^{prob}(MAX) \le C_n^{prob}(MAX) \le O(\log^2 n)$ (Ben-Or [1996]; $\le O(\log^5 n)$ G.-K.-S. [1995]).

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Topological complexity of the range searching

For $f_1, \ldots, f_m \in \mathbb{R}[X_1, \ldots, X_n]$ we say that a decision/computation tree T solves the RANGE SEARCHING problem if any two inputs $x, y \in \mathbb{R}^n$ with different sign vectors $(\operatorname{sgn}(f_1), \ldots, \operatorname{sgn}(f_n))(x) \neq (\operatorname{sgn}(f_1), \ldots, \operatorname{sgn}(f_n))(y)$

arrive to different leaves of T. Denote by N the number of sign vectors.

Theorem

 C_{top} (RANGE SEARCHING) $\approx \log N$ (G. [1998]).

< ロ > < 同 > < 回 > < 回 > .

Topological complexity of the range searching

For $f_1, \ldots, f_m \in \mathbb{R}[X_1, \ldots, X_n]$ we say that a decision/computation tree T solves the RANGE SEARCHING problem if any two inputs $x, y \in \mathbb{R}^n$ with different sign vectors $(\operatorname{sgn}(f_1), \ldots, \operatorname{sgn}(f_n))(x) \neq (\operatorname{sgn}(f_1), \ldots, \operatorname{sgn}(f_n))(y)$

arrive to different leaves of T. Denote by N the number of sign vectors.

Theorem

 C_{top} (RANGE SEARCHING) $\simeq \log N$ (G. [1998]).

< ロ > < 同 > < 回 > < 回 > .

Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially) speed-up computation. Here is an example of a set for which it is not the case.

Let an integer $q \neq 2^m$. Consider set $MOD_q = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \prod_{1 \leq i \leq n} x_i \neq 0, q \mid \sharp\{i : x_i < 0\}\}.$

Theorem

 $C_{an}^{prob}(MOD_q) \geq \Omega(\sqrt{n})$ (G.-Karpinski-Smolensly [1995]).

Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially) speed-up computation. Here is an example of a set for which it is not the case.

Let an integer $q \neq 2^m$. Consider set $MOD_q = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \prod_{1 \leq i \leq n} x_i \neq 0, q \mid \sharp\{i : x_i < 0\}\}.$

Theorem

 $C_{an}^{prob}(MOD_q) \ge \Omega(\sqrt{n})$ (G.-Karpinski-Smolensly [1995]).

Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially) speed-up computation. Here is an example of a set for which it is not the case.

Let an integer $q \neq 2^m$. Consider set $MOD_q = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \prod_{1 \leq i \leq n} x_i \neq 0, q \mid \sharp\{i : x_i < 0\}\}.$

Theorem

 $C_{an}^{prob}(MOD_q) \ge \Omega(\sqrt{n})$ (G.-Karpinski-Smolensly [1995]).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary size_d(MAX =) $\geq 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/gomputation trees?

Dima Grigoriev (CNRS)

So far, we studied the depth of decision/computation trees. Since $depth \ge \log(size)$, the bounds on the size are stronger. Consider set $EXACT_n = \{(x_1, \dots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \le i \le 2 \cdot n} x_i \ne 0, \ \sharp\{i : x_i < 0\} = n\}.$

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary size_d(MAX =) $\geq 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/gomputation trees?

Dima Grigoriev (CNRS)

So far, we studied the depth of decision/computation trees. Since $depth \ge \log(size)$, the bounds on the size are stronger. Consider set $EXACT_n = \{(x_1, \dots, x_{2:n}) \in \mathbb{R}^{2:n} : \prod_{1 \le i \le 2:n} x_i \ne 0, \ \sharp\{i : x_i < 0\} = n\}.$

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary size_d(MAX =) $\geq 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/gomputation trees?

Dima Grigoriev (CNRS)

So far, we studied the depth of decision/computation trees. Since $depth \ge \log(size)$, the bounds on the size are stronger. Consider set $EXACT_n = \{(x_1, \dots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \le i \le 2 \cdot n} x_i \ne 0, \ \sharp\{i : x_i < 0\} = n\}.$

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary size_d(MAX =) $\geq 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/gomputation trees?

