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Several non-linear lower bounds are known in algebraic complexity
unlike its boolean counterpart
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Computational models
Let F be a ground field.

Algebraic d-decision tree
Input x = (x1, . . . , xn) ∈ F n is attributed to the root of tree T .
To each node v of T (except leaves) a (testing) polynomial
gv ∈ F [X1, . . . ,Xn] with deg(gv ) ≤ d is assigned. The algebraic
decision tree branches at node v according to whether gv (x) = 0.
In case F = R one uses alternatively gv (x) > 0 as a condition of
branching.
To each leaf L an output ”accept” or ”reject” is assigned.
Denote by SL ⊂ F n the set of inputs which arrive at L. They are
pairwise disjoint and the set S ⊂ F n accepted by the algebraic
decision tree is the union of SL for all leaves L assigned with
”accept”.
The complexity Cd is the depth of T .

For d = 1 they are called linear decision trees.
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Algebraic computation tree
The difference with algebraic decision trees is that testing polynomial
gv is calculated as gv = a ◦ b where

operation ◦ ∈ {+,×}
a,b ∈ F ∪ {X1, . . . ,Xn} ∪ {gu} where u runs the nodes on the path
from the root to v .

In particular, deg(gv ) ≤ 2kv where kv is the depth of v .
Denote by C the complexity of algebraic computation trees. For any
constant d the model of computation trees is stronger than one of
d-decision trees.
We study the complexities Cd (S), C(S) of the membership problem to
S.
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Complexity lower bounds via topological
invariants

There are several lower bounds for algebraic computation trees over
the field either F = C or F = R of the form
C(S) ≥ log2(ci)− n, i = 1,2,3 where

c1 is the maximum of the number of connected components in S
and in F n \ S (Ben-Or [1983]);
c2 is the Euler characteristic of S (Björner-Lovasz-Yao [1992]);
c3 is the sum of Betti numbers (ranks of homological groups) of S
(Yao [1994], Montaña-Morais-Pardo [1996]).

c1, c2 ≤ c3
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Combinatorial problems
EQUALITY is the set
{(x1, . . . , xn, y1, . . . , yn) ⊂ F 2n : {x1, . . . , xn} = {y1, . . . , yn}};
DISTINCTNESS is the set {(x1, . . . , xn) : xi 6= xj , i 6= j};
KNAPSACK is the set

⋃
I⊂{1,...,n}{(x1, . . . , xn) :

∑
i∈I xi = 1}.

Corollary
C(EQUALITY ) � n · logn (QuickSort (F = R), elementary
symmetric functions (F = C) Strassen [1973], Ben-Or [1983]);
C(DISTINCTNESS) � n · logn (QuickSort (F = R), discriminant
(F = C) Strassen [1973], Ben-Or [1983]);
C(KNAPSACK ) ≥ Ω(n2) (Ben-Or [1983]).
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Algebraic computation trees over positive
characteristic p > 0
Let F be an algebraically closed field of characteristic p > 0. For a
variety S ⊂ F n introduce B(S) which replaces the sum of Betti
numbers (over C or R).

Zeta function
Denote Nk = Nk (S) = ](S ∩ Fn

pk ).

Zeta function Z (S, t) = exp(
∑

1≤k<∞Nk tk/k) = P(t)/Q(t)
is a rational function (due to Dwork, Deligne).
Define B(S) = deg(P) + deg(Q).

Theorem
C(S) ≥ a · log(B(S))− b · n for some constants a,b (Ben-Or [1994])

Corollary
C(EQUALITY ),C(DISTINCTNESS) � n · logn (Strassen [1973],
Ben-Or [1994]).
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Complexity upper bound for membership to a
linear complex
An arrangement S ⊂ F n is a union of hyperplanes ∪iHi . A face of S is
an intersection of some of the hyperplanes. DISTINCTNESS and
KNAPSACK are arrangements.

Theorem
Let S be either an arrangement or a (possibly unbounded) polyhedron
(when F = R). Denote by N the number of faces (of all the dimensions)
of S. Then C(S) ≤ O(n3 · logN) (Meyer auf der Heide [1985]).

One can generalize the theorem to arbitrary linear complexes, i. e.
the unions of polyhedra.

Corollary

C(KNAPSACK ) ≤ O(n5) (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an
algebraic computation tree is non-uniform (depends on n).
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One can generalize the theorem to arbitrary linear complexes, i. e.
the unions of polyhedra.

Corollary

C(KNAPSACK ) ≤ O(n5) (Meyer auf der Heide [1985]).

The corollary does not directly imply P=NP since the construction of an
algebraic computation tree is non-uniform (depends on n).
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Membership to a polyhedron

Let P ⊂ Rn be a convex polyhedron (with N faces of all the
dimensions). Then the sum of its Betti numbers equals 1.