Dima Grigoriev (CNRS)

So far, we studied the depth of decision/computation trees. Since $depth \ge \log(size)$, the bounds on the size are stronger. Consider set $EXACT_n = \{(x_1, \dots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \le i \le 2 \cdot n} x_i \ne 0, \ \sharp\{i : x_i < 0\} = n\}.$

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary size_d(MAX =) $\geq 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Dima Grigoriev (CNRS)

So far, we studied the depth of decision/computation trees. Since $depth \ge \log(size)$, the bounds on the size are stronger. Consider set $EXACT_n = \{(x_1, \dots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \le i \le 2 \cdot n} x_i \ne 0, \ \sharp\{i : x_i < 0\} = n\}.$

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary $size_d(MAX =) \ge 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/gomputation trees?

Dima Grigoriev (CNRS)

So far, we studied the depth of decision/computation trees. Since $depth \ge \log(size)$, the bounds on the size are stronger. Consider set $EXACT_n = \{(x_1, \dots, x_{2 \cdot n}) \in \mathbb{R}^{2 \cdot n} : \prod_{1 \le i \le 2 \cdot n} x_i \ne 0, \ \sharp\{i : x_i < 0\} = n\}.$

Theorem

For analytic decision trees $size_{an}(EXACT_n) \ge 2^n/n$ (G.-K.-S. [1995]).

For linear decision trees $size_1(MAX =) \le 2 \cdot n$;

Alternatively to usual (binary) trees one can consider **ternary** decision trees in which a node v with a testing function g_v branches into 3 nodes according to whether $g_v < 0$, or $g_v = 0$, or $g_v > 0$.

Theorem

Ternary $size_d(MAX =) \ge 2^{c_d \cdot n}$ for d-decision trees, $c_d > 0$ (G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/computation trees?

Dima Grigoriev (CNRS)

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node *v* with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned. There are 2 players; the first one has access to x and the second to y. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and k be odd (for definiteness).

Then at v the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{sgn(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \dots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ **Communication complexity** *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CCProb

Dima Grigoriev (CNRS)

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node v with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at v the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{sgn(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \dots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ **Communication complexity** *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CCProb

Dima Grigoriev (CNRS)

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node v with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned.

There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at v the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{sgn(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \dots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ **Communication complexity** *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CCProb

Dima Grigoriev (CNRS)

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node v with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector $\{\operatorname{sgn}(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \ldots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ **Communication complexity** *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CCPTOD

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node v with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{\operatorname{sgn}(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \dots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ Communication complexity *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CCProb

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node v with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{sgn(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \dots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ **Communication complexity** *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CCProb

Communication tree

Let $F = \mathbb{R}$ (also $F = \mathbb{C}$ can be studied). Let input variables be divided into 2 groups: X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} . An input $(x, y) \in \mathbb{R}^{n_1+n_2}$. To each node v with an even (respectively, odd) depth a **calculating polynomial** $a_v \in \mathbb{R}[X_1, \ldots, X_{n_1}]$ (respectively, $b_v \in \mathbb{R}[Y_1, \ldots, Y_{n_2}]$) is attached.

Also a family of **testing polynomials** $\{g_{vi}\}_{1 \le i \le N_v}$ is assigned. There are 2 players; the first one has access to *x* and the second to *y*. Let $v_0, \ldots, v_k = v$ be the nodes on the path from the root v_0 to $v_k = v$ and *k* be odd (for definiteness).

Then at *v* the second player computes $b_v(y)$, transmits it to the first player and branches according to the vector

 $\{sgn(g_{vi}(a_{v_0}(x), b_{v_1}(y), a_{v_2}(x), \dots, a_{v_{k-1}}(x), b_{v_k}(y)\}_{1 \le i \le N_v}$ **Communication complexity** *CC* is the depth of the communication tree.

One defines also probabilistic communication complexity CC^{prob}.

Dima Grigoriev (CNRS)

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

- $CC(\mathbb{R}^{n_1+n_2}), CC(\mathbb{R}^{n_1+n_2}) = n_1 + n_2;$
- $CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \le 4$, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \le \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron $S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$ Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{\operatorname{sgn}(g_{v_i}(a_{v_0}(x), a_{v_2}(x), \dots, a_{v_{k-1}}(x), y_k))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

14.6.11 20 / 23

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

•
$$CC(\mathbb{R}^{n_1+n_2}_{>}), CC(\mathbb{R}^{n_1+n_2}_{+}) = n_1 + n_2;$$

• $CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \leq 4$, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \leq \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron $S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$ Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{sgn(g_{v_i}(a_{v_0}(x), a_{v_2}(x), \dots, a_{v_{k-1}}(x), y_k))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