Theorem
Complexity of linear decision trees C1(P) ≥ log2N (Rivest-Yao [1980])

Theorem

Cd (P) ≥ Ω(logN), provided that N ≥ (dn)Ω(n) (G.-Karpinski-Vorobjov
[1994]).
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Pfaffian decision trees
As a testing function gv at a node v of a Pfaffian d-decision tree
appears a Pfaffian function.
Let v0, . . . , vk be the nodes on the path from the root v0 to vk .
dgvk =

∑
1≤j≤n hkj(gv0 , . . . ,gvk ,X1, . . . ,Xn) · dXj

for some polynomials hkj ∈ R[Z0, . . . ,Zk ,X1, . . . ,Xn], deg(hkj) ≤ d .
The complexity denote by Cpfaff

d .
Examples of Pfaffian functions: polynomials, exp, log (on the
positive half-line), sin (on the interval (−π, π),

√
X (on the positive

half-line), X−1 on R \ {0}.

Theorem
Let S ⊂ Rn be semi-pfaffian (defined by inequalities of the form
g ≥ 0 for Pfaffian functions g. Denote by c3 the sum of its Betti
numbers. Then Cpfaff

d ≥ Ω(
√

logc3) (G.-Vorobjov [1994]);
For a polyhedron P with N faces of all the dimensions
Cpfaff

d (P) ≥ Ω(
√

logN), provided that N ≥ (dn)Ω(n4·logd)

(G.-Vorobjov [1994]).
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Probabilistic decision and computation trees
Let {Ti}1≤i≤s be a collection of either algebraic d-decision or,
respectively computation trees with attributed probabilities
p1, . . . ,ps,

∑
1≤i≤s pi = 1. It is called probabilistic algebraic

d-decision or, respectively probabilistic computation tree.
A probabilistic tree accepts set S ⊂ F n if for any input x ∈ F n the
output is correct with probability > 2/3.
The complexity Cprob

d is defined as expectation
∑

1≤i≤s pi · Cd (Ti).
Similarly, one defines Cprob.
One can also consider a continuous distribution of trees.

Speed-up by probabilistic computation trees

Cprob(EQUALITY ) � n (Bürgisser-Karpinski-Lickteig [1992]);
Consider polynomials
f (Z ) =

∏
1≤i≤n(Z − xi), h(Z ) =

∏
1≤i≤n(Z − yi). Sets

{x1, . . . , xn} = {y1, . . . , yn} ⇔ f ≡ h;
Choose randomly z0 ∈ F and test whether f (z0) = h(z0). If yes,
return ”accept”, else ”reject”.
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Lower bounds for probabilistic algebraic trees
The topological methods and differential-geometric methods fail for
probabilistic trees (another evidence is the latter example).
Let S ⊂ F n be a polyhedron (when F = R) or an arrangement
determined by m hyperplanes having N ≥ mΩ(n) faces.

Theorem

1) Cprob
d (S) ≥ Ω(logN) for constant d (G.-Karpinski-Meyer auf der

Heide-Smolensky [1995]);
2) Cprob(S) ≥ Ω(logN) (G. [1997]).

Corollary

1) Cprob
d (DISTINCTNESS) � n · logn, Cprob

d (KNAPSACK ) ≥ Ω(n2)
(G.-Karpinski-Meyer auf der Heide-Smolensky [1995]);
2) Cprob(DISTINCTNESS) � n · logn, Cprob(KNAPSACK ) ≥ Ω(n2) (G.).

EQUALITY is a union of n-dimensional planes in F 2n (not an
arrangement), thus the Theorem is not applicable.
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closed fields of zero characteristic

Let S = H1 ∪ · · · ∪ Hm ⊂ F n be an arrangement.
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Analytic and topological decision trees

If a decision tree admits arbitrary polynomials as testing functions we
call it topological tree and its complexity denote by Ctop ≤ C,Cd
(Shub-Smale).
I. e. computations are gratis, only branchings are counted.

If a decision tree admits arbitrary analytic functions as testing functions
we call it analytic tree and its complexity denote by Can ≤ Ctop.

MAX
ORTANT = Rn

+ = {(x1, . . . , xn) : x1 ≥ 0, . . . , xn ≥ 0} ⇔
MAX= = {(x1, . . . , xn) : x1 = max{x1, . . . , xn}}
is a weaker problem than
MAX: to compute max{x1, . . . , xn} by means of a modification of a
decision (or computation) tree in which the outputs of leaves are
functions (polynomials) rather than labels ”accept” or ”reject”.
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C1(MAX ) ≤ n − 1

Theorem
Can(MAX =) = n − 1 (Rabin [1972];
corrected proof Montaña-Pardo-Recio [1994];
short proof G.-Karpinski-Smolensky [1995]);
Cprob

d (MAX =) ≥ n/(2 · d), Cprob(MAX =) ≥ n/4 (G.-K.-S.
[1995]);
Cprob

top (MAX =) ≤ Cprob
n (MAX =) ≤ O(log2n) (G.-K.-S. [1995]);

Cprob
top (MAX ) ≤ Cprob

n (MAX ) ≤ O(log2n) (Ben-Or [1996];
≤ O(log5n) G.-K.-S. [1995]).
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Topological complexity of the range searching

For f1, . . . , fm ∈ R[X1, . . . ,Xn] we say that a decision/computation tree
T solves the RANGE SEARCHING problem if any two inputs x , y ∈ Rn

with different sign vectors
(sgn(f1), . . . , sgn(fn))(x) 6= (sgn(f1), . . . , sgn(fn))(y)
arrive to different leaves of T . Denote by N the number of sign vectors.

Theorem
Ctop (RANGE SEARCHING) � logN (G. [1998]).
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Lower bound for probabilistic analytic trees

We have seen that for MAX tossing a coin can (exponentially)
speed-up computation. Here is an example of a set for which it is not
the case.

Let an integer q 6= 2m. Consider set
MODq = {(x1, . . . , xn) ∈ Rn :

∏
1≤i≤n xi 6= 0, q | ]{i : xi < 0}}.

Theorem

Cprob
an (MODq) ≥ Ω(

√
n) (G.-Karpinski-Smolensly [1995]).
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Size of decision trees
So far, we studied the depth of decision/computation trees. Since
depth ≥ log(size), the bounds on the size are stronger.
Consider set
EXACTn = {(x1, . . . , x2·n) ∈ R2·n :

∏
1≤i≤2·n xi 6= 0, ]{i : xi < 0} = n}.

Theorem
For analytic decision trees sizean(EXACTn) ≥ 2n/n (G.-K.-S. [1995]).

For linear decision trees size1(MAX =) ≤ 2 · n;

Alternatively to usual (binary) trees one can consider ternary decision
trees in which a node v with a testing function gv branches into 3
nodes according to whether gv < 0, or gv = 0, or gv > 0.

Theorem
Ternary sized (MAX =) ≥ 2cd ·n for d-decision trees, cd > 0
(G.-Karpinski-Yao [1994])

Open question: size (MAX) for binary decision/computation trees?
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Communication complexity of decision trees
Communication tree
Let F = R (also F = C can be studied). Let input variables be divided
into 2 groups: X1, . . . ,Xn1 and Y1, . . . ,Yn2 . An input (x , y) ∈ Rn1+n2 .
To each node v with an even (respectively, odd) depth a calculating
polynomial av ∈ R[X1, . . . ,Xn1 ] (respectively, bv ∈ R[Y1, . . . ,Yn2 ]) is
attached.
Also a family of testing polynomials {gvi}1≤i≤Nv is assigned.
There are 2 players; the first one has access to x and the second to y .
Let v0, . . . , vk = v be the nodes on the path from the root v0 to vk = v
and k be odd (for definiteness).
Then at v the second player computes bv (y), transmits it to the first
player and branches according to the vector
{sgn(gvi(av0(x),bv1(y),av2(x), . . . ,avk−1(x),bvk (y)}1≤i≤Nv

Communication complexity CC is the depth of the communication
tree.

One defines also probabilistic communication complexity CCprob.
Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6.11 19 / 23
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Lower bound on communication complexity

Rn1+n2
> = {(x , y) ∈ Rn1+n2 : ∀i , j xi > 0, yj > 0} ⊂ Rn1+n2

+ = Rn1+n2
> .

Proposition

CC(Rn1+n2
> ), CC(Rn1+n2

+ ) = n1 + n2;

CCprob(Rn1+n2
> ) ≤ 4, CCprob(Rn1+n2

+ ) ≤ logO(1)(n1 + n2).

Lower bound on probabilistic communication complexity
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Parallel networks
To the root of a network input x ∈ Rn is attributed.
To each node v of depth k lead edges from (at most) two nodes v1, v2
of depth k − 1.
To each node v a computing polynomial fv ∈ R[X1, . . . , xn] and a
boolean indicator bv are attached.
Informally, bv = 1 (”active”) means that one of the processors is
located in v . We impose the condition that the number of ”active” v of
depth k is bounded by p ≤ 2k .
fv = A ◦ B where ◦ ∈ {+,×} and A,B ∈ F ∪ {X1, . . . ,Xn} ∪ {fv1 , fv2}
To v two boolean functions Bv1,Bv2 are also attached.

if both v1, v2 are ”passive” then v is ”passive” as well;
if v1, v2 are ”active” then bv = Bv2(sgn(fv1(x)), sgn(fv2(x)));
if only vi , i = 1,2 is ”active” then bv = Bv1(sgn(fvi (x))).