•
$$CC(\mathbb{R}^{n_1+n_2}), CC(\mathbb{R}^{n_1+n_2}) = n_1 + n_2;$$

•
$$CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \leq 4$$
, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \leq \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron $S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$ Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{sgn(g_{v_i}(a_{v_0}(x), a_{v_2}(x), \dots, a_{v_{k-1}}(x), y_k))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

•
$$CC(\mathbb{R}^{n_1+n_2}), CC(\mathbb{R}^{n_1+n_2}) = n_1 + n_2;$$

•
$$CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \leq 4$$
, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \leq \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron $S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$ Arrangement $Q = \bigcup_{1 < i < n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{sgn(g_{v_i}(a_{v_0}(x), a_{v_2}(x), \dots, a_{v_{k-1}}(x), y_k))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

•
$$CC(\mathbb{R}^{n_1+n_2}), CC(\mathbb{R}^{n_1+n_2}) = n_1 + n_2;$$

•
$$CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \leq 4$$
, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \leq \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron
$$S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$$

Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{sgn(g_{vi}(a_{v_0}(x), a_{v_2}(x), \dots, a_{u_{k-1}}(x), y_k))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

14.6.11 20 / 23

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

•
$$CC(\mathbb{R}^{n_1+n_2}), CC(\mathbb{R}^{n_1+n_2}) = n_1 + n_2;$$

•
$$CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \leq 4$$
, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \leq \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron
$$S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$$

Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{sgn(g_{vi}(a_{v_0}(x), a_{v_2}(x), \dots, a_{u_{k-1}}(x), y_k))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

$$\mathbb{R}^{n_1+n_2}_{>} = \{(x,y) \in \mathbb{R}^{n_1+n_2} : \forall i, j \, x_i > 0, \, y_j > 0\} \subset \mathbb{R}^{n_1+n_2}_{+} = \overline{\mathbb{R}^{n_1+n_2}_{>}}$$

Proposition

•
$$CC(\mathbb{R}^{n_1+n_2}), CC(\mathbb{R}^{n_1+n_2}) = n_1 + n_2;$$

•
$$CC^{prob}(\mathbb{R}^{n_1+n_2}_{>}) \leq 4$$
, $CC^{prob}(\mathbb{R}^{n_1+n_2}_{+}) \leq \log^{O(1)}(n_1+n_2)$.

Lower bound on probabilistic communication complexity

Polyhedron
$$S = \{(x, y) \in \mathbb{R}^{2 \cdot n} : \forall i x_i + y_i > 0\}.$$

Arrangement $Q = \bigcup_{1 \le i \le n} \{X_i + Y_i = 0\} \subset \mathbb{R}^{2 \cdot n}.$

Theorem

 $CC^{prob}(S), CC^{prob}(Q), CC^{prob}(EQUALITY), CC^{prob}(KNAPSACK) \ge n$ (G. [2006]).

Problem; to obtain a lower bound for communication trees with branching condition $\{\operatorname{sgn}(g_{vi}(a_{v_0}(x), a_{v_2}(x), \dots, a_{v_{k-1}}(x), y))\}_{1 \le i \le N_k}$

Dima Grigoriev (CNRS)

Complexity lower bounds: algebraic trees

14.6.11 20 / 23

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node v a **computing polynomial** $f_v \in \mathbb{R}[X_1, \ldots, x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in v. We impose the condition that the number of "*active*" v of depth k is bounded by $p \le 2^k$.

 $f_{V} = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_{1}, \dots, X_{n}\} \cup \{f_{V_{1}}, f_{V_{2}}\}$

To v two boolean functions B_{v1}, B_{v2} are also attached.

• if both *v*₁, *v*₂ are "*passive*" then *v* is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node w with the largest depth is "active", $sgn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the getwork, a , , , ,

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in v. We impose the condition that the number of "*active*" v of depth k is bounded by $p \le 2^k$.

 $f_V = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \dots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

To v two boolean functions B_{v1} , B_{v2} are also attached.

• if both v_1 , v_2 are "*passive*" then v is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node w with the largest depth is "active", $sgn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the getwork, a , , , ,

Dima Grigoriev (CNRS)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in v. We impose the condition that the number of "*active*" v of depth k is bounded by $p \le 2^k$.

 $f_V = A \circ B$ where $\circ \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \dots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

To v two boolean functions B_{v1}, B_{v2} are also attached.

• if both *v*₁, *v*₂ are "*passive*" then *v* is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node w with the largest depth is "active", $gn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the getwork, a , , a ,

Dima Grigoriev (CNRS)

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth *k* is bounded by $p \le 2^k$.