Exactly one node w with the largest depth is ”active”, sgn(fw (x)) is
treated as an output of the parallel network.
The parallel complexity PC is the depth of the network.
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Informally: at depth k the network can contain ≤ 22k
nodes with

potential possibility of their use in computation, while for every
particular input x just ≤ 2k are involved (the processors are located in
them).
Which nodes to use in a computation for x is determined by the
boolean indicators.

Lower bound on the parallel complexity

For set S ⊂ Rn parallel complexity PC(S) ≥ Ω(
√

(logN)/n) where N is

either the sum of Betti numbers of S (Mulmuley [1994],
Montaña-Morais-Pardo [1996].)
or the number of faces of S of all the dimensions when S is a
polyhedron, provided that N ≥ nΩ(n) (G. [1996])

Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6.11 22 / 23



Informally: at depth k the network can contain ≤ 22k
nodes with

potential possibility of their use in computation, while for every
particular input x just ≤ 2k are involved (the processors are located in
them).
Which nodes to use in a computation for x is determined by the
boolean indicators.

Lower bound on the parallel complexity

For set S ⊂ Rn parallel complexity PC(S) ≥ Ω(
√

(logN)/n) where N is

either the sum of Betti numbers of S (Mulmuley [1994],
Montaña-Morais-Pardo [1996].)
or the number of faces of S of all the dimensions when S is a
polyhedron, provided that N ≥ nΩ(n) (G. [1996])

Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6.11 22 / 23



Informally: at depth k the network can contain ≤ 22k
nodes with

potential possibility of their use in computation, while for every
particular input x just ≤ 2k are involved (the processors are located in
them).
Which nodes to use in a computation for x is determined by the
boolean indicators.

Lower bound on the parallel complexity

For set S ⊂ Rn parallel complexity PC(S) ≥ Ω(
√

(logN)/n) where N is

either the sum of Betti numbers of S (Mulmuley [1994],
Montaña-Morais-Pardo [1996].)
or the number of faces of S of all the dimensions when S is a
polyhedron, provided that N ≥ nΩ(n) (G. [1996])

Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6.11 22 / 23



Informally: at depth k the network can contain ≤ 22k
nodes with

potential possibility of their use in computation, while for every
particular input x just ≤ 2k are involved (the processors are located in
them).
Which nodes to use in a computation for x is determined by the
boolean indicators.

Lower bound on the parallel complexity

For set S ⊂ Rn parallel complexity PC(S) ≥ Ω(
√

(logN)/n) where N is

either the sum of Betti numbers of S (Mulmuley [1994],
Montaña-Morais-Pardo [1996].)
or the number of faces of S of all the dimensions when S is a
polyhedron, provided that N ≥ nΩ(n) (G. [1996])

Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6.11 22 / 23



Informally: at depth k the network can contain ≤ 22k
nodes with

potential possibility of their use in computation, while for every
particular input x just ≤ 2k are involved (the processors are located in
them).
Which nodes to use in a computation for x is determined by the
boolean indicators.

Lower bound on the parallel complexity

For set S ⊂ Rn parallel complexity PC(S) ≥ Ω(
√

(logN)/n) where N is

either the sum of Betti numbers of S (Mulmuley [1994],
Montaña-Morais-Pardo [1996].)
or the number of faces of S of all the dimensions when S is a
polyhedron, provided that N ≥ nΩ(n) (G. [1996])

Dima Grigoriev (CNRS) Complexity lower bounds: algebraic trees 14.6.11 22 / 23



Let a linear complex S ⊂ Rn be given as a boolean combination of
linear inequalities Lj ≥ 0, 1 ≤ j ≤ m.

Upper bound on the parallel complexity

p,CP(S) ≤ O(
√

logm · loglogm · 2n) (G. [1996]).

Thus, the bound is interesting for small n. The following corollary
provides a nearly (sharp) quadratic gap between the parallel
complexity and the usual (sequential) one.

Corollary

Let S ⊂ R2 be an m-gon. Then
C(S) � logm (Steele-Yao [1982], Meyer auf der Heide [1985]);
Ω(
√

logm) ≤ PC(S) ≤ O(
√

logm · loglogm)
(Mulmuley [1994], G. [1996]).

Open problem: obtain an upper bound on the parallel complexity for
more general semi-algebraic sets (rather than for linear complexes).
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