 $f_v = A \circ B$ where $o \in \{+, \times\}$ and $A, B \in F \cup \{X_1, \dots, X_n\} \cup \{f_{v_1}, f_{v_2}\}$

Fo v two boolean functions B_{v1}, B_{v2} are also attached.

• if both *v*₁, *v*₂ are "*passive*" then *v* is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node w with the largest depth is "active", $sgn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the network and a set work and a set w

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth *k* is bounded by $p \le 2^k$.

 $\mathit{f_{v}} = \mathit{A} \circ \mathit{B} \text{ where } \circ \in \{+, \times\} \text{ and } \mathit{A}, \mathit{B} \in \mathit{F} \cup \{\mathit{X_{1}}, \ldots, \mathit{X_{n}}\} \cup \{\mathit{f_{v_{1}}}, \mathit{f_{v_{2}}}\}$

To v two boolean functions B_{v1} , B_{v2} are also attached.

if both v₁, v₂ are "passive" then v is "passive" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node *w* with the largest depth is "*active*", $ggn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the network and a set work and a set w

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth *k* is bounded by $p \le 2^k$.

 $\mathit{f_{v}} = \mathit{A} \circ \mathit{B} \text{ where } \circ \in \{+, \times\} \text{ and } \mathit{A}, \mathit{B} \in \mathit{F} \cup \{\mathit{X_{1}}, \ldots, \mathit{X_{n}}\} \cup \{\mathit{f_{v_{1}}}, \mathit{f_{v_{2}}}\}$

To v two boolean functions B_{v1} , B_{v2} are also attached.

• if both *v*₁, *v*₂ are "*passive*" then *v* is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(sgn(f_{v_i}(x)))$.

Exactly one node w with the largest depth is "active", $ggn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the petwork

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth *k* is bounded by $p \le 2^k$.

 $\mathit{f_{v}} = \mathit{A} \circ \mathit{B} \text{ where } \circ \in \{+, \times\} \text{ and } \mathit{A}, \mathit{B} \in \mathit{F} \cup \{\mathit{X_{1}}, \ldots, \mathit{X_{n}}\} \cup \{\mathit{f_{v_{1}}}, \mathit{f_{v_{2}}}\}$

To v two boolean functions B_{v1} , B_{v2} are also attached.

• if both *v*₁, *v*₂ are "*passive*" then *v* is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node *w* with the largest depth is "*active*", $sgn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the petwork

To the root of a **network** input $x \in \mathbb{R}^n$ is attributed.

To each node v of depth k lead edges from (at most) two nodes v_1 , v_2 of depth k - 1.

To each node *v* a **computing polynomial** $f_v \in \mathbb{R}[X_1, ..., x_n]$ and a **boolean indicator** b_v are attached.

Informally, $b_v = 1$ ("*active*") means that one of the processors is located in *v*. We impose the condition that the number of "*active*" *v* of depth *k* is bounded by $p \le 2^k$.

 $\mathit{f_{v}} = \mathit{A} \circ \mathit{B} \text{ where } \circ \in \{+, \times\} \text{ and } \mathit{A}, \mathit{B} \in \mathit{F} \cup \{\mathit{X_{1}}, \ldots, \mathit{X_{n}}\} \cup \{\mathit{f_{v_{1}}}, \mathit{f_{v_{2}}}\}$

To v two boolean functions B_{v1} , B_{v2} are also attached.

• if both *v*₁, *v*₂ are "*passive*" then *v* is "*passive*" as well;

- if v_1, v_2 are "active" then $b_v = B_{v2}(sgn(f_{v_1}(x)), sgn(f_{v_2}(x)));$
- if only v_i , i = 1, 2 is "active" then $b_v = B_{v1}(\operatorname{sgn}(f_{v_i}(x)))$.

Exactly one node *w* with the largest depth is "*active*", $sgn(f_w(x))$ is treated as an output of the parallel network.

The parallel complexity PC is the depth of the network.

Dima Grigoriev (CNRS)

SOA
Which nodes to use in a computation for x is determined by the boolean indicators.

Lower bound on the parallel complexity

For set $S \subset \mathbb{R}^n$ parallel complexity $PC(S) \ge \Omega(\sqrt{(\log N)/n})$ where N is

- either the sum of Betti numbers of S (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N \ge n^{\Omega(n)}$ (G. [1996])

Which nodes to use in a computation for x is determined by the boolean indicators.

Lower bound on the parallel complexity

For set $S \subset \mathbb{R}^n$ parallel complexity $PC(S) \ge \Omega(\sqrt{(\log N)/n})$ where N is

- either the sum of Betti numbers of S (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N \ge n^{\Omega(n)}$ (G. [1996])

Which nodes to use in a computation for x is determined by the boolean indicators.

Lower bound on the parallel complexity

For set $S \subset \mathbb{R}^n$ parallel complexity $PC(S) \ge \Omega(\sqrt{(\log N)/n})$ where N is

 either the sum of Betti numbers of S (Mulmuley [1994], Montaña-Morais-Pardo [1996].)

• or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N \ge n^{\Omega(n)}$ (G. [1996])

< ロ > < 同 > < 回 > < 回 > < 回 > <

Which nodes to use in a computation for x is determined by the boolean indicators.

Lower bound on the parallel complexity

For set $S \subset \mathbb{R}^n$ parallel complexity $PC(S) \ge \Omega(\sqrt{(\log N)/n})$ where N is

- either the sum of Betti numbers of S (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N \ge n^{\Omega(n)}$ (G. [1996])

Which nodes to use in a computation for x is determined by the boolean indicators.

Lower bound on the parallel complexity

For set $S \subset \mathbb{R}^n$ parallel complexity $PC(S) \ge \Omega(\sqrt{(\log N)/n})$ where N is

- either the sum of Betti numbers of S (Mulmuley [1994], Montaña-Morais-Pardo [1996].)
- or the number of faces of *S* of all the dimensions when *S* is a polyhedron, provided that $N \ge n^{\Omega(n)}$ (G. [1996])

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Upper bound on the parallel complexity

 $p, CP(S) \leq O(\sqrt{\log m \cdot \log \log m} \cdot 2^n)$ (G. [1996]).

Thus, the bound is interesting for small *n*. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let $S \subset \mathbb{R}^2$ be an m-gon. Then

- $C(S) \asymp \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);
- $\Omega(\sqrt{\log m}) \le PC(S) \le O(\sqrt{\log m \cdot \log\log m})$ (Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).

< 同 > < 三 > < 三 >

Upper bound on the parallel complexity

 $p, CP(S) \leq O(\sqrt{\log m \cdot \log \log m} \cdot 2^n)$ (G. [1996]).

Thus, the bound is interesting for small n. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let $S \subset \mathbb{R}^2$ be an m-gon. Then

- $C(S) \asymp \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);
- $\Omega(\sqrt{\log m}) \le PC(S) \le O(\sqrt{\log m \cdot \log\log m})$ (Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).

・ロト ・同ト ・ヨト ・ヨト

Upper bound on the parallel complexity

 $p, CP(S) \leq O(\sqrt{\log m \cdot \log \log m} \cdot 2^n)$ (G. [1996]).

Thus, the bound is interesting for small n. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let $S \subset \mathbb{R}^2$ be an m-gon. Then

- $C(S) \asymp \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);
- $\Omega(\sqrt{\log m}) \le PC(S) \le O(\sqrt{\log m \cdot \log\log m})$ (Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).

(日)

Upper bound on the parallel complexity

 $p, CP(S) \leq O(\sqrt{\log m \cdot \log \log m} \cdot 2^n)$ (G. [1996]).

Thus, the bound is interesting for small n. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

- Let $S \subset \mathbb{R}^2$ be an m-gon. Then
 - $C(S) \asymp \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);
 - $\Omega(\sqrt{\log m}) \le PC(S) \le O(\sqrt{\log m \cdot \log\log m})$ (Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).

< D > < P > < P > <</pre>

Upper bound on the parallel complexity

 $p, CP(S) \leq O(\sqrt{\log m \cdot \log \log m} \cdot 2^n)$ (G. [1996]).

Thus, the bound is interesting for small n. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let $S \subset \mathbb{R}^2$ be an m-gon. Then

- $C(S) \asymp \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);
- $\Omega(\sqrt{\log m}) \le PC(S) \le O(\sqrt{\log m \cdot \log \log m})$ (Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).

Upper bound on the parallel complexity

 $p, CP(S) \leq O(\sqrt{\log m \cdot \log \log m} \cdot 2^n)$ (G. [1996]).

Thus, the bound is interesting for small n. The following corollary provides a nearly (sharp) quadratic gap between the parallel complexity and the usual (sequential) one.

Corollary

Let $S \subset \mathbb{R}^2$ be an m-gon. Then

- $C(S) \asymp \log m$ (Steele-Yao [1982], Meyer auf der Heide [1985]);
- $\Omega(\sqrt{\log m}) \le PC(S) \le O(\sqrt{\log m \cdot \log\log m})$ (Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for more general semi-algebraic sets (rather than for linear complexes).